
Homework 3, Math 5510
September 22, 2015
Section 18: 3, 7(a)

Section 19: 2, 7, 8, 10
Section 20: 3, 4, 8

#21.7 Assume that fn → f uniformly and fix ε > 0 then there exists an N > 0 such
that if n > N then |fn(x)− f(x)| < ε for all x ∈ X. But

ρ̄(fn, f) = sup
x∈X
{min{|fn(x)− f(x)|, 1}} < ε

so fn ∈ Bρ̄(f, ε) so fn → f in RX .
Now assume that fn → f in RX . Then for for all 1 > ε > 0 there exists an N > 0

such that if n > N then fn ∈ Bρ̄(f, ε). In particular min{|fn(x) − f(x)|, 1} < ε for all
x ∈ X. So if n > N we have |fn(x)− f(x)| < ε and fn → f uniformly.

#21.8 Since fn → f uniformly there exists an N1 > 0 such that if n > N1 then
d(fn(xn), f(xn)) < ε/2. Since the fn are continuous and the convergence is uniform by
Theorem 21.6, f is continuous and f(xn)→ f(x) (since xn → x). Therefore there exists
an N2 > 0 such that if n > N2, d(f(xn), f(x)) < ε/2. Applying the triangle inequality
we have

d(fn(xn)− f(x)) ≤ d(fn(xn), f(xn)) + d(f(xn), f(x)) < ε/2 + ε/2 = ε

so fn(xn)→ f(x).

#22.3 We first show the that for any continuous map p : X → Y if there is a
continuous map f : Y → X such that p ◦ f is the identity map then p is quotient
map. Let U ⊂ Y be a subset with p−1(U) open. Then f−1(p−1(U)) is open since f is
continuous but f−1(p−1(U)) = (p ◦ f)−1(U) = U so this show that U most be open in
Y . By assumption p is continuous so this shows that p is a quotient map.

We’ll show that the quotient space is R. Projection maps on product spaces are
continuous so the restriction q of π1 to A is also continuous. Define f : R → A by
f(x) = (x, 0). Then q ◦ f is the identity so by the above paragraph q is a quotient map
so the quotient space is R.

To show that q is not a open take the open set ((−1, 1)×(0,∞))∩A = [0, 1)×(0,∞).
The q-image of this open set is [0,∞) and is not open so q is not an open map.

The set {(x, y) ∈ R2|y = 1/x} is a closed subset of A but its q-image is (0,∞) is not
closed so q is also not a closed map.
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#22.4(a) Let g : R2 → R be defined by g(x, y) = x + y2. Then x0 × y0 ∼ x1 × y1

if and only if g(x0, y0) = g(x1, y1) so if we can show that g is a quotient map then the
quotient space will be R. We follow the same approach as in Problem 22.3. Define
f : R→ R2 by f(x) = (x, 0). Both f and g are continuous and g ◦ f is the identity so g
is a quotient map and the quotient space is R.

#22.4(b) We follow the same strategy and let g : R2 → [0,∞) be defined by
g(x, y) = x2 + y2 and let f : [0,∞)→ R2 be defined by f(x) = (x, 0). Both f and g are
continuous and g◦f is the identity so g is a quotient space and [0,∞) is the quotient space.

#23.9 Let Z = X × Y − A× B and let C = {(x, y) ∈ Z|z 6∈ A} and D = {(x, y) ∈
Z|y 6∈ B}. Note that Z = C ∪ D since if (x, y) ∈ Z then we must have either x 6∈ A
or y 6∈ B (or possibly both). Let (x0, y0) ∈ C. Then any (x1, y1) ∈ D is any the same
connected component of Z since the sets {x0} × Y and X × {y1} are connected subsets
of Z that have the point (x0, y1) in common so there union is connected. Similarly every
point in C is in the same connected component as any point in D. This implies that
Z = C ∪D is connected.

#23.11 Assume that X is not connected and A,B ⊂ X are a separation. Note
that p−1(p(A)) = A since if y ∈ P (A) then p−1({y}) must be entirely contained in A
since otherwise p−1({y}) ∩A and p−1({y}) ∩B would be a non-trivial separation of the
connected set p−1({y}). Similarly p−1(p(B)) = B. Since the sets A and B are open and
p is a quotient map this implies that p(A) and p(B) are open. They are also disjoint
since p−1(p(A)) = A and p−1(p(B)) = B are disjoint. Therefore p(A) and p(B) are a
non-trivial separation of Y , contradiction.

#23.12 Assume that Y ∪ A has a non-trivial separation C,D. Note that C and D
are open in the subspace topology for Y ∪A. Since Y is connected it must be contained
in C or D. Lets say it is C. Since D is disjoint from C, this implies that D is contained
in A. In particular, since A is open in X − Y is open in the subspace topology on Y ∪A
(and hence the subspace topology on A)

#24.3 Define g : [0, 1] → R by g(x) = f(x) − x. Then g(0) = f(0) − 0 ≥ 0 and
g(1) = f(1)− 1 ≤ 0 so by the Intermediate Value Theorem there exists a x ∈ [0, 1] such
that g(x) = 0. But then g(x) = f(x)− x = 0 and f(x) = x so x is the desired fix point.

For a counterexample let f(x) = x/2 + 1/2. Then f(x) = x if and only if x = 1 so f
doesn’t have a fixed point on either [0, 1) or (0, 1).
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#24.8(a) Yes. Let (xα) and (yα) be points in
∏
Xα. Then for each α there are

paths γα : [0, 1]→ Xα with γα(0) = xα and γα(1) = yα. Define a path γ : [0, 1] ∈
∏
Xα

by γ(t) = (γα(t)). Since each coordinate function is continuous, γ is continuous with
γ(0) = (xα) and γ(1) = (yα). Therefore γ is a path from (xα) to (yα).

#24.8(b) No. Take the topologists sine curveA = {(x, y) ∈ R2|y = sin(1/x) and x >
0} ⊂ R2 is path connected but its closure is not.

#24.8(c) Yes. Let y0 and y1 be points in f(X). Then there exists xi ∈ X with
f(xi) = yi. The composition of a path from x0 to x1 with f is a path from y0 to y1.

#24.8(d) Yes. Let x ∈ ∩Aα. Then for any x0, x1 ∈ ∪Aα there are paths γ0 from x0

to x and γ1 from x to x1. The concatenation of these paths is a path from x0 to x1 so
the union is path connected.

#24.10 Fix x0 ∈ U and let A be the set of points x ∈ U such that there is a path
in U from x0 to x. We will show that A = U by showing that A is non-empty, open
and closed. Clearly x0 ∈ A so A is non-empty. For all x ∈ A there is a ball Bd(x, ε)
that is contained in U . Balls are path connected so every y ∈ Bd(x, ε) is in the same
path connected component as y and hence as x0. Therefore Bd(x, ε) ⊂ A and A is open.
If x ∈ Ā then every open neighborhood of x intersects A. As before we have a ball
Bd(x, ε) ⊂ U . Since this ball intersects A there is a path in U from x to a point in A and
hence x ∈ A and A = Ā is closed. Therefore A is non-empty, open and closed. Since U
is connected, A = U .
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