
2024

1. What is the smallest positive integer n such that given any set of n natural numbers no greater than
2024 there must exist two of them whose ratio lies in the interval (1, 2]?

2. Let n be a positive integer. Show that any sequence of more than n2 points in an equilateral triangle
with side length 1 must contain 2 points whose distance is less than or equal to 1

n .
3. A die is a cube with faces numbered 1 through 6. A loaded die is a die in which the faces do not

necessarily appear with equal probability when the die is rolled. It is allowed that a face has a zero
probability of appearing. Show that given two loaded dice (not necessarily loaded in the same way)
it cannot happen that when rolling the pair of dice arbitrarily many times that each of the possible
sums 2, · · · , 12 appears with the same probability in the limit.

4. Show that for any square matrix A there is some positive integer k so that

I +A+A2 + · · ·+Ak

is invertible, where I is the identity matrix.
5. Let {z1, · · · , zn} be a finite sequence of complex numbers, n ≥ 2, each of which has real part equal

to 1. Prove that ∑
1≤j<k≤n

zjzk ̸= 0

6. Let A and B be two n× n matrices with entries in C and r, s be two positive integers. Prove that if
all the eigenvalues of A are even integers and ArB −BAs = B, then B is a zero matrix.

7. Prove that the integral
∫ 2π

0
ln |eix − 1|dx converges and compute its value.

2023

1. Let P (x) = xn + an−1x
n−1 + · · ·+ a0 be a monic polynomial with integer coefficients. Suppose that

P (0) = 2023 and that for every irrational number x the number P (x) is also irrational. Prove that
the polynomial is P (x) = x+ 2023.

2. Find the prime factorization of the sum S = 2× 22 + 3× 23 + · · ·+ 2023× 22023.
3. Let m and n be distinct positive integers. Prove that

(m+ n)!

(m+ n)m+n
<

m!n!

mmnn +mnnm

4. Let A,B,C be n × n matrices with complex entries such that A + B = AB, B + C = BC and
C +A = CA. Prove that the only possible eigenvalues of A are 0 or 2.

5. Suppose that M is a 3 × 3 matrix with determinant 2023 and integer eigenvalues. Let i, j, k be
the entries of M on the main diagonal, and suppose that i, j, k are distinct, single-digit positive or
negative integers. Prove that M is diagonalizable.

6. There are 6 frogs in the plane, situated at the vertices of a regular hexagon. The frogs are allowed
to move one at a time in the following way. A frog at a point A is allowed to jump over a frog at a
point B and land at the point C satisfying C − A = 3(B − A). Show that no matter how the frogs
jump, it is impossible for a frog to land at the center of the hexagon.

7. Simplify limn→∞
∑n−1

k=0(
n2

n2+k2 − π
4 ).

2022

1. Let p be a prime number. Prove that p− 8 is not the cube of a positive integer.
2. Compute the convergent of the following limit as a real number if it exists. If it doesn’t exist explain

why.

lim
n→∞

n∑
i=1

1

n+ i

1
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3. For positive integers n, a, b, c with 2a > b, evaluate

lim
n→∞

{√
a2n2 + b · n+ c

}
,

where {x} denotes the fractional part of x, that is, {x} is the least non-negative real number such
that x− {x} is an integer.

4. Alice and Bob are playing the following game:

There are 100 coins of various denominations lined up in a row on the table. Alice starts
by taking either the first or last coin. Then Bob takes either the first or the last coin from
remaining row of 99 coins. They alternate taking one coin from either end of the remaining
row of coins until all coins are taken.

Show that Alice can ensure that she gets at least as much money as Bob.
5. Let f(x) be a function such that:

(a) The lowest point on the parabola y = f(x) has y = −3, and
(b) A local maximum for y = f(f(x)) occurs at

(
− 1

2 , 22
)
.

Prove that y = f(f(f(x))) has a critical point with y = 2022.
6. Consider three equilateral triangles OAB,OCD,OEF with a common vertex in the plane, where

the label of each triangle lists the vertices in a counterclockwise order. Prove that the midpoints of
the segments BC,DE and FA are the vertices of an equilateral triangle.

