
Math 6510 - Homework 6
Due in class on 11/5/13

1. Let M0,M1 and N be differentiable manifolds and f : M0 ×M1 → N a smooth map. Then
the map F : M0 × TM1 → TN defined by F (x0, v) = (f∗(x0, x1))(0, v) is smooth where
v ∈ Tx1M1. (You don’t need to prove this but you should make sure that you know why its
true!).

Let G be a Lie group and define f : G×G→ G by f(a, b) = ab. Then use the above fact to
show that a left-invariant vector field is smooth by showing that F restricted to G × {v} is
an embedding where v ∈ TidG.

Solution: We first show that f∗(a, b)(v, w) = (Rb)∗(a)v + (La)∗(b)w. To see this note that
T(a,b)G × G = TaG × TbG. The subspace TaG × {0} ⊂ T(a,b)G × G is tangent to the sub
manifold G × {b} and we have that f |G×{b}(a) = Rb(a) so for (v, 0) ∈ TaG × {0} we have
f∗(a, b)(v, 0) = (f |G×{b})∗(a)v = (Rb)∗(a)v. Reversing the roles of a and b we similarly see
that f∗(a, b)(0, w) = (La)∗(b)w so f∗(a, b)(v, w) = (Rb)∗(a)v + (La)∗(b)w as desired.

Therefore we have that F (a, v) = (La)∗(b)v where v ∈ TbG. Recall that if v ∈ TidG then
Xv(g) = (Lg)∗(id)v is the unique left-invariant vector field with Xv(id) = v. Note that
Xv(g) = F (g, v). Since G × {v} is a smooth sub manifold of G × G the restriction of F to
G× {v} is a smooth map from G to TG so the vector Xv is smooth.

2. Let G be a Lie group and g its Lie algebra and h ⊂ g a one-dimensional sub-algebra. Show
that for any left-invariant vector field X ∈ h there is a flow φt defined for all t ∈ R with
φt ∈ H ⊂ G where H is the Lie subgroup of G with Lie algebra h. Show that the map
t 7→ φt(id) is an onto homomorphism from the additive group R to H.

Solution: Let φt : U → G be the flow for X defined in a neighborhood U of id ∈ G for
t ∈ (−ε, ε). Define a map Ψ : G× (−ε, ε)→ G×G by Ψ(g, t) = (g, φt(id)) and the define Φ :
G×(−ε, ε)→ G by Φ = f◦Ψ where f is the map from the previous problem. Then Ψ∗(g, t) ∂∂t =
(0, X(φt(id))) ∈ T(g,φt(id))G × G so by the chain rule Φ∗(g, t) ∂∂t = f∗(g, φt(id))Ψ∗(g, t) ∂∂t =
(Lg)∗(φt(id))X(φt(id)) = X(g) where we are using the calculation of f∗ from the previous
problem and the fact that X is left-invariant. Therefore Φ is a flow for X on all of G defined
for t ∈ (−ε, ε). Since Φ is defined on all of X for t ∈ (−ε, ε) we then use our standard trick to
extend Φ for all time t ∈ R.

The sub-algebra h determines a 1-dimensional integral distribution on G and H is the leaf
of the corresponding foliation that contains id ∈ G. The flow will preserve the leaves so
φt(id) ∈ H. Since X is nowhere zero the map t 7→ φt(id) will have injective derivative for
all t and the map is locally injective and hence an open map. Let h ∈ H be in the closure
of the image of the map so there exists ti with φti(id) → h. Then for large i, the elements
h−1φti(id) are contained in the image since the map is locally injective. In particular, there
exists si such that φsi(id) = h−1φti(id). But then h = φti−si(id) so h is in the image and the
image is closed. In particular, the image is open and closed (in H) and is non-empty so it
must be all of H.

3. Let G be a (connected) Lie group and g its Lie algebra. Let X ∈ g be a left-invariant vector
field and φt ∈ G the associated flow. Show that adgX = X if and only if g commutes with
φt. Conclude that adg is the identity on g if and only if g is in the center of G.
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Solution: The path φt(id) has tangent X at in TidG. If g commutes with φt then Adg φt(id) =
φt(id) and therefore adgX = X.

For the other direction we view X as a left-invariant vector field on G. Then adgX =
(Lg)∗((Rg−1)∗X) = (Rg−1)∗((Lg)∗X) = (Rg−1)∗X since left and right-translation commute
and X is left-invariant. If adgX = X then (Rg−1)∗X = X so Rg−1 commutes with the flow
φt for X. Note that φt(h) = Lh(φt(id)) = Rφt(id)(h) so φt = Rφt(id). So if Rg−1 commutes
with φt then g−1 (and therefore g) commutes with φt(id).

By the above if g is in the center of G then adg acts as the identity on g. Conversely if
adg acts as the identity on g the for every h ∈ G with h = φt(id) where φt is the flow of
some left-invariant vector field X we have that g commutes with h. By the next problem
there is a neighborhood U of id in G such that U is in the image of the map exp so g
commutes with everything in U . Note that the set of elements that commute with g is
closed since the map from G × G → G defined by h 7→ ghg−1h−1 is continuous. To see
that this set is open assume that h commutes with g. We then claim that the everything
in the set hU = {f ∈ G|Lh−1f ∈ U} commutes with g. Since g and h commute we have
LhAdgLh−1 = Adg and therefore if f ∈ hU we have Adgf = LhAdgLh−1f = LhLh−1f = f
where the second equality holds since Lh−1f ∈ U so g commutes with f . This proves that the
set of elements that commute with g is also open and therefore must be all of the connected
set G.

4. Define a map from g to G as follows. For X ∈ g let φXt be the associated flow. Define
exp(X) = φX1 . Note that g is a vector space so T0g = g and exp∗(0) : g → TidG = g. Show
that exp∗(0) = id.

Solution: Let α : R → g be defined by α(s) = sX. Then α′(0) = X so exp∗(0)X =
(exp ◦α)′(0). Note that if φXt is the flow for X then φsXt = φXst so exp ◦α(s) = φsX1 (id) =
φXs (id) and by the definition of the flow the time s = 0 derivative of the path φXs (id) is X
and therefore exp∗(0)X = (exp ◦α)′(0) = X, as desired.

5. Let G = GL(n) and recall that g = M(n), the space of n× n matrices. Show that

exp(X) =
∞∑
k=0

1
k!
Xk.

Solution: The series

exp(X) =
∞∑
k=0

1
k!
Xk

is really n2 different series each of which will converge uniformly for X lying in a compact
set in M(n). If X = (xij) then let ‖X‖ = max

i,j
|xij |. Then via induction we see that

‖Xk‖ ≤ (n‖X‖)k. When X lies in a compact set the norm ‖X‖ will be uniformly bounded
and it follow that exp(X) converges uniformly on compact what sets in M(n).

Let X̄ be the left-invariant vector field with X̄(id) = X. In class we showed that X̄(A) = AX.
We claim that the flow for X on GL(n) is φt = Rexp(tX). To check this we need to calculate the
time t tangent vector of the path α(t) = φt(A) = A exp(tX). But since the series converges
uniformly on compact sets we can differentiate term by term to get α′(t) = A exp(tX)X =
X̄(A exp(tX)) = X̄(φt(A)).
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