Math 6510 - Homework 4

Due in class on 10/3/13

- 1. Let M be an n-dimensional manifold embedded in \mathbb{R}^m . If $I = \{i_1, \ldots, i_n\} \subset \{1, \ldots, m\}$ define $\pi_I : \mathbb{R}^m \to \mathbb{R}^n$ by $\pi_I(x_1, \ldots, x_m) = (x_{i_1}, \ldots, x_{i_n})$. Show that for all $x \in M$ there exists an I and an neighborhood of U of x in M such that (U, π_I) is a chart.
- 2. Let M be an n-dimensional manifold embedded in \mathbb{R}^m . Show that for any $k \ge m n$ there exists a k-dimensional hyperplane P such that $M \cap P$ is a non-empty smooth manifold of dimension of n + k m. If k < m n show that there exists k-dimensional hyperplane that is disjoint from M.
- 3. Let $f: M \to M$ be a smooth map and $x \in M$ a fixed point (f(x) = x). Show that if 1 is not an eigenvalue of $f_*(x)$ that x has a neighborhood U such that if $y \in U$ and f(y) = y then y = x. (Hint: Look at the graph of f in $M \times M$ and show that it intersects the diagonal transversally at (x, x).)