Final

Due at 4 PM on 12/20/13

Do as many problems as you can in $1 \frac{1}{2}$ hours.

- 1. Let B be an $n \times n$ -diagonal matrix with all diagonal entries 1 except the last one which is -1. Let O(n-1,1) be the set of $n \times n$ -matrices A with $ABA^T = B$. Show that O(n-1,1) is a sub-manifold of R^{n^2} . For O(1,1) calculate the tangent space at the identity.
- 2. Let $U \subset \mathbb{R}^n$ be a connected open set that with $p, q \in U$. Show that there exists a diffeomorphism ϕ of \mathbb{R}^n such that $\phi(p) = q$ and ϕ is the identity outside U. (Hint: First assume that U is convex with compact closure and find a vector field with support in U whose flow takes p to q.)
- 3. Show that the tangent bundle of S^2 is not trivial.
- 4. Define $f : \mathbb{R}^2 \to \mathbb{R}^2$ by $f(x, y) = (x^2 y^2, 2xy)$ and calculate $f^* dx$.
- 5. Let X and Y be manifolds and $f : X \to \mathbb{R}^n$ and $g : Y \to \mathbb{R}^n$ be smooth maps and let $F : X \times Y \to \mathbb{R}^n$ be defined by F(x, y) = f(x) g(y). Calculate the tangent map F_* in terms of f_* and g_* . Make sure to justify your calculation. Let $f_a(x) = x + a$ for $a \in \mathbb{R}^n$. Show that for almost every $a \in \mathbb{R}^n$, f_a and g are transverse.
- 6. Let $S^2 = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}$ be the unit sphere and let $N \in \Lambda(\mathbb{R}^3)$ be the vector field on \mathbb{R}^3 defined by N(x, y, z) = (x, y, z). For any vectors $V, W \in T_p S^2$ the column vectors N(p), V and W determine a matrix. Define a 2-form $\omega \in \Omega^2(S^2)$ by setting $\omega(p)(V, W)$ to be the determinate of this matrix. Show that S^2 has an orientation such that for every oriented basis $\{V, W\}$ of $T_p S^2$, $\omega(p)(V, W) > 0$. Use this to show that $\int_{S^2} \omega > 0$ and that ω is not exact.