Forms

Miscellaneous

- 1. Let M be any n-manifold and $TM \to M$ its tangent bundle. Show that the total space is always orientable as a $2n$ -manifold (but not always as a vector bundle). Hint: Show that the transition maps between standard charts are orientation preserving.
- 2. Recall that $\mathbb{R}P^3$ is an orientable manifold. Let $f_n : \mathbb{R}P^3 \to \mathbb{R}P^3$ be given by

 $[X_0 : X_1 : X_2 : X_3] \mapsto [X_0^n : X_1^n : X_2^n : X_3^n]$

for $n \geq 1$. Compute the degree $deg(f_n) \in \mathbb{Z}$. Optional: If you are comfortable with complex manifolds and complex derivatives you could also do it for $\mathbb{C}P^3$ (or $\mathbb{C}P^k$). (All complex manifolds are orientable.)

3. Let V be the vector field in the plane $\mathbb{R}^2 = \mathbb{C}$ defined by $V(z) = z^n$, $n \geq 1$. Thus 0 is the only singular point of V. Compute the index ind_0V .

Exterior algebra

- 4. An alternating 2-tensor $T \in \Lambda^2(V^*)$ is *decomposable* if it can be written as $T = A \wedge B$ for 1-tensors A, B. Show that every alternating 2-tensor in $\Lambda^2((\mathbb{R}^3)^*)$ is decomposable.
- 5. Show that the 2-tensor $\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4$ in $\Lambda^2((\mathbb{R}^4)^*)$ is not decomposable. Hint: Consider $\omega \wedge \omega$.
- 6. For $v \in V$ and $\omega \in \Lambda^k(V^*)$ define the *contraction* $v \perp \omega \in \Lambda^{k-1}(V^*)$ (also called interior product) by

$$
v = \omega(v_1, v_2, \cdots, v_{k-1}) = \omega(v, v_1, v_2, \cdots, v_{k-1})
$$

- (a) Show that $v \perp (w \perp \omega) = -w \perp (v \perp \omega)$.
- (b) Suppose v_1, \dots, v_n is a basis of V and ϕ_1, \dots, ϕ_n is the dual basis of V^* . Show that

$$
v_i = (\phi_{i_1} \wedge \phi_{i_2} \wedge \cdots \wedge \phi_{i_k})
$$

equals

$$
(-1)^{j-1}\phi_{i_1}\wedge\cdots\wedge\widehat{\phi_{i_j}}\wedge\cdots\wedge\phi_{i_k}
$$

if i equals some i_j and otherwise it equals 0. (The hat means omit that term.)

(c) If $\omega_1 \in \Lambda^k(V^*)$ and $\omega_2 \in \Lambda^l(V^*)$ prove the Leibnitz rule:

$$
v = (\omega_1 \wedge \omega_2) = (v = \omega_1) \wedge \omega_2 + (-1)^k \omega_1 \wedge (v = \omega_2)
$$

Hint: Use (b) and linearity of everything.

The significance here is that if ω is a k-form on a manifold X and V is a vector field on X, then the pointwise contraction $V \perp \omega$ is a $(k - 1)$ -form and this operation will satisfy the Leibnitz rule.

Forms

- 7. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = xy y^2$. Compute the pullback $f^*(\omega)$ of the 1-form $\omega = t dt$.
- 8. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $f(x, y) = (xy^2 + x, y^3 xy)$. Compute $f^*(\omega)$ and $f^*(\eta)$ where $\omega = x \, dy + y \, dx$ and $\eta = dx \wedge dy$.
- 9. Let X be an oriented *n*-manifold and $-X$ the same manifold with opposite orientation. Let ω be a compactly supported *n*-form on X. Show that

$$
\int_{-X} \omega = -\int_X \omega
$$

10. Let $c : [a, b] \to X$ be a smooth curve and let $f : [c, d] \to [a, b]$ be a smooth map with $f(c) = a$ and $f(d) = b$. If ω is any 1-form on X, show that \mathbf{r}^b

$$
\int_a^b c^*(\omega) = \int_c^d (cf)^*(\omega)
$$

where by \int_a^b we denote integral over $[a, b]$ with the usual orientation from a to b.

11. Let ω be a 1-form on a connected manifold X. Suppose that for every smooth map $f: S^1 \to X$ the integral

$$
\int_{S^1} f^*(\omega) = 0
$$

Show that there exists a smooth function $g: X \to \mathbb{R}$ such that $\omega = dg$. Hint: Fix a basepoint $x_0 \in X$. Connectivity guarantees that for every $x \in X$ there is a smooth curve $c : [a, b] \to X$ from x_0 to x. Define $x \in X$ there is a smooth curve $c : [a, b] \to X$ from x_0 to x . L
 $g(x) = \int_a^b c^*(\omega)$. First show it doesn't depend on the choice of c .

12. Let S be a surface in \mathbb{R}^3 and $\vec{n} = (n_1, n_2, n_3)$ a unit norm vector field along S perpendicular to the tangent space of S at every point. Show that

$$
\omega = n_1 \, dx_2 \wedge dx_3 + n_2 \, dx_3 \wedge dx_1 + n_3 \, dx_1 \wedge dx_2
$$

is an area form on S, i.e. for any two vectors $v, v' \in T_pS$ the value of $\omega(v, v')$ is (up to sign) the area of the parallelogram in \mathbb{R}^3 spanned by v, v' . Hint: you only need to check this on one pair of linearly independent vectors at every point.

13. Using Problem 12 show that the 2-form

$$
\omega = x_1 \, dx_2 \wedge dx_3 + x_2 \, dx_3 \wedge dx_1 + x_3 \, dx_1 \wedge dx_2
$$

is the area form on S^2 .