Lebesgue Measure

An n-cell is a product of n-intervals in R™. We allow the intervals to be of any type;
open, closed or half open. We also allow an interval to be a single point. That is [a, a]
is an allowed interval. If Q = I; x --- x I, is an n-cell and the endpoints of the interval
I; are a; < b; then define the measure of @ by

m(Q) = (by —a1)(ba — az) - - - (b, — an).

Problem 1 Let Q be an n-cell and let @1, ..., Q) be disjoint n-cells with Q) = U;C:l Q;.
Show that m(Q) = %, m(Q;).

A subset of R™ is elementary if its a finite union of n-cells. Let £ be the set of all
elementary subsets.

Problem 2 If A, B € £ show that AUB, ANB and A— B are all in £.

Problem 3 Show that an elementary set is a finite union of disjoint n-cells.

We can now define the measure of an elementary set. If A € &£ let Qq,...,Qi be
disjoint n-cells with A = Ule Q;. Then
k

m(A) =) m(Q:).

=1

Problem 4 Show that the measure of an elementary set is well defined. That isif A € £
and Q1,...,Qr and Ry, ..., Ry are two collections of disjoint n-cells with A = Ule Q; =
Ule R; then

k l

> m(@Q) = m(Ry).

i=1 i=1

Problem 5 Let A and B be elementary sets. Show that
m(A) +m(B) =m(AUB) +m(ANB).

Proposition 1 Given any A € £ and any € > 0 there exists an open U € € and a closed
Fe&withFCACU and m(U)—e<m(A) <m(F)+e.

Proof. Let Q1,...,Q be a disjoint collection of n-cells such that A = (JQ;. For
each @); we can find an open n-cell, U; and a closed n-cell, F;, such that F; C Q; C U;
and m(U;) —e/k < m(Q;) < m(F;) —e/k. Then U = |JU; and F = |J F; are the desired
U and F.



We can now define the measure of an arbitrary subset of R”. If A C R" define

o

*(A) = inf Aj).
m(d)= , Wf Z;m( )
Azee is open |

If A is an elementary set then this gives a new way of defining the measure of A. We
need to see that both ways give the same answer.

Proposition 2 If A € £ then m*(A) = m(A).

Proof. By Proposition 1 for all € > 0 there is an open U € £ such that A C U
and m(A) > m(U) —e. Then m(U) > m*(A) so m(A) > m*(A) — e. As this is true for
arbitrary € > 0 we must have m(A) > m*(A).

Applying Proposition 1 again we have a closed n-cell F' with FF C A and m(A) <
m(F') + €/2. By the definition of m*(A) we can also find a countable collection of open
elementary sets A; such that A C |JA4; and m*(A) > > m(A;) —€/2. The set F' is closed
and bounded so it is compact. It is also covered by the open set A; so there is a finite
subset of the A; with F' C Ule A and therefore

k 0o
m(F) <m (U Ai> < Zm(Ai) <> m(A).

i=1
Combing the inequalities we have
m(A) <m(F) +¢/2 <> m(A;i) +¢/2<m*(A) +e
i=1

As this holds for all € > 0 we have m(A) < m*(A) finishing the proof.

Proposition 3 If A =J;2, A; then m(A) < Y2, m(A4;).

Proof. We can assume the sum is finite for otherwise the proposition is obviously
true. Fix an € > 0. Let A;; be open elementary sets such that A; C Ujoil A;; and

m(4;) > Z(;; m(A;j) — €/2". Since

ACUAiCU UA”
=1

i=1 \j=1



and there are a countable number of A;; we have

m(A) <> m(Ay) = (Z m(Aij)) <Y m(A)+ ) e/20 = m(A) +e.
i=1 =1 =1

ij=1 i=1 \j=1
Since € was arbitrary we have m(A) < > "2, m(A;) as desired.

Define the symmetric difference of two sets A and B by
S(A,B)=(A—-B)U(B—A).
We then define a distance between two sets by
d(A, B) = m(S(A, B)).

We can use d(,) to define a notion of convergence for sets. Namely A; — A if the
d(A;; A) — 0 as i — oo. Note that, unlike convergence for points, it can happen that
A;j— Aand A; — A but A # A'.

Problem 6 Show that

S(Al U A, By UB2)
S(AlﬂAz,BlﬂBz) CS(Al,Bl)US(AQ,BQ)
S(A; — Ay, By — Bs)

and that
d(Al U AQ, Bi U Bg)
d(Al N Asg, By ﬂBg) < d(Al,B1> —l—d(AQ,BQ).
d(Al — AQ, Bl — BQ)
Also show that
S(A,C) € S(A, B)US(B,C)

and that
d(A,C) < d(A, B) +d(B,C).