7. Assume that f is a nonzero continuous function on the interval [0, 1]. Define

an =

∫ 1

0

[f(x)]2n dx for n = 1, 2, 3, . . . .

Prove that the sequence

(
an+1

an

)
is convergent.

2021

1. Prove that 52
n ≡ 1 mod (2n+2) for all non-negative integers n.

2. Determine the continuous functions f(x) with real values on the interval [0, 1] satisfying∫ 1

0

xf(x) dx ≥ 1

3
≥

∫ 1

0

f2(x) dx.

3. Find all real-valued solutions to the equation ⌊x⌋ = x4 − 2x2, where ⌊x⌋ denotes the largest integer
less than or equal to x.

4. Let n be an odd integer greater than 1. Let A be a symmetric n× n matrix with the property that
each row and each column contains each of the integers 1, . . . , n. Prove that each of the integers
1, . . . , n appears on the main diagonal.

5. Given n ≥ 2 complex numbers z1, z2, . . . , zn, with z1+ z2+ · · ·+ zn = 0 and |zi| = 1 for each i, prove
that for any complex number z we have

∑n
i=1 |z − zi| ≥ n.

6. Does there exist a positive sequence an such that
∑∞

n=1 an and
∑∞

n=1
1

n2an
are both convergent?

2019

1. Let x1, x2, . . . , x2019 be positive integers such that

1

x1
+

1

x2
+ · · ·+ 1

x2019
≥ 12.

Prove that at least two of these integers must be equal.
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2. Let A be an n× n matrix with the property that replacing any single row of A with a row of all 1’s
results in a matrix which is not invertible. Show that A is not invertible.

3. Let n be a positive integer, and let LCM(1, 2, . . . , 2n + 1) denote the least common multiple of
1, 2, . . . , 2n+ 1.
a) Show that

LCM(1, 2, . . . , 2n+ 1)

∫ 1

0

xn(1− x)n dx

is an integer.

b) Deduce that LCM(1, 2, . . . , 2n+ 1) > 4n.
4. Find all positive integers n for which

3007n − 112n − 315n + 1458n

is divisible by 2019.
5. Suppose a regular pentagon is circumscribed around a circle of radius 1, and a pentagram (5-pointed

star) inscribed within it. Let P be one of the inner vertices of the pentagram (as in the diagram
below). Find the sum of the five distances from P to each of the five sides of the outer pentagon.

P

q

rs

t u

6. Let a, b and c be real numbers such that a2 − 3b ≤ 3
4 . If the polynomial

P (x) = x3 + ax2 + bx+ c

has real roots x1 ≤ x2 ≤ x3, prove that x3 − x1 ≤ 1.
7. If α, β, and γ are the angles of an arbitrary triangle, show that

sin α
2 sin β

2 sin γ
2 < 1

4 .

2018

1. Let ABCD be a trapezoid, with parallel sides AB and CD. Let M be the midpoint of side AD.
Assume that the angle BCM is 150 degrees. Suppose that the length of BC is 5 and the length of
CM is 10. Find the area of the trapezoid ABCD. (See the diagram below, which is not to scale.)
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2. Find all solutions to

(m2 + n)(m+ n2) = (m+ n)3

with m,n ∈ Z.
3. Let N > 1 be an integer and let k be an integer with 1 ≤ k ≤ N − 1. Prove that

N−1∑
n=0

cos

(
2πkn

N

)
= 0.

4. Let n ≥ 1 be an integer. If ⌊x⌋ represents the largest integer less than or equal to x, prove that

⌊
√
n+

√
n+ 3⌋ = ⌊

√
4n+ 6⌋.

5. Let f(x) = 4x+6x+9x. Prove that if m and n are positive integers with m ≤ n, then f(2m) divides
f(2n).

6. A closed knight’s tour on an m × n chessboard is a sequence of mn knight’s moves such that the
knight starts in a specific square, visits every other square exactly once, and ends the last move in
the original starting square.

