
Notes on curves and surfaces

A curve is a smooth map from an interval I to R
n. The interval I may be bounded

or unbounded and may be open, closed or half-open. In these notes n will usually be
2 or 3 but many things will work for general n. The map is smooth if each coordinate
functions (which will be a map from I to R) is infinitely differentiable. (Although in
most cases we only need at most two derivatives.)

Length: The first geometric concept we discuss is the length of a curve α : I → R
n.

To avoid issues of infinite length we assume that I = [a, b] is a closed and bounded
interval. The derivative of α is the map α′ : I → R

n given by α′(t) = (α′
1(t), . . . , α

′
n(t))

where αi are the coordinate functions. While the range of α′ is formally the same as α
we should think of a α′(t) as a vector in R

n rather than a point.
Let 〈, 〉 be the standard inner product on R

n and define ‖v‖ =
√

〈v, v〉. The quantity
‖v‖ is the (Euclidean) length of the vector. We integrate this quantity to get the length
of α:

L(α) =

∫ b

a
‖α′(t)‖dt

The length of a curve depends only its image not the specific choice of α. To make this
statement precise we define a reparameterization of α to the be the pre-composition of
α with a smooth, increasing homeomorphism s : [c, d] → [a, b]. The reparameterization
of α is then β = α ◦ s. The following lemma is a straightforward application of the
substitution rule from calculus.

Lemma 0.1 Let β be a reparameterization of α. Then L(β) = L(α).

The curve α is a unit-speed parameterization if ‖α′(t)‖ = 1. We then have:

Lemma 0.2 Let α : I → R be a curve such that ‖α′(t)‖ 6= 0 for all t ∈ I. Then α has
unit-speed reparameterization.

Proof. If [a, b] ⊂ I define α[a, b] to be the restriction of α to [a, b]. Now fix some
a ∈ I and let

σ(t) =







L(α[a, t]) if t > a
0 if t = a
L(α[t, a]) if t < a

Then σ′(t) = ‖α′(t)‖ so if ‖α′(t)‖ 6= 0 then σ has a smooth inverse s : σ([a, b]) → [a, b] ⊂
R. Applying the chain rule and the fundamental theorem of calculus we see that β = α◦s
is a unit-speed reparameterization. 0.1
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Geodesics: We can measure the distance between two points x and y in R
n by

taking all curves that connect the two points and taking the infimum of the lengths.
More precisely

d(x, y) = inf{L(α)|α : [a, b] → R
n, α(a) = x, α(b) = y}.

As expected the shortest distance between two points is a line.

Proposition 0.3

d(x, y) = ‖x− y‖
Proof. We first observe that if we define α : [0, 1] → R

n by α(t) = tx+ (1− t)y then
α(0) = x, α(1) = y then L(α) = ‖x− y‖ and therefore d(x, y) ≤ ‖x− y‖.

To establish the inequality in the other direction we will show that for every path
α : [a, b] → R

n we have L(α) ≥ ‖x− y‖ and therefore d(x, y) ≥ ‖x− y‖. We’ll first prove
this when n = 1. Note that in this case the norm ‖‖ is just the absolute value. For any
α : [a, b] → R with α(a) = x and α(b) = y we have

L(α) =

∫ b

a
|α′(t)|dt ≥

∣

∣

∣

∣

∫ b

a
α′(t)dt

∣

∣

∣

∣

= |α(b) − α(a)| = |y − x|.

Note that the equality only occurs when α′(t) 6= 0 for all t ∈ [a, b].
Now we prove the inequality in general. Let α : [a, b] → R

n with α(a) = 0 and

α(b) = y. Define T : Rn → R by T (z) = 〈z,y−x〉
‖y−x‖ . The map T is smooth (in fact T is

linear) so the composition β = T ◦ α is smooth. Then |β′(t)| ≤ ‖α′(t)‖ so L(β) ≤ L(α).

But β is a path from 〈x,y−x〉
‖y−x‖ to 〈y,y−x〉

‖y−x‖ so by the above calculation

L(β) ≥
∣

∣

∣

∣

〈y, y − x〉
‖y − x‖ − 〈x, y − x〉

‖y − x‖

∣

∣

∣

∣

= ‖y − x‖.

0.3

Exercise: Show that |β′(t)| ≤ ‖α′(t)‖.
Curvature: The next geometric quantity we want to measure is curvature. The

motivating example is a circle of radius r where the curvature should be 1/r. We will
make a definition of curvature that gives this value for the circle. Our second motivation
should be that the curvature should be the “2nd derivative” of the curve. Here we need
to be careful as the 2nd derivative of a curve will be dependent on parameterization. In
particular if the curve doesn’t have a constant speed parameterization then the second
derivative will have a component that measures this change in speed.

We’ll start with a preliminary definition of curvature for unit-speed curves. If α : I →
R
n is a smooth curve with a unit speed parameterization then curvature of α is the

function κ : I → R defined by κ(t) = ‖α′′(t)‖.
The following lemma will be useful to calculate the curvature in general.
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Lemma 0.4 Let α : I → R
n be a unit-speed curve. Then 〈α′(t), α′′(t)〉 = 0.

Proof. Differentiating the function t 7→ 〈α′(t), α′(t)〉 we get 2〈α′(t), α′′(t)〉. However
since 〈α′(t), α′(t)〉 = ‖α′(t)‖2 = 1 is constant we have 〈α′(t), α′′(t)〉 = 0. 0.4

To calculate the curvature in general we get the nicest formula if n = 2. Assume
α : I → R

2 and that ‖α′(t)‖ 6= 0 for all t ∈ I. We would then like to define a normal
vector N : α → R

2 such that ‖Nα(t)‖ = 1 and 〈α′(t), Nα(t)〉 = 0. Unfortunately this
only defines N up to sign. To define N uniquely we need to discuss orientation.

