Notes and problems on compactness

Let O be a collection of open sets in R™. Then O is an open cover of a set A C R"
ifAc UU.
UeO
A set K is compact if every open cover has a finite subcover. That is K is compact

if for every open cover O there are sets Uy,...,Ur € O such that

k
K C U U;.
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Theorem 1 A compact set is closed.

Proof. We will prove the contrapositive. Assume that A is not closed. We will
construct an open cover that has no finite subcover. Since A is not closed there exists a
sequence {x;} in A that converges to some x ¢ A. Note that
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is closed set so its complement, which we denote U, is open. Let O be the collection of
balls By, +)/2(7:) and the set U. Then O is an open cover of A. We will show that O
has not finite subcover.

Let O be a finite subcollection of the open sets in . Since O’ contains only finite
many sets there exists an NV such that if i > N then By, )/2(7i) is not in O'. Let e =
min{d(x1,z)/2,...,d(xn,x)/2}. Since z; — x there exists an ng such that d(zy,,,z) < €.
By the triangle inequality d(z;,z) < d(x;,Tn,) + d(Tn,,z) and after rearranging this
becomes d(x;, Tpn,) > d(xi,x) — d(zp,,x). If i < N then d(z;,z) > 2¢ so we have
d(wi, Tpy) > 2¢ — € = €. In particular z,, & Be(7:) C By, 2)/2(%i). Since xy, is also not
in U the open sets in O’ cannot cover A and O has no finite subcover.

Theorem 2 If A is a subset of K, A is closed and K is compact then A is compact.

Proof. Let O be an open cover of A. Let O’ be all of the open sets in O and the
open set A°. Then (' is an open cover of K and therefore there are finitely many open
sets Uy, ...,Up, each in (0, that cover K. If A° is not one of the U; then all of the U;
are in O and they are a finite subcover. If A€ is one of the U;, say U,, then Uy,...,U,_1

are all in O. But Uy, ...,U,_1 are also a finite subcover of A because if x € A C K then
x € U; for some i since the U; cover K. Since x ¢ U, = A° we must have x € U; for
some 7 < n — 1 and therefore the Uy,...,U,_1 cover A.



Theorem 3 Let K; be non-empty compact sets with K;+1 C K;. Then
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Proof. We assume the intersection is empty and we will obtain a contradiction. The
sets K; are closed and hence compact so the sets U; = K are open. Since
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the collection {U;} is an open cover of K. Since

no finite subcollection of the U; covers Ki. This contradicts the compactness of K so
the intersection must be non-empty.

Theorem 4 Let I, = [ay, by]| be a sequence of nested intervals, i.e. I,11 C I, for all n.
Show that

() I # 0.
n=1

Proof. Let n and m be positive integers with n < m. Then I,, C I, so a, < @y <
by, < by. In particular a; < b; for all 4+ and j. This implies that

a = sup{a;} < b,

for all i. By the definition of the supremum we also have a > a; for all i so a € I; for all
1 and the intersection is non-empty.

A closed n-cell is a product of closed intervals. That is
Q= [ahbl] X X [anabn]
is a closed n-cell.

Problem 1 Show that a nested family of closed n-cells has a non-empty intersection.



Theorem 5 A closed n-cell Q is compact.

Proof. We will assume @ is not compact. Then there exists an open cover, O, of @)
that contains no finite subcover. We will construct a sequence of nested, closed n-cells
Qo D Q1 D Qs ... with the property that for each ); the collection O is a cover with no
finite subcover and such that diam(Q;) — 0.

Assuming we have constructed the ); we can finish the proof. By Problem 1 the
intersection

Qoo = m Qz
=0

is non-empty. We claim that QQo, contains only one point. Let x and y be points in Q.
Since diam(Q;) — 0 for € > 0 there exists an k such that diam(Qy) < e¢. Both x and y
are in Q so d(z,y) < € and as € is arbitrary we must have d(x,y) = 0. Therefore z =y
and Qs contains only one point which we label q.

Let U be an open set in the collection O with ¢ € U. Since U is open there exists
a 0 > 0 such that Bs(q) C U. Again using the fact that diam(Q;) — 0 we can find
an m such that diam(Q,,) < . By the definition of diameter, if A is a set with d >
diam(A) and = € A then A C By(x). In particular, Q,, C Bs(q) C U. This gives us a
contradiction since {U} is a finite subcover of Q,.