Prove that there is no closed knight’s tour on a 4× n chessboard, for any value of n ≥ 1.
7. Prove that for any positive integer n,

n∑
k=0

k

(
n

k

)2

= n

(
2n− 1

n− 1

)
.

2017

1. Set x0 = 1, and for each integer n ≥ 0 recursively define xn+1 = log3 (3
xn − xn). Determine

∞∑
n=0

xn.

2. Let A and B be n×n matrices with real entries, and let In be the n×n identity matrix. Show that
if In −AB is invertible, then so is In −BA.

3. Find all pairs of positive integer solutions (x, y) to the equation

x2 + y2 = 2017(x− y).

4. Given fifty-one points in a closed square of side length 1, show that there are (at least) three points
covered by a single closed disc of radius 1/7.

5. The sum of ten distinct positive integers is 62. Prove that their product is divisible by 720.
6. Let n ≥ 5 be an integer, and suppose n points are given in the Euclidean plane no three of which lie

on a line. Karin and Mary play the following turn-based game: On a player’s turn she draws a line
segment between any two points which have not previously been connected by a line segment. The
winner is the one after whose move every point is at the end of at least one line segment. If Karin is
the first player, find the values of n for which she has a winning strategy, irrespective of how Mary
plays.
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7. Let f : [0, 1] → R be a function which is differentiable. (To be differentiable at the endpoint x = 0

means that the limit limh→0+
f(h)−f(0)

h exists. A similar statement holds for the other endpoint
x = 1.) Suppose that f and f ′ have no common zero. Show that the set of zeroes of f in [0, 1] is
finite.

2016

1. Find all functions f : R− {1/3,−1/3} → R, satisfying for all x in the domain the equality

f

(
x+ 1

1− 3x

)
+ f(x) = x.

2. Find the limit of the sequence a0, a1, a2, . . . given by a0 = 1, a1 = 2, a nd

nan + an−2 = (n+ 1)an−1 for n ≥ 2.

3. Prove that there exists a square integer which can be written simultaneously as the sum of 2, 3, 4,
and 5 non-zero perfect squares.

4. Let C be a circle with center M and radius r. Let C ′ be a different cir cle, with center M ′. Further
suppose that C and C ′ intersect at two disti nct points P and P ′. Let d be the distance from M
to M ′. Suppose tha t the two tangents to C and C ′ at P intersect perpendicularly. Let S be the
intersection of the segments MM ′ and PP ′. Find t he length of the segment MS as a function of d
and r.

5. On a line segment choose randomly two distinct points (not at the ends of the se gment). What is
the probability that the three resulting segments can form a tr iangle?

6. Show that if 11 + 22 + 33 + 44 + · · ·+ 20162016 = mk with m, k ∈ Z , then k < 3.
7. Let a1, a2, a3, . . . be a sequence of positive real numbers, such that for a ll n ≥ 1

an+1 ≤ an +
1

(n+ 1)2
.

Prove that the sequence is convergent.

2015

1. Find all functions f : Z → Z such that the following two conditions hold:
(i) For all n ∈ Z we have f(n)f(−n) = f(n2).
(ii) For all m,n ∈ Z we have f(m+ n) = f(m) + f(n) + 2mn.

2. Consider the function f : R → R defined by f(x) = ||x| − 1|. Find all solutions x ∈ R to

(f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

)(x) = x

with n a positive integer. (Note: The answer may depend on n.)
3. Find all pairs of nonnegative integers x, y such that√

x2 + y + 1 +
√

y2 + x+ 4

is an integer.
4. The two tangent lines to a circle C at points P ̸= Q intersect at a point A, and similarly the two

tangent lines to C at points P ′ ̸= Q′ intersect at a point A′. If A′ is on the line generated by PQ,
prove that A is on the line generated by P ′Q′.

5. Let A ⊂ R be a finite, non-empty set of real numbers, and let f : A → A be a function. Assume for
every x, y ∈ A with x ̸= y, it happens that |f(x) − f(y)| < |x − y|. Prove there exists some a ∈ A
such that f(a) = a.