Orientation: Let V be a finite dimensional vector space. An orientation on V is an
equivalence class of oriented bases where {v1, . . . , vn} ∼ {w1, . . . , wn} if there is a linear
transformation T : V → V with Tvi = wi and detT > 0.

(You should reminder yourself of the definition of detT . Given a basis for V one
can define the determinant by writing T as a matrix in terms of the basis. Why is is the
determinant independent of the choice of basis?)

Exercise: Show that ∼ is a equivalence relation and that there are exactly two
equivalence classes. Show that {v1, . . . , vi, . . . , vj , . . . , vn} 6∼ {v1, . . . , vj , . . . , vi, . . . , vn}.

After fixing the standard orientation on R
2 we assume that {α′(t), Nα(t)} are an

oriented basis.
Exercise: Show that N : I → R

2 is smooth.
For a unit-speed plane curve α we have κ(t) = |〈α′′(t), Nα(t)〉|.
Now let α : I → R

2 be a plane curve and assume that ‖α′(t)‖ 6= 0 but is not necessarily
unit-speed. Let s : J → I be a smooth homeomorphism such that β = α ◦ s is a unit-
speed reparameterization of α. Note that for any reparameterization Nβ(t) = Nα(s(t))
is s′(t) > 0 and Nβ(t) = −Nα(s(t)) if s′(t) < 0. (Note that either s′(t) > 0 for all t or
s′(t) < 0 for all t.)

Differentiating β twice we have

β′′(t) = s′(t)2α′′(s(t)) + s′′(t)α′(t)

and therefore

κ(t) = |〈β′′(t), Nβ(t)〉| = s′(t)2〈α′′(s(t)), Nβ(t)〉+ s′′(t)〈α′(t), Nβ(t)〉.

Since Nβ(t) = ±Nα(s(t)), 〈α′, Nα〉 = 0 and s′(t) = 1
‖α′(s(t))‖ this becomes

κ(s) =

∣

∣

∣

∣

〈α′′(s), Nα(s)〉
‖α′(s)‖2

∣

∣

∣

∣

.

Curves as level sets: Let f : R2 → R be a smooth function. We will be interested
in studying curves as sets of the form {x ∈ R

2|f(x) = c} where c ∈ R is some constant.
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For an arbitrary choice of c this set may not be a curve. For example the solutions to the
equation x2 = 0 is not a curve (at least near the origin in R

2). The necessary condition is
for c to be a regular value of f . To define regular values we need to define the derivative
of a function from R

n → R
m.

Let U ⊂ R
n be an open set and f : U → R

n. Then f can be thought of as m-
functions of n-variables. The function f is smooth if each coordinate function is infinitely
differentiable. Let L(Rn,Rm) be linear maps from the vector space Rn to the vector space
R
m. Such a linear map is given by an m×n matrix so L(Rn,Rm) is naturally identified

with R
nm. The derivative of f will be a map from U to L(Rn,Rm) given by the matrix

of partial derivatives. That is

f∗(x) =







∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

. . .
...

∂fm
∂x1

(x) · · · ∂fm
∂xn

(x)






.

The essential feature of the derivative is that it is the “best” linear approximation of
f at x0. More precisely for each x ∈ U we can define a function x 7→ f(x)+f∗(x0)(x−x0).
This is a continuous function that agrees with f at x. However, this would be true if we
replace f∗(x0) with any linear function. What makes this the best linear approximation
is that the function

v 7→ ‖f(x)− (f(x0) + f∗(x0)(x− x0))‖
‖x− x0‖

extends to a continuous function when x = x0. (It is clearly continuous for x ∈ U and
x 6= x0.) No other linear function has this property.

When n = m we have the inverse function theorem.

Theorem 0.5 Let U ⊂ R
n be open and f : U → R

n a smooth function. Let x ∈ U such
that f∗(x) is invertible. Then there exists an open neighborhood V ⊂ f(U) of f(x) in R

n

and a smooth function g : V → U ⊂ R
n such f◦g is the identity and g∗(f(x)) = (f∗(x))

−1.

This is an extremely important theorem which we will not prove. (There are many
references for the proof. The “hard” part is to show that the inverse exists and this
uses the contraction mapping principle. The second part is to show that the inverse is
smooth.)

Exercise: Assume that n > m and that T1 : R
n → R

m is a linear map of rank
m. Show that there exists a linear map T2 : R

n → R
n−m so that the map T : Rn →

R
n = R

m × R
n−m defined by Tv = (T1v, T2v) is invertible. Now let U ⊂ R

n be open
and f : U → R

m. Assume that f∗(x0) has rank m. Define fT : U → R
m by fT (x) =

(f(x), T (x− x0)) where T = T2 and f∗(x0) = T1. Show that (fT )∗(x0) = (f∗(x0), T ). In
particular (fT )∗(x0) is invertible.
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We will be mostly interested in maps f : Rn → R. The inverse function theorem can
be used to derive consequences about these maps. As an example of how this works
start with a non-zero linear map T : Rn → R. Then for all x ∈ R, T−1(x) is a n − 1-
dimensional plane in R

n. (In fancier terminology a co-dimension 1 hyperplane.) If n = 2
then a our “plane” is one-dimensional, a line. A line has a very simple parameterization
as a smooth curve. Our next theorem gives a general condition for f−1(x) to be a curve
when f : U → R is a smooth map and U ⊂ R

2 is open. To state it we first give another
definition of a curve.