Lemma 4 1. For any two sets A, B we have |[m(A) — m(B)| < d(A, B).
2. If A; — A then m(A;) — m(A).



Proof of (a). Without loss of generality we assume m(A) > m(B). By the previous
problem
d(A,0) < d(A, B) + d(B,0).

Since d(X,0) = m(X) for any set X and m(A4) > m(B) we have
0 < m(A) — m(B) < d(A, B)

or |m(A) —m(B)| < d(A, B).

Define
Mp = {A C R"|there exists A; € £ with A; — A}

and

M= {A C R"|there exists A; € My with A = UAZ} )
i=1

Proposition 5 Let A, B be in Mp. Then
1. AUB € Mp;
2. ANB € Mp;
3. A— B € Mp;
4. m(AUB) =m(A) +m(B) —m(ANB).

Proof of (a)-(c). Since A and B are in My we have A; and B; in € with 4; — A
and B; — B. By Problem 2, A; UB;, A; " B; and A; — B; are all in £. An application
of Problem 6 implies that A; UB; - AUB, A,NB; - ANBand A; — B, — A— B.

(d). Since the A; and B; are in £ we have

m(A;) +m(B;) = m(A; U B;) + m(A; N By)
by Problem 5. As i — oo this becomes
m(A) +m(B) =m(AUB) +m(ANB)

by (b) of Lemma 4.



Lemma 6 Let A =J;2, A; where the A; are pairwise disjoint and in Mp. Then

m(A) = Zm(Ai).

Proof. We have already seen that m(A) < >, m(A;) so we only need to reverse
the inequality. By (1) of Lemma 5 the finite union By = Ule A; is in Mp since the A; are
in Mp. Next we apply (4) of Lemma 5 to see that m(By) = Zle m(A;). Since B C A
we have Zle m(A;) = m(By) < m(A). As all the terms in the series Y ., m(4;) are
non-negative and its partial sums are bounded above by m(A) we have that the series
converges and > .o, m(A4;) < m(A). [6]

Lemma 7 Let A be a set in M. Then m(A) < oo if and only if A € Mp.

Proof. If A € 9Mp then there exists a B € & such that d(A4,B) < oo. Since
A C BUS(A,B) and m(B) < oo this implies that m(A) < oo.

Now assume that m(A) < co. Since A € 9 there are A; € Mp with A = (J72; 4.
Let B, = Ule A;. For i > 1 we define A; = B; — B;_; and for i = 1 we define A} = A;.
Applying (1) and (3) of Lemma 5 we see that the B; and A} are in Mp. The A, are
disjoint and their union is A so m(A) = 3.2, m(A}) by Lemma 6. We also have By, — A
since

i=k+1 i=k+1

and the sum on the right limits to 0 as kK — oo since it is the tail of a convergent series.
Note that the last equality is an application of Lemma 6.
Each B; is in M so we can find E; € £ with d(B;, E;) < 27%. Then

d(A, E;) < d(A,B;) +d(B;, E;) < d(A,B;) +27°.

The right side of the inequality limits to 0 since B; — A and 27/ — 0 and therefore
E; — Aand A is in Mp. [6]

Theorem 8 If A € M and A; € M with the A; disjoint and A = ;2| Ai then

m(A) = Z m(A;).
i=1



Proof. If m(4;) < oo for all ¢ then by Lemma 7, A; is in Mp for all ¢ and the
theorem follows from Lemma 6. If m(A;) = oo for some i then m(A) > m(4;) is also
infinite and again the equality holds.

Theorem 9 1. If A, € M then |J;2, A; is in M.
2. If A and B are in MM then AN B is in M.
3. If A and B are in 9 then A — B is in IN.

Proof of (1). Since A; is in M there are A;; € Mp with A; = U]Oil A;;. Since a
countable collection of countable sets is countable there are countably many A;;. There-
fore A = J;5-, Aij is in M.

(2) and (3). Let A; and B; be countable collections of sets in 9Mp whose unions
are A and B, respectively. Then each A; N Bj is in Mp by Lemma 5 and by (1) we have
that

00
A;NB= UAimBj
=1

is in M. Another application of (1) then gives us that

ANB= U A;NB
i=1
is in M.
For (3) we note that
A-B=|J4-B
i=1
Since A; — B = A; — (A; N B) is in M the union is also in M. [9]