6. Find all polynomials with real coefficients P (x) ∈ R[x] satisfying:

(x+ 1)3P (x− 1)− (x− 1)3P (x+ 1) = 4(x2 − 1)P (x).
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7. Determine

lim
n→∞

n2

[(
1 +

1

n+ 1

)n+1

−
(
1 +

1

n

)n
]
.

2014

1. Given that f : R → R is continuous and
∫ 1

0
f(x) dx = a, evaluate∫ 1

0

f(x)

(∫ x

0

f(t) dt

)(∫ 1

x

f(t) dt

)
dx.

2. Let ABCD be a square, with side length 1. On sides CD and AD are points P and Q (respectively)
such that the perimeter of the triangle PDQ is 2. Show that the angle PBQ is 45◦.

3. Consider six points in the plane, no three of which are on any given line. Thus, they determine
fifteen segments and twenty triangles. If all the segments have different lengths, prove that there is
a segment which is the smallest side of a triangle and the largest side of another triangle.

4. Determine

lim
n→∞

(
1 +

1

ln(n)

)(
1 +

1

2 ln(n)

)
· · ·

(
1 +

1

n ln(n)

)
.

5. Evaluate ∫ π

0

x sin(x)

1 + cos2(x)
dx.

6. Given integers n ≥ 3 and 1 ≤ i < j ≤ n− 1, prove that the binomial coefficients
(
n
i

)
and

(
n
j

)
are not

relatively prime.
7. Let f : [0, 1] → (0,∞) be a continuous function satisfying∫ 1

0

f(x) dx

∫ 1

0

1

f(x)
dx = 1.

Show that f is constant.

2013

1. Five boys and five girls sit around a table. Prove that there is someone sitting between two girls.
2. Let X,Y be two n× n matrices such that XY = X + Y . Prove that XY = Y X.
3. A 7×7 square is tiled with ten 4×1 rectangles and one 3×3 square. What are the possible positions

of the 3× 3 square?
4. Let A = (aij) be an n × n matrix. Let B1, . . . , Bn be m × m matrices. Let C be a block matrix,

consisting of n2 blocks aijBj :

C =


a11B1 a12B2 · · · a1nBn

a21B1 a22B2 · · · a2nBn

...
...

...
an1B1 an2B2 · · · annBn


Express the determinant of C in terms of the determinants of A and B1, . . . , Bn.

5. Let a1, a2, · · · , a2n, b1, b2, · · · , b2n be non-negative real numbers such that a1 = a2n and b1 = b2n.
Prove that

mini(ai + bi) ≤
2n−1∑
i=1

min{ai, ai+1}+
2n−1∑
i=1

min{bi, bi+1}

2012



7

1. Find all functions f : R → R such that for all real x, y, z the relation

f(f(x+ y) + z) + f(x+ f(y + z)) = 2y

holds.
2. Triangle ABC has side lengths a, b, and c and median lengths α, β, and γ. If α, β, γ are the

side lengths of a second triangle, what are the median lengths in that triangle?
3. Determine all the real solutions of the equation(

x3 +
3

4
x

)3

+
3

4

(
x3 +

3

4
x

)
= x.

4. Prove that for every polynomial P there is a polynomial Q such that Q(x2012) is a multiple of
P (x).

5. Find all pairs (m,n) of positive integers for which 4m + 5n is a square.
6. Let f : R → R be a continuously differentiable function with f(0) = 0 and f(1) = 1. Prove that

1

e
≤

∫ 1

0

|f ′(x)− 2xf(x)| dx.

7. For all real numbers a, b, c consider the inequality

|a− b|+ |b− c|+ |c− a| ≤ C
√
a2 + b2 + c2.

(a) Prove the inequality for C = 2
√
2.

(b) Prove that under the additional assumption a, b, c ≥ 0 the inequality also holds for C = 2.

2011

1. Evaluate the sum of the series
∞∑
k=1

1

2k2 + k
.