A subspace Γ ⊂ R
n is a smooth curve if for each x ∈ Γ there is a smooth parameterized

curve α : I → Γ ⊂ R
n, α(I) contains a neighborhood of x in Γ and α is injective.

Let f : U → R
m be smooth. Then c ∈ R

m is a regular value of f is for all x ∈ f−1({c}),
f∗(x) has rank m. Observe that

• If m = 1 the f∗(x) has rank one if and only if f∗(x) 6= 0.

• If m > n then the maximum rank of f∗(x) is n < m so c ∈ R
m is a regular value

if and only if f−1({c}) = ∅.

Theorem 0.6 Let f : U → R be smooth and let c ∈ R be a regular value of f . Then
f−1({c}) is a curve.

Proof. To apply the Inverse Function Theorem we use the function fT : U → R
2

from the exercise. Then (fT )∗(x0) is invertible so there exists an neighborhood V ⊂ R
2

of fT (x0) = (f(x0), 0) and a smooth function g : V → R
2 such that g(V ) ⊂ U and f ◦ g

is the identity. After possible taking a sub-neighborhood we can assume that V is a ball
centered at f(x0) of radius δ. We then define α : (−δ, δ) → R

2 by α(t) = g(c, t). 0.6

We would like to understand the geometry of Γ = f−1({c}) via the function f . Recall

that the gradient of a function f : U → R is∇f(x) =
(

∂f
∂x1

, . . . , ∂f
∂xn

)

. Note that the linear

map f∗(x) is exactly the inner product with the gradient. That is f∗(x)v = 〈∇f(x), v〉.
This leads to the following lemma.

Lemma 0.7 Let α : I → R
2 be a local parameterization of Γ = f−1({c}). Then

〈α′(t),∇f(γ(t))〉 = 0.

Proof. The function f ◦ γ is constant so its derivative is zero. By the chain rule
0 = (f ◦ γ)′(t) = f∗(γ(t))γ

′(t) = 〈∇f(γ(t)), γ′(t)〉. 0.7

We would like to calculate the curvature of Γ in terms of ∇f . To do this we need to
be able to differentiate “along” Γ. This is done with a directional derivative.

Let f : U → R and v ∈ R
n where we think of v as a vector. Define (∇vf)(x) =

〈∇f(x), v〉. The following lemma is more general version of Lemma 0.7.
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Lemma 0.8 Let α : I → R
n with α(t) = x and α′(t) = v. Then ∇vf(x) = (f ◦ α)′(t).

Proof. The proof is exactly the same as Lemma 0.7. The only difference is the con-
clusion. Namely in the proof of Lemma 0.7 it is shown that (f ◦α)′(t) = 〈∇f(α(t)), α′(t)〉.
As ∇f(α(t)) = ∇f(x) and α′(t) = v we have (∇vf)(x) = 〈∇f(x), v〉 = (f ◦ α)′(t) as
desired. 0.8

Note that one consequence of this lemma is that ∇vf(x) only depends on the value
of f on the image of the curve α.

We can apply the lemma to differentiate a vector field. In particular let V : U → R
n

be a smooth function. We want to think of V as a vector field so that its directional
derivative will be a vector.

Lemma 0.9 Let α : I → U ⊂ R
n be a smooth curve with α′(t) = v. Then (V ◦ α)′(t) =

V∗(α(t))v.

Again this is just the chain rule.
We now define ∇vV (x) = V∗(x)v. To calculate ∇vV (x) we only need to now the

values of V along a smooth curve α with α(t) = x and α′(t) = v.
Exercise: Show the following:

1. ∇v(V +W ) = ∇vV +∇vW

2. ∇v(fV ) = (∇vf)V + f∇vV

3. ∇v+wV = ∇vV +∇wV

4. ∇v〈V,W 〉 = 〈∇vV,W 〉+ 〈V,∇vW 〉

Let α : I → R
2 be a smooth curve. As we have seen the derivative of the tangent

vector of a unit speed parameterization of the curve is the curvature. Furthermore,
assuming an orientation of R2 there is unique normal vector at each point in the image
of α. The derivative of this normal vector should similarly determine the curvature.

Exercise: Let V (t) and W (t) be vector valued functions. Then 〈V (t),W (t)〉′ =
〈V ′(t),W (t)〉+ 〈V (t),W ′(t)〉.

Given a curve Γ let N be the normal vector field on Γ. While N is not defined on
open neighborhood we can still define ∇vN if v is tangent to Γ. Given a particular
smooth local parameterization α : I → R

2 of Γ we then have Nα(t) = N(α(t)). With
this set up we have the following lemma.

Lemma 0.10 If α′(t) = v then 〈α′′(t), Nα(t)〉 = −〈(∇vN(α(t)), v〉.
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Proof. We first observe that N ′
α(t) = ∇α′(t)N(γ(t)) = (∇vN)(γ(t)). The function

t 7→ 〈α′(t), Nα(t)〉 is identically equal to zero so differentiating it we see that

0 = 〈α′(t), Nα(t)〉′

= 〈α′′(t), Nα(t)〉 + 〈α′(t), N ′
α(t)〉

= 〈α′′(t), Nα(t)〉 + 〈v,∇vN(α(t))〉.

0.10

We can use this lemma to calculate the curvature of a curve Γ = f−1({c}) in terms
of f . The central observation is that the vector field ∇f/‖∇f‖ is defined everywhere
that ∇f 6= 0 and is also the normal vector at each point on the curve Γ.

