Chapter 9

The Fundamental Group

One of the basic problems of topology is to determine whether two given topological
spaces are homeomorphic or not. There is no method for solving this problem in
general, but techniques do exist that apply in particular cases.

Showing that two spaces are homeomorphic is a matter of constructing a contin-
uous mapping from one to the other having a continuous inverse, and constructing
continuous functions is a problem that we have developed techniques to handle.

Showing that two spaces are not homeomorphic is a different matter. For that,
one must show that a continuous function with continuous inverse does not exist. If
one can find some topological property that holds for one space but not for the other,
then the problem is solved—the spaces cannot be homeomorphic. The closed interval
[0, 1] cannot be homeomorphic to the open interval (0, 1), for instance, because the
first space is compact and the second one is not. And the real line R cannot be home-
omorphic to the “long line” L, because R has a countable basis and L does not. Nor
can the real line R be homeomorphic to the plane R?; deleting a point from R? leaves
a connected space remaining, and deleting a point from R does not.

But the topological properties we have studied up to now do not carry us very far
in solving the problem. For instance, how does one show that the plane R? is not
homeomorphic to three-dimensional space R3? As one goes down the list of topolog-
ical properties—compactness, connectedness, local connectedness, metrizability, and
so on—one can find no topological property that distinguishes between them. As an-
other example, consider such surfaces as the 2-sphere S2, the torus T (surface of a
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322 The Fundamental Group Ch. 9

doughnut), and the double torus T#T (surface of a two-holed doughnut). None of the
topological properties we have studied up to now will distinguish between them.

So we must introduce new properties and new techniques. One of the most natural
such properties is that of simple connectedness. You probably have studied this notion
already, when you studied line integrals in the plane. Roughly speaking, one says that
a space X is simply connected if every closed curve in X can be shrunk to a point
in X. (We shall make this more precise later.) The property of simple connectedness,
it turns out, will distinguish between R? and R?; deleting a point from R? leaves a
simply connected space remaining, but deleting a point from R? does not. It will also
distinguish between 52 (which is simply connected) and the torus 7 (which is not).
But it will not distinguish between T and T#T ; neither of them is simply connected.

There is an idea more general than the idea of simple connectedness, an idea that
includes simple connectedness as a special case. It involves a certain group that is
called the fundamental group of the space. Two spaces that are homeomorphic have
fundamental groups that are isomorphic. And the condition of simple connectedness
is just the condition that the fundamental group of X is the trivial (one-element) group.
Thus, the proof that $? and T are not homeomorphic can be rephrased by saying that
the fundamental group of $2 is trivial and the fundamental group of T is not. The
fundamental group will distinguish between more spaces than the condition of simple
connectedness will. It can be used, for example, to show that 7 and T#T are not
homeomorphic; it turns out that 7 has an abelian fundamental group and T#T does
not.

In this chapter, we define the fundamental group and study its properties. Then
we apply it to a number of problems, including the problem of showing that various
spaces, such as those already mentioned, are not homeomorphic.

Other applications include theorems about fixed points and antipode-preserving
maps of the sphere, as well as the well-known fundamental theorem of algebra, which
says that every polynomial equation with real or complex coefficients has a root. Fi-
nally, there is the famous Jordan curve theorem, which we shall study in the next
chapter; it states that every simple closed curve C in the plane separates the plane into
two components, of which C is the common boundary.

Throughout, we assume familiarity with the quotient topology (§22) and local
connectedness (§25).

§51 Homotopy of Paths

Before defining the fundamental group of a space X, we shall consider paths on X and
an equivalence relation called parh homotopy between them. And we shall define a
certain operation on the collection of the equivalence classes that makes it into what is
called in algebra a groupoid.
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Definition. If f and f’ are continuous maps of the space X into the space Y, we say
that f is homotopic to f' if there is a continuous map F : X x I — Y such that

F(x,0) = f(x) and F(x,1)= f'(x)

for each x. (Here I = [0, 1].) The map F is called a homotopy between f and f’. If
f is homotopic to f’, we write f >~ f'. If f >~ f’ and f’ is a constant map, we say
that f is nulhomotopic.

We think of a homotopy as a continuous one-parameter family of maps from X
to Y. If we imagine the parameter ¢ as representing time, then the homotopy F' rep-
resents a continuous “deforming” of the map f to the map f’, as ¢t goes from O to
1.

Now we consider the special case in which f is a path in X. Recall that if f :
[0, 1] — X is a continuous map such that f(0) = x¢ and f(1) = x;, we say that f is
a path in X from xg to x1. We also say that x is the initial point, and x, the final point,
of the path f. In this chapter, we shall for convenience use the interval / = [0, 1] as
the domain for all paths.

If f and f’ are two paths in X, there is a stronger relation between them than mere
homotopy. It is defined as follows:

Definition. Two paths f and f’, mapping the interval I = [0, 1] into X, are said to
be path homotopic if they have the same initial point xo and the same final point xi,
and if there is a continuous map F : I x I — X such that

F(s,0)= f(s) and F(s,1) = f'(s),
F@O,1) = xg and F(1,?) =x,

for each s € I and each ¢+ € 1. We call F a path homotopy between f and f’. See
Figure 51.1. If f is path homotopic to f’, we write f =, f’.