2. Prove that if m,n are positive integers such that
√
7 > m

n , then
√
7 > m

n + 1
mn .

3. Solve the equation
x2 + xy + y2 = 97

for (i) natural numbers x, y, and (ii) integer numbers x, y.
4. Prove that for any positive integers a, b, c, d the product (a− b)(a− c)(a−d)(b− c)(b−d)(c−d)

is divisible by 12.
5. Which positive integers can be written as the sum of ≥ 2 consecutive positive integers?
6. Let a > 0 be a constant. Assume that x0 > 0 and

xn+1 =
1

3

(
2xn +

a

x2
n

)
.

Prove that limn→∞ xn exists and find it.
7. Let x1, x2, . . . , xn ≥ 1. Prove that

(1 + n
√
x1x2 · · ·xn)

(
1

1 + x1
+

1

1 + x2
+ · · ·+ 1

1 + xn

)
≥ n.

2010

1. Let S be a square. Prove that S can be divided into n squares, using line segments parallel or
perpendicular to the sides of S, for each integer n ≥ 6.

2. Evaluate the following if it exists:

lim
n→∞

n∑
k=1

1√
nk

.
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3. Let ∆ABC be an arbitrary triangle in R2 with vertices A, B, and C. A frog starts from a
point P0 ∈ R2 and travels directly toward A. Upon reaching A the frog continues in the same
direction to the point P1 such that P0A = AP1. Next the frog travels from P1 directly through
B to the point P2 such that P1B = BP2. The frog then starts from P2 and travels through C
to the point P3 such that P2C = CP3. Next from P3, the frog repeats the same action with
respect to A, B, and C cyclicly, generating a sequence of points P1, P2, P3, P4, . . .. What is the
distance between P0 and P2010?

4. Define a sequence recursively by x1 = 1, x2 = 1, and xn = 3xn−1 − xn−2 for n > 2. Find a
closed formula for xn.

5. Prove that there is no function f : N → N such that f(f(n)) = n + 1 for all n ∈ N =
{0, 1, 2, 3, . . .}.

6. For which positive integers n can the n× n chess board with a corner square removed be tiled
by 3× 1 dominoes? For which n can the n× n chess board with some square removed be tiled
by 3× 1 dominoes?

7. A number of students sit in a circle while their teacher give them candy. Each student initially
has an even number of pieces of candy. When the teacher blows a whistle, each student simul-
taneously gives half of his or her own candy to the neighbor on the right. Any student who
ends up with an odd number of pieces of candy gets one more piece from the teacher. Show
that no matter what the distribution is at the beginning, after a finite number of iterations of
this transformation all students will have the same number of pieces of candy.

2009

1. Let S and S′ be unit squares in R2 with their centers at the origin. Find the minimum area of
their intersection S

⋂
S′. (see Fig. 1)

2. Let n = 3k + 1 with k = 1, 2, 3, · · · . Consider the n × n chess board. How many of the n2

squares S have the property that after S is removed the remaining n2 − 1 squares can be tiled
by 3× 1 dominoes?

3. Let x, y, z ∈ R satisfy x2 + y2 + z2 = 1 and x+ y + z = 0. Find max(xyz) and min(xyz).
4. Find an explicit real valued function f : R → R (in closed form) whose Taylor series equals

f(x) = 1 +
x3

3!
+

x6

6!
+

x9

9!
+ · · ·

5. Prove that

lim
n→∞

n

2n

n∑
k=1

2k

k
= 2

6. Let x1 < x2 < x3 < · · · < xn be n real numbers, where integer n > 1. Prove that
n∑

i=1

1
n∏

j=1
j ̸=i

(xi − xj)

=

n∑
i=1

1

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
= 0.

7. Let f(x) : R1 → [0,∞) be continuous and differentiable. Prove∫ t

0

∫ t

0

f(xy)dxdy +

∫ t

0

∫ t

0

xyf ′(xy)dxdy =

∫ t2

0

f(s)ds.