The Hessian of a smooth function f : U → R is the n × n matrix of second partial
derivatives

Hf =

(

∂2f

∂xi∂xj

)

.

The Hessian is most usefully thought of as a bilinear map from R
n×R

n to R. If v,w ∈ R
n

then if we multiply the matrix Hf by v on the left and w on the right we get a number.
Exercise: Let V be a finite dimensional vector space. Given a map B : V × V

and w ∈ V we define maps Bw : V → R and Bw : V → R by Bw(v) = B(w, v) and
Bw(v) = B(v,w).Then B is bilinear if the maps Bw and Bw are linear. Show that for
every bi-linear map there is a matrix MB such that B(v,w) = vTMBw where the right
hand side is matrix multiplication and v and w are column vectors.

Lemma 0.11 For all v,w ∈ R
n, 〈(∇v∇f)(x), w〉 = Hf(v,w). If w ∈ (∇f(x))⊥ then

〈(∇vN)(x), w〉 = Hf(v,w)/‖∇f‖.

Proof. Recall that (∇vg)(x) = g∗(x)v. The inner product of two row vectors
is matrix multiplication of the transpose of the first vector with the second vector so
〈(∇vg)(x), w〉 = (g∗(x)v)

Tw. If g = ∇f then a straightforward calculation shows that
g∗ = Hf . This proves the first statement.

For the second we use the exercise to see that

∇v(∇f/‖∇f‖) = (∇v(1/‖∇f‖))∇f + (1/‖∇f‖)∇v∇f.

The first term on the left is parallel to∇f so the inner product with anything in (∇f(x))⊥

is zero. Therefore

〈∇vN(x), w〉 = (1/‖∇f‖)〈(∇v∇f)(x), w〉 = Hf(v,w)/‖∇f‖.

0.11
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Exercise: Let f : U → R be a smooth map and c ∈ R a regular value. Calculate the
curvature of Γ = f−1({c}) in terms of f .

Surfaces: A smooth, parameterized surface is a smooth map α : U → R
n where

U ⊂ R
2 is open, α∗(x) has rank two for all x ∈ U and α is injective.

Σ ⊂ R
n is a smooth surface if each x ∈ Σ has a neighborhood V (in the subspace

topology) such that V is the image of a smooth parameterized surface.

Theorem 0.12 Let U ⊂ R
3 be open and f : U → R a smooth map. If c ∈ R is a regular

value then Σ = f−1({c}) is a smooth surface.

Proof. The proof is the same strategy as the proof of Theorem 0.6. Fix x0 ∈ Σ.
We first find a function fT : U → R

3 such that (fT )∗(x0) is invertible using the exercise
after the proof of the Inverse Function Theorem. Then there exists a neighborhood V of
fT (x0) (which we can assume is a ball centered at fT (x0) of radius δ > 0) and a smooth
map g : V → U ⊂ R

3 such that f ◦ g is the identity. We then define α : Bd(0, δ) → R
3

by α(x1, x2) = g(c, x1, x2). 0.12

We would like to define a notion of curvature for a surface. This is more complicated
than the case of curves as there will be more than way to do it.

First we define the normal vector field to a smooth, parameterized surface in R
3. Fix

the standard orientation on R
3. To defineNα(x1, x2) we define the curves α1(t) = α(t, x2)

and α2(t) = α(x1, t). Let v1 = α′
1(x1) and v2 = α′

2(x2). Since α∗(x1, x2) has rank
two these vector will be linearly independent. We then choose Nα(x1, x2) so that it is
orthogonal to both v1 and v2 and {v1, v2, Nα(x1, x2)} is an oriented basis of R3.

For a general smooth surface Σ we can define a normal vector via the parameteriza-
tions defined near each point. In particular if x ∈ Σ we choose a local parameterization
α : U → Σ ⊂ R

3 whose image contains x. We then define N(x) = Nα(x1, x2) where
α(x1, x2) = x. We need to make sure that this is well defined.

The tangent space, TxΣ of Σ at x is the subset of R3 given by

TxΣ = {v ∈ R
3|there exists α : I → Σ with α(t) = x, α′(t) = v}

We need to show that TxΣ is a linear subspace. We will only do this in the case when
Σ = f−1({c}) for some regular value of c.

Proposition 0.13 TxΣ = (∇f(c))⊥.

Proof. First we show that TxΣ ⊂ (∇f(x))⊥. Let α : I → Σ with α(t) = x. Then
exactly as in the proof of Lemma 0.4 we see that 〈∇f(x), α′(t)〉 = (f ◦ α)′(t) but since
the image of α is contained in Σ, f ◦ α is constant equal to c and has derivative zero.
Therefore 〈∇f(x), α′(t)〉 = 0.

8



The orthogonal complement, (∇f(x))⊥ is a 2-dimensional subspace of R3. To show
that TxΣ = (∇f(x))⊥ we need to show that TxΣ contains a 2-dimensional subspace.
Let α : U → Σ ⊂ R

3 be a smooth parameterization whose image contains x. That
is α(x1, x2) = x for some (x1, x2) ∈ U ⊂ R

2. Then for all vectors v ∈ R
2 we define

αv(t) = (x1, x2) + tv. Then α′
v(0) ∈ TxΣ. But α′

v(0) = α∗(x1, x2)v so TxΣ contains
the entire image of the linear map α∗(x1, x2). As α is a smooth parameterized surface,
α∗(x1, x2) has rank 2, so its image is two dimensional. 0.13

Exercise: Assume that n < m and let T1 : R
n → R

m be a linear map of rank n.
Show that there exists a linear map T2 : R

m−n → R
m so that the linear map T : Rm =

R
n × R

m−n → R
n defined by T (v,w) = T1v + T2w is invertible. Now let U ⊂ R

n

be open and f : U → R
m a smooth map. Assume that f∗(x0) has rank n. Define

fT : U×R
m−n → R

m by fT (x, v) = f(x)+Tv where T = T2 and f∗(x0) = T1. Show that
(fT )∗(x0, 0)(v,w) = (f∗)(x0)v + Tw. In particular show that (fT )∗(x0, 0) is invertible.