4 I
F
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\_ /

Figure 51.1
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The first condition says simply that F is a homotopy between f and f’, and the
second says that for each #, the path f; defined by the equation f;(s) = F (s, t) is a path
from xq to x|. Said differently, the first condition says that F represents a continuous
way of deforming the path f to the path f’, and the second condition says that the end
points of the path remain fixed during the deformation.

Lemma 51.1.  The relations >~ and =}, are equivalence relations.

If f is a path, we shall denote its path-homotopy equivalence class by [ f].

Proof. Let us verify the properties of an equivalence relation.

Given f, itis trivial that f >~ f;the map F(x,t) = f(x) is the required homotopy.
If f is a path, F is a path homotopy.

Given f =~ f’, we show that f’ >~ f. Let F be a homotopy between f and f’.
Then G(x,t) = F(x, 1 —t) is a homotopy between f’ and f. If Fis a path homotopy,
sois G.

Suppose that f ~ f"and f' >~ f”. We show that f ~ f”. Let F be a homotopy
between f and f’, and let F’ be a homotopy between f’ and f”. Define G : X x [ —
Y by the equation

F(x,2t) fort € [0, 31,

G(x,1) =
= - fort €[5, 1].

The map G is well defined, since if 1 = % we have F(x,2t) = f'(x) = F'(x,2t —1).
Because G is continuous on the two closed subsets X x [0, %] and X x [%, lJof X x1,it
is continuous on all of X x I, by the pasting lemma. Thus G is the required homotopy
between f and f”.

You can check that if F and F’ are path homotopies, so is G. See Figure 51.2. &

, I

% 7

Figure 51.2

EXAMPLE 1. Let f and g be any two maps of a space X into R2. It is easy to see that f
and g are homotopic; the map

Fx,t) =( —1)f(x) +1g(x)



§51 Homotopy of Paths 325

is a homotopy between them. It is called a straight-line homotopy because it moves the
point f(x) to the point g(x) along the straight-line segment joining them.

If f and g are paths from xg to x;, then F will be a path homotopy, as you can check.
This situation is pictured in Figure 51.3.

More generally, let A be any convex subspace of R". (This means that for any two
points a, b of A, the straight line segment joining a and 4 is contained in A.) Then any two
paths f, g in A from xg to x; are path homotopic in A, for the straight-line homotopy F
between them has image set in A.

f(x)

Figure 51.3 Figure 51.4

EXAMPLE 2.  Let X denote the punctured plane, R?> — (0}, which we shall denote by
R? — 0 for short. The following paths in X,

f(s) = (cosms, sinms),

g(s) = (cosms, 2sinms)

are path homotopic; the straight-line homotopy between them is an acceptable path homo-
topy. But the straight-line homotopy between f and the path

h(s) = (cosms, —sinms)

is not acceptable, for its image does not lie in the space X = R? — 0. See Figure 51.4.

Indeed, there exists no path homotopy in X between paths f and h. This result is
hardly surprising; it is intuitively clear that one cannot “deform f past the hole at 0” with-
out introducing a discontinuity. But it takes some work to prove. We shall return to this
example later.

This example illustrates the fact that you must know what the range space is before
you can tell whether two paths are path homotopic or not. The paths f and 2 would be
path homotopic if they were paths in R2.

Now we introduce some algebra into this geometric situation. We define a certain
operation on path-homotopy classes as follows:
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Definition. If f is a path in X from x¢ to xj, and if g is a path in X from x; to x3,
we define the product f x g of f and g to be the path h given by the equations

| rs fors € [0, 31,

h(s) =
(5) g2s—1) fors e [%, 1].

The function A is well-defined and continuous, by the pasting lemma; it is a path in
X from x¢ to x;. We think of 4 as the path whose first half is the path f and whose
second half is the path g.

The product operation on paths induces a well-defined operation on path-homotopy
classes, defined by the equation

[f1x[g]=Lf*gl

To verify this fact, let F be a path homotopy between f and f’ and let G be a path
homotopy between g and g’. Define

F(2s,1) fors € [0, 3],

H(s,t) = 1
G(2s —1,t) fors €[5, 1]

Because F(1,t) = x; = G(0, ¢t) for all ¢, the map H is well-defined; it is continuous
by the pasting lemma. You can check that H is the required path homotopy between
f*xgand f'x g’ Itis pictured in Figure 51.5.

Figure 51.5

The operation * on path-homotopy classes turns out to satisfy properties that look
very much like the axioms for a group. They are called the groupoid properties of .
One difference from the properties of a group is that [ f] * [g] is not defined for every
pair of classes, but only for those pairs [ f], [g] for which f(1) = g(0).

