
Exterior derivative and the Stokes theorem

Exterior derivative

1. Define the following pn ´ 1q-form ω on Rn ∖ t0u:

ω “

n
ÿ

k“1

p´1qk
xk dx1 ^ dx2 ^ ¨ ¨ ¨ ^ ydxk ^ ¨ ¨ ¨ ^ dxn

px21 ` x22 ` ¨ ¨ ¨ ` x2nqn{2

Note that the denominator is }x}n.

(i) Show that ω is invariant under scaling, i.e. if f : Rn ∖ t0u Ñ

Rn ∖ t0u is defined by fpxq “ λx for λ ‰ 0, then f˚pωq “ ω.

(ii) Show that ω is a closed form, i.e. dω “ 0.

2. Let ω be a 1-form on a manifold M and X,Y two smooth vector fields
on M . As a check that you understand all definitions, show that

2 dωpX,Y q “ XωpY q ´ Y ωpXq ´ ωprX,Y sq

Here, e.g. ωpY q is the smooth function on M obtained by plugging
in the vector Y ppq into ω for every p P M and XωpY q is the deriva-
tive of this function along X. The bracket rX,Y s is the Lie bracket.
This identity can be used to define the exterior derivative of a 1-form
without local coordinates. There are analogous and more complicated
formulas for higher order forms, see Spivak. You should write it out in
coordinates and for simplicity you may assume that dimM “ 2. Thus
ω “ f dx ` g dy and by linearity you can assume e.g. ω “ f dx.

Stokes Theorem and calculus

3. Show that the Stokes theorem for a closed interval ra, bs is just the
Fundamental Theorem of Calculus.

4. Derive Green’s formula in the plane from the Stokes theorem: If W Ă

R2 is a compact surface with boundary γ “ BW and f, g : R2 Ñ R are
smooth, then

ż

γ
f dx ` g dy “

ż

W

ˆ

Bg

Bx
´

Bf

By

˙

dx dy
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5. Derive the Divergence theorem from the Stokes theorem: Let W Ă R3

be a compact 3-manifold and let n⃗ be the outward normal to BW . If
F⃗ “ pf1, f2, f3q is a vector field in R3 then

ż

W
pdivF⃗ qdx dy dz “

ż

BW
pn⃗ ¨ F⃗ q dA

where dA is the area form on BA.

6. Derive the (classical) Stokes theorem from the Stokes theorem(!): Let
S Ă R3 be a compact orented surface with boundary and F⃗ “ pf1, f2, f3q

a vector field in R3. Then
ż

S
pcurlF⃗ ¨ nqdA “

ż

BS
f1dx1 ` f2dx2 ` f3dx3

where n⃗ is a unit normal to S compatible with orientations and dA is
the area form.

More Stokes

7. Let W be a compact oriented manifold with boundary BW “ X, and
let n “ dimX. If f : W Ñ Y is a smooth map and ω P ΩnpY q a closed
form then

ş

X f˚pωq “ 0.

8. Let f, g : X Ñ Y be smooth homotopic maps with X compact, ori-
ented, and BX “. Let n “ dimX, and ω P ΩnpY q a closed form. Show
that

ş

X f˚pωq “
ş

X g˚pωq.

9. Let M be a compact oriented n-manifold without boundary. Let ω P

ΩnpMq, so ω is closed. Show that if ω is exact then
ş

M ω “ 0. More
generally, show that if ω is an exact p-form on a manifold X and
M Ă X is an oriented compact p-manifold without boundary then
ş

M ω “ 0. Normally, one shows that a form is not exact by computing
an integral like this and showing it is not 0.

10. Show that the form from Problem 1. is not exact. Hint: By Problem
9, it suffices to show that

ş

Sn´1 ω ‰ 0. This might be a painful calcu-

lation, but here is a trick. The form η “
ř

kp´1qkxkdx1 ^ ¨ ¨ ¨ ^ ydxk ^

¨ ¨ ¨ ^ dxn is defined on all of Rn, agrees with ω on Sn´1 and dη is a
multiple of the volume form on Rn, so apply Stokes on the unit ball.
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11. Show that the form ω (or equivalently η) from Problem 10 is the
volume form on Sn´1. This is of course harder than Problem 10.
Hint: One approach is this. First check that this is true at the north
pole p0, 0, ¨ ¨ ¨ , 0, 1q. Then show that ω (and η) are invariant under
rotations in 2 coordinates, i.e. under the maps such as

px1, x2, ¨ ¨ ¨ , xnq ÞÑ px1 cosα ` x2 sinα,´x1 sinα ` x2 cosα, ¨ ¨ ¨ , xnq

and finally show that any point on the sphere can be rotated to the
north pole by composing such 2-coordinate rotations.
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