Exercise: Use the previous exercise to show that if Σ ⊂ R
3 is a smooth surface for

every x ∈ Σ there is a neighborhood U of x in R
3 and a smooth function f : U → R with

c inR a regular value and f−1({c}) = Σ ∩ U . (Hint: Apply the previous exercise to a
smooth local parameterization α of Σ near x.)

The tangent space is exactly the set of directions where we can differentiate the
normal vector field. Observe that 〈N,N〉 is the constant function 1 on Σ so

0 = ∇v〈N,N〉
= 〈∇vN,N〉+ 〈N,∇vN〉
= 2〈∇vN,N〉

and therefore ∇vN(x) ∈ TxΣ. We then define the map

L : TxΣ → TxΣ

by Lv = −∇vN(x). Lv is the shape operator. (Sometimes it is call the Weingarten map.)
It describes the curvature of the surface.

Proposition 0.14 Lv is linear. For all v,w ∈ TxΣ we have 〈Lv,w〉 = 〈v, Lw〉.

Proof. Linearity follows from a previous exercise. By Lemma 0.11, 〈Lv,w〉 =
−〈∇vN(x), w〉 = −Hf(v,w) and 〈v, Lw〉 = −〈∇wN(x), f〉 = −Hf(w, v). But since
∂2f

∂xi∂xj
= ∂2f

∂xjxi
we have Hf(v,w) = Hf(w, v). 0.14

We originally thought of the curvature of a smooth curve as being a real number. A
real number can also be thought of as linear map from the R to R. This second idea
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generalizes to higher dimensions. In particular we can think of the shape operator as the
curvature of the surface.

To make the relationship of the curvature of a surface with the curvature of a curve
more concrete we can intersect Σ with a plane that is spanned by a normal vector and
a tangent vector. This intersection, at least near x, will a curve and we can calculate its
curvature.

Given x ∈ Σ and v ∈ TxΣ with ‖v‖ = 1 we define map Pv : R
2 → R

3 by Pv(x1, x2) =
x+ x1v + x2N(x). Let Uv be a neighborhood Uv of 0 ∈ R

2 such that Pv(Uv) ⊂ U ⊂ R
3.

The we define fv : Uv → R by f ◦ Pv. If fv(y) = c then (fv)∗(y) = (f∗(Pv(y)))(Pv)∗(y).
Note that (Pv)∗(y) is the linear map given by the matrix (v N(x)) where v and N(x) are
viewed as column vectors. If y = 0 (and then Pv(y) = x) the kernel of f∗(Pv(y)) = f∗(x)
is the one-dimensional space spanned by N(x) and it follows that (fv)∗(0) 6= 0. The
property of (fv)∗ not being zero is an open condition so there is a neighborhood of 0
where (fv)∗ is not zero.

Lemma 0.15 The curve on Γv = (fv)
−1({c}) has curvature 〈Lv, v〉 at 0 ∈ Γv.

Proof. Let w =

(

1
0

)

. Note that (Pv)∗(0)w = v so (fv)∗(0)w = 0 and w

is tangent to Γv at 0. Therefore the curvature of Γv is 〈∇w∇fv(0), v〉/‖∇fv(0)‖ =
Hfv(0)(v, v)/‖∇fv(0)‖. By the chain rule ‖∇fv(0)‖ = ‖f∗(Pv(0))(Pv)∗(0) = ‖∇f(x)(v N(x))‖ =
‖(0 ‖∇f(x)‖)‖ = ‖∇f(x)‖.

We also haveHfv(0)(a, b) = Hf(x)((Pv)∗(0)a, (Pv)∗(0)b) soHfv(0)(w,w) = Hf(x)(v, v).
Therefore 〈∇w∇fv(0), v〉/‖∇fv(0)‖ = Hf(x)(v, v)/‖∇f(x)‖ = 〈Lv, v〉. 0.15

Let V be a vector space with an inner product. Then a linear map T : V → V is
symmetric if 〈Tv,w〉 = 〈v, Tw〉. A key fact about symmetric linear maps is that they
can be diagonalized by an orthogonal change of basis.

Proposition 0.16 There exists an orthonormal basis of eigenvectors {v1, . . . , vn}.

Proof. Let Sn−1 ⊂ V be the set of unit length vectors. We then define f : Sn−1 → R

by f(v) = 〈Tv, v〉. This is a continuous function on a compact set and will realize
it maximum at some v0 ∈ Sn−1. Given v ∈ v⊥1 define αv : R → Sn−1 by αv(t) =
(cos t)v1+(sin t)v and define fv = f ◦αv . The function fv will have a maximum at t = 0
so

0 = f ′
v(0) = 〈Tα′

v(0), αv(0)〉 + 〈Tαv(0), α
′
v(0)〉

= 2〈Tv1, v〉

so we have for all v ∈ v⊥1 , 〈Tv1, v〉 which implies that Tv1 is parallel to v1 and hence an
eigenvalue of T .
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As 〈Tv1, v〉 = 〈v1, T v〉 we also have 〈v1, T v〉 = 0 for all v ∈ v⊥1 so T maps the linear
subspace v⊥1 to itself. T restricted to this subspace will again be symmetric so we can
inductively find an eigenvector v2 ∈ v⊥1 . 0.16

We apply this to the shape operator L. The eigenvectors of L are the directions of
principal curvatures while the eigenvalues are the principal curvatures. The determinant
of L is the Gauss curvature and the trace divided by two is the mean curvature.

