Math 6510 - Homework 2

Due in class on $9/23/14$

- 1. Assume that M and N are submanifolds of Euclidean space and that $f : M \to N$ is a diffeomorphism. Show that f determines a diffeomorphism between TM and TN .
- 2. Recall that $M(n)$ is the space of $n \times n$ matrices and is naturally identified with \mathbb{R}^{n^2} . Let $SL(n) = L \subseteq M(n)$ let $A = 11$. Show that $SL(n)$ is a differentiable submanifold and show $SL(n) = \{A \in M(n)| \det A = 1\}.$ Show that $SL(n)$ is a differentiable submanifold and show that the tangent space at the identity is the subspace of all matrices of trace zero.
- 3. Let $M = \{(x_0, x_1, x_2, x_3) \in \mathbb{R}^4 | x_0^2 + x_1^2 = x_2^2 + x_3^2 = 1\}$. Show that M is a differentiable
submanifold of \mathbb{R}^n . Given an explicit description of TM and show that it is diffeomorphic to submanifold of \mathbb{R}^n . Given an explicit description of TM and show that it is diffeomorphic to $M \times \mathbb{R}^2$. Can you give another description of this manifold?
- 4. Let M be a differentiable manifold. Recall that $v : \mathcal{C}^{\infty}(M) \to \mathbb{R}$ is a derivation at $x \in M$ if
	- (a) $v(f + \lambda g) = v(f) + \lambda v(g)$ for all $f, g \in C^{\infty}(M)$ and $\lambda \in \mathbb{R}$;
	- (b) $v(fg) = f(x)v(g) + v(f)g(x)$.

The space of all derivations at x is a vector space. Show that it is naturally isomorphic to T_xM . Here is an outline of how to do it.

- (a) If f is zero in a neighborhood of x use (b) to show that $v(f) = 0$. You can use the that for any open sets U and and V with $V \subset U$ there exists a $\phi \in C^{\infty}(M)$ with support in U and that is $\equiv 1$ on V. Use such a ϕ to decompose f into the product of two smooth functions that are zero at x .
- (b) If $f \equiv 1$ use (b) to show that $v(f) = 0$ and then use (a) to show that $v(f) = 0$ for all constant functions f .
- (c) Combine the previous two statements to show that if f is constant in a neighborhood of x then $v(f) = 0$.
- (d) If $f = g$ on a neighborhood of x show that $v(f) = v(g)$.
- (e) Reduce the statement to the following special case: If $M = \mathbb{R}^n$ and $x = 0$ then every derivation is of the form

$$
v(f) = \sum_{i=1}^{n} a_i \frac{\partial f}{\partial x_i}(0).
$$

Use the following calculus fact. If $f: \mathcal{C}^{\infty}(\mathbb{R}^n)$ with $f(0) = 0$ then in a neighborhood of 0

$$
f(x) = \sum_{i=1}^{n} x_i g_i(x)
$$

where the g_i are smooth functions with $\frac{\partial f}{\partial x_i}(0) = g_i(0)$.