Notes and problems on infinite sets and countability

A set X is infinite if there exists a map from X to X that is injective but not
surjective.

Theorem 1 If X is infinite there is an injective map from N to X.

Proof. Let ¢ : X — X be injective but not surjective. We inductively define
an injective map ¢ : N — X as follows. Define ¢(1) to be an element of X\¢(X).
Now assume 1) has been defined on {1,...,n} and that (k) € ¢ 1(X)\¢*(X) for
ke {1,...,n}. Now define 1)(n + 1) to be an element of ¢*(X)\¢**(X).

This defines 1 on all of N. The map is injective since

(@™ (X)N\e" (X)) N (6™ (X)\g™ (X)) =0
if n # m.
A set X is countable if there exists a bijection from N to X.

Problem 1 Show that:
e 7 is countable.

e The union of two countable sets is countable.

Theorem 2 The product of two countable sets is countable.
Proof. We just need to show that N x N is countable. We can write N x N in a list:
(17 1)7 (17 2)7 (27 1)7 (17 3)7 (27 2)7 (37 1)7 (4? 1)7 (2? 3)’ (37 2)7 (47 ]‘)7 ct

Problem 2 Explicitly write down a bijection from N to N x N.

Theorem 3 An infinite subset of a countable set is countable.



Proof. We can assume that the countable set is N. Let A be an infinite subset of N.
Every subset of N has a least element. We use this fact to inductively define a bijection
P :N— A

Define 9(1) to be the least element of A and let A} = A\{¥(1)}. Now assume we
have defined ¥ (k) and Ay, for k € {1,...,n}. Then we inductively define ¥)(n + 1) to be
the least element of A,, and define A, 11 = A,\{¥(n)}. This define an injective map
from N to A.

We need to show that 1 is surjective. We claim that i¢(n) > n. We again use
induction. Clearly (1) > 1 since 1 is the least element of N and (1) € A C N. Now
assuming that ¢ (n) > n we will show that ¢)(n 4+ 1) > n+ 1. Note that i (n) is strictly
less than any element of A, so ¥(n) < ¢¥(n+1) or ¥(n)+1 < p(n+1). Since ¢(n) >n
we have ¥)(n+ 1) > n+ 1 as desired.

Since 9 (n) > n for all n € N we have n ¢ A, for n <m. If n € A and n ¢ A,, then
we must have 1)(m) = n for some m < n proving that ¢ is surjective.

Theorem 4 Let S(X) be the set of all subsets of a set X. Then there is an injective
map from X to S(X) but there is no surjective map from X to S(X). In particular there
are infinite sets that are not countable.

Proof. The map x — {z} is an injective map from X to S(X).
Now we see there is no surjective map. Let ¢ : X — S(X) be a map and define a
susbet A by

A= {zlz & P(x)}.

We claim that A is not in the image of ).

We work by contradiction and suppose there is an x € X such that ¢(x) = A. There
are two cases.

Case 1: Suppose z is in A. Then z € )(X) = A so x ¢ A which is a contradiction.

Case 2: Suppose z is not in A. Then =z ¢ ¥(X) = A so x € A which is again a
contradiction.

Therefore there does not exist an x € X with ¥ (x) = A and 9 is not surjective.

We'd also like to prove that the real numbers are not countable. We first give a
definition of a real numbers. Our definition is not the usual one but it is convenient for
showing that R is not countable.

A real number is a function f:Z — {0,1,...9} with the following properties:

1. There exits an N > 0 such f(n) =0if n > N;

2. For every n such that f(n) =9 there is an m < n such that f(m) # 9.



Here is an example. There real number 32.71 is represented by the function f with
f(1) =3, f(0) =2, f(-1) =7, f(-2) =1 and f(n) =0 for n ¢ {,0,—1,—2}. A more
complicated example is the number 1/7. This number is represented by a function f with
F(=1) =1, f(=2) =4, f(=3) =2, f(~4) = 8, f(=5) = 5, f(~6) = 7, f(n) = f(n+6)
if n < —6and f(n)=0if n > 0.

Theorem 5 R is uncountable.

Proof. Let ¢ be a map from N to R and let f,, = ¢(n). We will show that ¢ is not
surjective. Define g € R by setting g(n) to be some element of {0,1,...,8\{f.(n)} if
n < 0 and g(n) =0 if n > 0. Then g # f, for any n € N since g(n) # f,(n). Therefore
¢ is not surjectve.

The number f € R eventually periodic if there exists and N € Z and a k € N such
that f(n) = f(n — k) if n < N. The period of f is k.

Problem 3 Show that f is rational if and only if f is eventually periodic. (Hint: To
show that and eventually periodic f is rational show 10¥f — f is rational where k is
the period of f. It is harder to show that a rational number has a eventually periodic
decimal expansion is harder.)

If f and g are real numbers we define f > g if there exists an ng € Z such that
f(n) = g(n) for all n > ng and f(ng) > g(no).

Problem 4 Let fy and fi be real numbers. Show that there exists a rational number
go and an irrational number g; such that fo < ¢g; < f1 for ¢ =1,2.