Intrinsic and extrinsic geometry of surfaces in R
3: If Σ is a surface in R

3 we
can make Σ into a metric space in two distinct ways. First we can take the usual metric
on R

3 and restrict it to Σ. The second way is more involved. A piecewise smooth path
on Σ is a piecewise smooth map

α : [a, b] → Σ ⊂ R
3.

We can define the length of α as at the beginning of the notes. Then for x, y ∈ Σ define
dΣ(x, y) to be the infimum of L(α) for all path α with α(a) = x and α(b) = y. This is
the intrinsic metric on Σ. We will be interested in what properties of the surface can
be detected purely from the intrinsic metric. The most important example of this is
the Gauss curvature. If f : Σ1 → Σ2 is an isometry between the two intrinsic metrics of
surfaces then Gauss curvature of Σ1 at x ∈ Σ1 will be equal to Gauss curvature of Σ2 at
f(x). This is not true for the mean curvature.

Local isometries: Let Σ1 and Σ2 be smooth surfaces in R
3. We say that f : Σ1 → Σ2

is a smooth map if there is a neighborhood U of Σ1 such that f extends to a smooth
map from U to R

3.

Lemma 0.17 Let U be a neighborhood of Σ1 and assume that f : U → R
3 is a smooth

map with f(Σ1) ⊂ Σ2. Then the image of TxΣ1 under that map f∗(x) is contained in
Tf(x)Σ2.

Proof. For each v ∈ TxΣ1 there is a smooth path α : I → Σ1 with α(t) = x and
α′(t) = v. Then β = f ◦ α is smooth path to Σ2 with β(t) = f(x) and by definition
β′(t) ∈ Tf(x)Σ2. By the chain rule β′(t) = f∗(α(t))α

′(t) = f∗(x)v and therefore f∗(x)v ∈
Tf(x)Σ2. 0.17

Exercise: Show that there is a well defined linear map f∗(x) : TxΣ1 → Tf(x)Σ2. In
particular for any two extensions f1 and f2 of f to an open neighborhood of Σ1 show
that for all v ∈ TxΣ1 that (f1)∗(x)v = (f2)∗(x)v.

A smooth map f : Σ1 → Σ2 is a local isometry if for all x ∈ Σ1 and for all v,w ∈ TxΣ1

we have 〈v,w〉 = 〈f∗(x)v, f∗(x)w〉.

11



The covariant derivative: We have already discussed how to take the (directional)
derivative of a vector field in R

n and saw that if the vector field is only defined on a subset
of Rn we can differentiate in the direction v at x as long as the vector field is defined along
a smooth curve through x with tangent vector v. This allows to differentiate vector fields
defined on a surface in directions tangent to the surface. However, this differentiation
very much depends on how the surface is embedded. That is it is an extrinsic notion.

We now define the covariant derivative of a vector field and we will see that this
derivative is intrinsic.

Let Σ be a smooth surface in R
3 and W : Σ → R

3 a vector field. For v ∈ TxΣ we
then define the covariant derivative by

DvW (x) = ∇vW (x)− 〈∇vW (x), N(x)〉N(x)

where N is the normal vector field. This is just the usual directional derivative projected
orthogonally to the tangent space.

Exercise: The covariant derivative satisfies all of the properties of the directional
derivative.

Let α : I → Σ ⊂ R
3 be a smooth path. The tangent vector α′(t) of α will be a vector

field defined along the image of α we we can differentiate it in each tangent direction.
That is (Dα′(t)α

′)(t) is a vector along α. We say that α is a geodesic if (Dα′(t)α
′)(t) = 0

for all t ∈ I.

Theorem 0.18 Let α : → Σ be a smooth local parameterization. And define a vector

field E1 on the image of α by E1(x) = α∗(x1, x2)

(

1
0

)

where α(x1, x2) = x. Similarly

define E2 by replacing

(

1
0

)

with

(

0
1

)

. Then

〈DEiEj , Ek〉 =
1

2

(

∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)

where gij(x1, x2) = 〈Ei(α(x1, x2)), Ej(α(x1, x2))〉.

Proof. We first observe that the vector fields Ei are tangent to Σ and hence orthog-
onal to the normal vector field N so

〈∇EiEj , Ek〉 = 〈DEiEj + 〈∇EiEj, N〉N,Ek〉
= 〈DEiEj, Ek〉+ 〈∇EiEj , N〉〈N,Ek〉
= 〈DEiEj, Ek〉.
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Fix an x = α(x1, x2) in the image of α and let α1(t) = α(t, x2). Similarly define α2.
We then have

∇EiEj(x) = (α′
j ◦ αi)

′(ti)

=
∂2α

∂xi∂xj
(x1, x2).

Since mixed partials are equal we have that ∇EiEj = ∇EjEi.
We now calculate

∂gij
∂xk

(x) =

(

∂

∂xk
〈Ei ◦ α,Ej ◦ α〉

)

(x)

= (∇Ek
〈Ei, Ej〉) (x)

= 〈∇Ek
Ei(x), Ej(x)〉+ 〈Ei(x),∇Ek

Ej(x)〉.