Now we need to construct the (;. We will do so inductively. We begin by setting
Qo = Q. By assumption O has no finite subcover of Q9. The n-cell Qg is the product of
n-intervals. We can assume the longest interval has length ¢.

Now assume we have constructed nested, closed n-cells Qg C Q1 C -+ C Qr_1
such that O has no finite subcover on any of the @); and the length of the longest side
of Q; is 27%. To choose Q,, we subdivide Q;_; into 2" closed n-cells which we label
Qr1s-- -, Qron. The Q; are of the following form. The n-cell @,—1 is the product of
n intervals, [a1,b1],..., [an,bs]. Let ¢; be the midpoint of [a;,b;]. Then each Qy; is a
product Iy x --- x I, with each I; either the interval [a;,c;] or the interval [c;,b;]. For
each I; there are two choices of intervals and there are n intevrals I; so there are exactly
2" possible @ ;. Note that Qi—1 = [J Qp,; so if O has a finite subcover for each the Qy ;
then O has a finite subcover on Q;_;. Since we are assuming this is not true there is
some @y, such that O doesn’t have a finite subcover on Qy ;. Let Qi = Q.-

To finish the construct of the ); we need to calculate the length of the longest interval
in product Q. This is easy to do since the length of the intervals in the product that
forms @ are exactly half the length of the intervals in Q_1. Therefore the length of the
longest interval is 271 x 2=(k=1¢ = 2=k and we have inductively found nested, closed
n-cells Q; with the length of the longest interval in each @Q; exactly 27%/. An application

!The diameter of a set A is defined to be diam(A) = inf{d|if z,y € A then d(z,y) < d}.



of the triangle inequality shows that diam(Q;) < n27% so diam(Q;) — 0 as i — oo.

Problem 2 Let z, be a sequence with no convergent subsequence. Show that the set
{z1,x2,...} is closed

Problem 3 A point z is isolated in a set A C R"™ if there exists an € > 0 such that
B.(z)()A = {z}. Show that x is isolated if and only if there doesn’t exists a sequence
of distinct points z; € A with z; — x.

Theorem 6 Let K be a subset of R™. The following are equivalent:
1. K is closed and bounded;
2. K 1is compact;

3. FEvery sequence in K has a subsequence that converges in K.

Proof. (1 = 2) A bounded set is contained in some closed n-cell ). By Theorem
5. Since K is a closed subset of a compact set K is compact by Theorem 2.

(2 = 3) Let x,, be a sequence in K. If the sequence has a convergent subsequence
then the limit is in K since K is compact and therefore closed. In this case we are done.

Now we assume the sequence has no convergent subsequence and we will obtain a
contradiction. Then by Problem 2 the set C' = {x1,x2, ...} is closed. By Theorem 2, C'
is also compact. Problem 3 implies that every point in C is isolated. In particular, for
each z; there is an ¢; such that B, (z;)()C = {z;}. The collection

0= {B€1 (z1), BE2(x2>v ce }

is an open cover of C. However if we remove any of the B, (x;) from O we no longer
have an open cover since x; is not in any of the open subsets. Therefore O has no finite
subcover, contradicting the compactness of C.

(3 = 1) We will prove the contrapositive. If K is not closed there exists a sequence
{z;} in K such that z; — x but = ¢ K. Every subsequence {z;} will then also converge
to x so {x;} has no subsequence that converges in K.

If K is not bounded, for each i we can find an z; € K such that d(z;,0) > i. Given an
i choose j such that jo > d(x;,0)+1. Then for all j > jo, d(z;, z;) > d(z;,0)—d(x;,0) >
jo — d(x;,0) > 1. This implies that {z;} has no Cauchy, and therefore no convergent,
subsequence. [6]



We now define the Cantor set, C, in a way somewhat different than was done in class.
Define

C= {x € [0,1]jz = Z% where a; € {0,2}}.

i=1
Some examples of points in C' are 2/3 and 2/9. It is less obvious, but 1/3 is also in C
since 1/3 =322, 2/3".

Problem 4 Show that the Cantor set is:
1. closed;
2. has no interior;
3. has no isolated points;

4. is uncountable.



