Name:

Midterm 2, Math 3210 October 23rd, 2015

You must write in complete sentences and justify all of your work. Do 3 of the 4 problems below. All 3 problems that you do will be equally weighted. Clearly mark in the table below which 3 problems you want graded.

1. Directly using the definition of a limit show that $\lim_{n\to\infty}$ √ $\overline{n^2+1} - n = 0.$

Solution: Fix $\epsilon > 0$ and choose $N > \frac{1}{2\epsilon}$. Then if $n > N$ we have

$$
\left| (\sqrt{n^2 + 1} - n) - 0 \right| = \frac{(\sqrt{n^2 + 1} - n)(\sqrt{n^2 + 1} + n)}{\sqrt{n^2 + 1} + n}
$$

=
$$
\frac{1}{\sqrt{n^2 + 1} + n}
$$

$$
\leq \frac{1}{\sqrt{n} + n}
$$

=
$$
\frac{1}{2n} < \frac{1}{2N} < \epsilon
$$

so $\sqrt{n^2+1} - n \to 0$

2. Let a_n be a sequence of positive numbers and assume that the sequence $b_n = a_n/n$ converges to some $b > 0$. Show that there exists a constant $c > 0$ such that $a_n \geq cn$ for all positive integers n .

Solution: In Problem 2.3.8 from Homework 5 we saw that there exists a $c > 0$ such $b_n > c$ for all n then $a_n/n = b_n > c$ so $a_n > cn$ for all n.

Here is another approach. Assume the statement is false. Then for all $c > 0$ there exists an *n* such that $a_n < cn$. In particular, for each positive integer k there is an n_k such that $a_{n_k} < (1/k)n_k$. Now look at the subsequence $b_{n_k} = a_{n_k}/n_k < 1/k$. Then $b_{n_k} \to 0$. This is a contradiction since as b_n converges to a positive number so must every subsequence of b_n .

3. Directly using the definition of a Cauchy sequence show that $a_n = \frac{1}{2i}$ $\frac{1}{2n}$ is a Cauchy sequence.

Solution: Fix $\epsilon > 0$ and choose $N > \frac{1}{2\epsilon}$. Then if $n \geq m > N$ we have

$$
|a_n - a_m| = \left| \frac{1}{2n} - \frac{1}{2m} \right|
$$

$$
\leq \frac{1}{2n}
$$

$$
< \frac{1}{2N} < \epsilon.
$$

Therefore a_n is a Cauchy sequence.

4. Let $f : [0,1] \to [-1,0]$ be a continuous function. Show that there exists an $x \in [0,1]$ such that $f(x) = -x$.

Solution: Let $g(x) = f(x) + x$. If $f(0) = 0$ or $f(1) = -1$ we are done so we can assume that $f(0) < 0$ and $f(1) > -1$ (since $f(x) \in [-1,0]$). Then $g(0) = f(0) < 0$ and $g(0) = f(1) + 1 > -1 + 1 = 0$ so by the Intermediate Value Theorem there exists and $x \in (0,1)$ such that $g(x) = 0$. But then $g(x) = f(x) + x = 0$ and $f(x) = -x$ as desired.