We can similarly compute ∂gik
∂xj

and
∂gjk
∂xi

. We then have

∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

= 〈∇EjEi(x), Ek(x)〉+ 〈Ei(x),∇EjEk(x)〉+

〈∇EiEj(x), Ek(x)〉 + 〈Ej(x),∇EiEk(x)〉 −
(〈∇Ek

Ei(x), Ej(x)〉+ 〈Ei(x),∇Ek
Ej(x)〉)

= 〈∇EiEj(x), Ek(x)〉 + 〈Ei(x),∇Ek
Ej(x)〉+

〈∇EiEj(x), Ek(x)〉 + 〈Ej(x),∇Ek
Ei(x)〉 −

(〈∇Ek
Ei(x), Ej(x)〉+ 〈Ei(x),∇Ek

Ej(x)〉)
= 2〈∇Ek

Ei(x), Ej(x)〉
= 2〈DEk

Ei(x), Ej(x)〉.

0.18

Corollary 0.19 Let f : Σ1 → Σ2 be a local isometry. Let W1 and W2 be vector fields
on Σ1 and Σ2 with f∗(x)W1(x) = W2(x) for all x ∈ Σ2. Let z ∈ Σ1 and assume that
V1 ∈ TzΣ1 and V2 ∈ Tf(z)Σ2 with f∗(z)V1 = V2. Then f∗(z)(DV1

W1(z)) = DV2
W2(f(z)).

Proof. Let α1 be a smooth local parameterization of Σ1 near x. Then α2 = f ◦α1 is
a smooth local parameterization of Σ2 near f(x). As in the Theorem 0.18 we define the
vector fields Ek

i and the functions gkij . The central observations is that g1ij = g2ij . Then
Theorem 0.18 implies that

〈DE1

i
E1

j , E
1
k〉 = 〈DE2

i
E2

j , E
2
k〉.
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The map f is a local isometry so we have that

〈DE1

i
E1

j (z), E
1
k(z)〉 = 〈f∗(z)(DE1

i
E1

j (z)), f∗(z)E
1
k(z)〉

and since f∗(z)E
1
k(z) = E2

k(f(z)) we have that

〈f∗(z)(DE1

i
E1

j (z)), E
2
k(f(z))〉 = 〈DE2

i
E2

j (f(z)), E
2
kf(z)〉.

A vector is determined by the value of its inner products with a basis so f∗(z)(DE1

i
E1

j (z)) =

DE2

i
E2

j (f(z)) and this proves the corollary when Vk = Ek
i and Wk = Ek

j .

We now write V1 = λ1E
1
1(z)+λ2E

1
2(z) as linear combination of the basis {E1

1(z), E
1
2 (z)}

of TzΣ1. Since f∗(z) is linear and V2 = f∗(z)V1 we have that V2 = λ1f∗(z)E
1
1 +

λ2f∗(z)E
1
2 = λ1E

2
1 + λ2E

2
2 . It follows that

f∗(z)(DV1
E1

i (z)) = f∗(z)(λ1DE1

1

E1
i (z) + λ2DE1

2

E1
i (z))

= λ1DE2

1

E2
i (f(z)) + λ2DE2

2

E2
i (f(z))

= Dλ1E2

1
+λ2E2

2

E2
i (f(z))

= DV2
E2

i (f(z)).

We now similarly write W1 and W2 as linearly combinations of the Ei
j . Note that to

calculate DV W (z) we only need to know the value of V at z but we are differentiating
W so we need to know W in an entire neighborhood of z. In particular we let λ1 and λ2

be functions on a neighborhood f(z) in Σ2 such that W2(x) = λ1(x)E
2
1(x)+λ2(x)E

2
2(x).

Using the linearity of f∗(x), as above, we see that W1(x) = (λ1 ◦ f)(x)E1
1(x) + (λ2 ◦

f)(x)E1
2(x).

We now compute

∇V1
(λi ◦ f)(z) = (λi ◦ f)∗(z)V1

= (λi)∗(f(z))f∗(z)V1

= (λi)∗(f(z))V2

= ∇V2
λi(f(z)).
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Therefore we have

f∗(z)(DV1
W1(z)) = f∗(z)

(

2
∑

i=1

DV1
(λi ◦ f)E1

i (z)

)

= f∗(z)

(

2
∑

i=1

(

∇V1
(λi ◦ f)(z)E1

i (z) + (λi ◦ f)(z)DV1
E1

i (z)
)

)

= f∗(z)

(

2
∑

i=1

(

∇V2
λi(f(z))E

1
i (z) + (λi ◦ f)(z)DV1

E1
i (z)

)

)

=

2
∑

i=1

(

∇V2
λi(f(z))E

1
i (z) + f∗(z)((λi ◦ f)(z)DV1

E1
i (z))

)

=
2
∑

i=1

(

∇V2
λi(f(z))E

1
i (z) + λi(f(z))DV2

E2
i (f(z))

)

=
2
∑

i=1

DV1
λiE

2
i (f(z))

= DV2
W2(f(z)).

0.19

The shape operator L is a linear map from TxΣ to itself. Given an orthonormal basis

{E1, E2} of Txσ we can write L as a matrix. Namely L =

(

〈LE1, E1〉 〈LE1, E2〉
〈LE2, E1〉 〈LE2, E2〉

)

.

