Name:

Midterm 2, Math 3210 October 23rd, 2015

You must write in complete sentences and justify all of your work. Do 3 of the 4 problems below. All 3 problems that you do will be equally weighted. Clearly mark in the table below which 3 problems you want graded.

1. Directly using the definition of a limit show that $\lim_{n\to\infty} \sqrt{n^2 + 1} - n = 0$.

Solution: Fix $\epsilon > 0$ and choose $N > \frac{1}{2\epsilon}$. Then if n > N we have

$$\left| (\sqrt{n^2 + 1} - n) - 0 \right| = \frac{(\sqrt{n^2 + 1} - n)(\sqrt{n^2 + 1} + n)}{\sqrt{n^2 + 1} + n}$$

$$= \frac{1}{\sqrt{n^2 + 1} + n}$$

$$\leq \frac{1}{\sqrt{n^2 + 1} + n}$$

$$= \frac{1}{2n} < \frac{1}{2N} < \epsilon$$

so $\sqrt{n^2 + 1} - n \to 0$

2. Let a_n be a sequence of positive numbers and assume that the sequence $b_n = a_n/n$ converges to some b > 0. Show that there exists a constant c > 0 such that $a_n \ge cn$ for all positive integers n.

Solution: In Problem 2.3.8 from Homework 5 we saw that there exists a c > 0 such $b_n > c$ for all n then $a_n/n = b_n > c$ so $a_n > cn$ for all n.

Here is another approach. Assume the statement is false. Then for all c > 0 there exists an n such that $a_n < cn$. In particular, for each positive integer k there is an n_k such that $a_{n_k} < (1/k)n_k$. Now look at the subsequence $b_{n_k} = a_{n_k}/n_k < 1/k$. Then $b_{n_k} \to 0$. This is a contradiction since as b_n converges to a positive number so must every subsequence of b_n .

3. Directly using the definition of a Cauchy sequence show that $a_n = \frac{1}{2n}$ is a Cauchy sequence.

Solution: Fix $\epsilon > 0$ and choose $N > \frac{1}{2\epsilon}$. Then if $n \ge m > N$ we have

$$|a_n - a_m| = \left| \frac{1}{2n} - \frac{1}{2m} \right|$$

$$\leq \frac{1}{2n}$$

$$< \frac{1}{2N} < \epsilon.$$

Therefore a_n is a Cauchy sequence.

4. Let $f : [0,1] \to [-1,0]$ be a continuous function. Show that there exists an $x \in [0,1]$ such that f(x) = -x.

Solution: Let g(x) = f(x) + x. If f(0) = 0 or f(1) = -1 we are done so we can assume that f(0) < 0 and f(1) > -1 (since $f(x) \in [-1,0]$). Then g(0) = f(0) < 0 and g(0) = f(1) + 1 > -1 + 1 = 0 so by the Intermediate Value Theorem there exists and $x \in (0,1)$ such that g(x) = 0. But then g(x) = f(x) + x = 0 and f(x) = -x as desired.