Theorem 0.20 Assume that the vector fields Ei come from a a smooth local parameteri-
zation as in Theorem 0.18 and also assume that at x, {E1(x), E2(x)} are an orthonormal
basis for TxΣ. Then the Gauss curvature of Σ at x is

〈(DE2
DE1

−DE1
DE2

)E1, E2〉.

Proof. We make three observations before the main calculation:

1. As in the proof of Theorem 0.18

〈DEiDEjZ,Ek〉 = 〈∇EiDEjZ,Ek〉.

2. For a tangent vector field Z we have 〈Z,N〉 = 0 so

0 = ∇Ei〈Z,N〉
= 〈∇EiZ,N〉+ 〈Z,∇EiN〉

and therefore 〈∇EiZ,N〉 = −〈Ei,∇ZN〉.
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3. If α is the smooth local parameterization of Σ that determines the Ei then ∇EiZ =
∂
∂xi

(Z ◦ α) so ∇Ej∇EiZ = ∂2

∂xj∂xi
(Z ◦ α) and ∇Ej∇Ei = ∇Ei∇Ej .

Now we compute

〈DEiDEjZ,Ek〉 = 〈∇EiDEjZ,Ek〉
= 〈∇Ei(∇EjZ − 〈∇EjZ,N〉N), Ek〉
= 〈∇Ei∇EjZ − (∇Ej〈∇EjZ,N〉)N − 〈∇EjZ,N〉∇EiN,Ek〉
= 〈∇Ei∇EjZ,Ek〉+ 〈Z,∇EjN〉〈∇EiN,Ek〉

Therefore

〈(DE2
DE1

−DE1
DE2

)E1, E2〉 = 〈∇E2
∇E1

E1, E2〉+ 〈∇E1
N,E1〉〈∇E2

N,E2〉 −
〈∇E1

∇E2
E1, E2〉 − 〈∇E2

N,E1〉〈∇E1
N,E2〉

= 〈LE1, E1〉〈LE2, E2〉 − 〈LE2, E1〉〈LE1, E2〉

but this is exactly the determinant of the matrix representation of L in the basis {E1, E2}.
0.20

Exercise: Let f : R → R be a smooth function with f(x) > 0 for all x ∈ R. We
define F : R3 → R by F (x1, x2, x3) = x21 + x22 − f(x3)

2.

1. Show that 0 is a regular value for F .

2. Let Σ = F−1({0}). If x = (x1, x2, x3) ∈ Σ show that the vectors (−x2, x1, 0) and
(x1f

′(x3), x2f
′(x3), f(x3)) form a basis for TxΣ.

3. The shape operator L is a linear map from TxΣ → TxΣ. Write L as a matrix in
terms of the basis from (2).

Solution: The gradient of F is ∇F = (2x1, 2x2,−2(f(x3)f
′(x3))) so on Σ we have

‖∇F‖ = 2f(x3)
√

1 + f ′(x3)2 since x21 +x22 = f(x3)
2. The Hessian of F is given by

the matrix

HF =





2 0 0
0 2 0
0 0 − 2(f(x3)f

′′(x3) + f ′(x3)
2)





By Lemma 0.11, 〈Lv,w〉 = 〈 − ∇vN,w〉 = −HF (v,w)/‖∇F‖. Let v1 and v2 be
the basis from (2). We then have

〈Lv1, v1〉 = − 2x21 + 2x22
2f(x3)

√

1 + f ′(x3)2
= − 1

√

1 + f ′(x3)2
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and

〈Lv2, v2〉 = −2x21f
′(x3)

2 + 2x22f
′(x3)

2 − 2f(x3)
2(f(x3)f

′′(x3) + f ′(x3)
2)

2f(x3)
√

1 + f ′(x3)2

=
f(x3)

2f ′′(x3)
√

1 + f ′(x3)2

Since HF (v1, v2) = HF (v2, v1) = 0 we have 〈Lv1, v2〉 = 〈Lv2, v1〉 = 0. We then
write L as a matrix by

L =

(

〈Lv1, v1〉/‖v1‖2 〈Lv2, v1〉/‖v1‖2
〈Lv1, v2〉/‖v2‖2 〈Lv2, v2〉/‖v2‖2

)

=





− 1

f(x3)2
√

1+f ′(x3)2
0

0 f ′′(x3)

(1+f ′(x3)2)3/2





4. Use the matrix representation of L to calculate both the Gauss and mean curvature
of Σ at x.

Solution: The Gauss curvature is

1
f ′′(x3)

f(x3)2(1 + f ′(x3)2)2

and the mean curvature is

f(x3)
2f ′′(x3)− 1− f ′(x3)

2

f(x3)2(1 + f ′(x3)2)3/2
.

5. Using the same function f define α : R2 → R
3 by α(x1, x2) = (f(x1) cos x2, f(x1) sinx2, x1).

Show that f(R2) = Σ.

6. Show that f∗(x1, x2) has rank two for all (x1, x2) ∈ R
2.

7. Given α we can define vector fields E1 and E2 and functions gij as in Theorem 0.18.
Show that g11(x1, x2) = f ′(x1)

2 + 1 and g22(x1, x2) = f(x1)
2 and g12 = g21 = 0.

8. Show that DE1
E1(x1, x2) = −DE2

E2(x1, x2) =
f ′(x1)f ′′(x1)
1+f ′(x1)2

E1 and DE1
E2(x1, x2) =

DE2
E1(x1, x2) =

f ′(x1)
f(x1)

E2.

9. Use Theorem 0.20 to calculate the Gauss curvature. Your answer should agree
with (4)!
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