Theorem 51.2. The operation * has the following properties:
(1) (Associativity) If [ f] * ([g] * [h]) is defined, so is ([ f] * [g]) * [h], and they are
equal.
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(2) (Right and left identities) Given x € X, let e, denote the constant pathe, : [ —
X carrying all of I to the point x. If f is a path in X from xo to x|, then

[f1x[ex]=1[f] and [ex]*[f]=1[f]

(3) (Inverse) Given the path f in X from xy to xi, let f be the path defined by
f(s) = f(1 — ). It is called the reverse of f. Then

[f1*x[f1=1lex,] and [f1x*[f]=[ex,].

Proof. We shall make use of two elementary facts. The first is the fact that if k :
X — Y is a continuous map, and if F is a path homotopy in X between the paths f
and f’, then k o F is a path homotopy in Y between the paths k o f and k o f’ . See
Figure 51.6.

Figure 51.6

The second is the fact that if K : X — Y is a continuous map and if f and g are
paths in X with f(1) = g(0), then

ko(fxg)=(kof)*(kog).

This equation follows at once from the definition of the product operation x.

Step 1. We verify properties (2) and (3). To verify (2), we let ey denote the constant
pathin 7 at 0, and we leti : I — I denote the identity map, which is a path in I from 0
to 1. Then ep x i is also a path in  from O to 1. (The graphs of these two paths are
pictured in Figure 51.7.)

u=(ey*i)(s)
‘ Figure 51.7
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Because I is convex, there is a path homotopy G in I between i and eg * i. Then
f o G is a path homotopy in X between the paths f oi = f and

folegxi)=(foeg)*x(foi)=-ex*f

An entirely similar argument, using the fact that if e; denotes the constant path at 1,
then i * e, is path homotopic in / to the path i, shows that [ f] * [ex, ] = [ f].

To verify (3), note that the reverse of i is1(s) = 1 —s. Theni x 1 is a path in /
beginning and ending at 0, and so is the constant path eg. (Their graphs are pictured
in Figure 51.8.) Because I is convex, there is a path homotopy H in / between eg and
i 1. Then f o H is a path homotopy between f o eg = e,, and

(foi)*x(fol)= fx*f.

An entirely similar argument, using the fact that i x i is path homotopic in I to ey,
shows that [ f]* [ f] = [ex, ].

c

u=(i*7)(s)

Figure 51.8

Step 2. The proof of (1), associativity, is a bit trickier. For this proof, and for later
use as well, it will be convenient to describe the product f * g in a different way.

If [a, b] and [c, d] are two intervals in R, there is a unique map p : [a, b] — [c, d]
of the form p(x) = mx + k that carries a to ¢ and b to d; we call it the positive linear
map of [a, b] to [c, d] because its graph is a straight line with positive slope. Note that
the inverse of such a map is another such map, and so is the composite of two such
maps.

With this terminology, the product f * g can be described as follows: On [0, %], it
equals the positive linear map of [0, %] to [0, 1], followed by f; and on [%, 1], it equals
the positive linear map of [%, 1] to [0, 1], followed by g.

Now we verify (1). Given paths f, g, and 4 in X, the products f * (g * h) and
(f * g) x h are defined precisely when f(1) = g(0) and g(1) = h(0). Assuming these
two conditions, we define also a “triple product” of the paths f, g, and & as follows:
Choose points a and b of [ so that 0 < a < b < 1. Define a path &k, , in X as follows:
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On [0, a] it equals the positive linear map of [0, a] to I followed by f; on [a, b] it
equals the positive linear map of [a, b] to I followed by g; and on [b, 1] it equals the
positive linear map of [b, 1] to I followed by h. The path &, ; depends of course on the
choice of the points a and b. But its path-homotopy class does not! We show that if ¢
and d are another pair of points of / with0 < ¢ < d < 1, then k. 4 is path homotopic
to ka, b-

Let p : I — I be the map whose graph is pictured in Figure 51.9. When restricted
to [0, al, [a, b], and [b, 1], respectively, it equals the positive linear maps of these
intervals onto [0, c], [c, d], and [d, 1], respectively. It follows at once that k. 4 o p
equals k; . But p is a path in / from O to 1; and so is the identity mapi : I — [.
Hence, there is a path homotopy P in / between p and i. Then k.4 o P is a path
homotopy in X between k; p and k. 4.

Figure 51.9

What has this to do with associativity? A great deal. For the product f * (g * h)
is exactly the triple product k, ; in the case where a = 1/2 and b = 3/4, as you can
check, while the product ( f * g)*h equals k. 4 in the case wherec = 1/4and d = 1/2.
Therefore these two products are path homotopic. |

The argument just used to prove associativity goes through for any finite product of
paths. Roughly speaking, it says that as far as the path-homotopy class of the result is
concerned, it doesn’t matter how you chop up the interval when you form the product
of paths! This result will be useful to us later, so we state it formally as a theorem here:

Theorem 51.3. Let f be a path in X, and let ag, ..., a, be numbers such that
0=a9p <ay <---<a, =1. Let f; : I — X be the path that equals the positive
linear map of I onto [a;_), a;] followed by f. Then

f1=1fil*---*[fal.
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Exercises

1. Show that if h, A’ : X — Y are homotopic and k, k¥’ : Y — Z are homotopic,
then k o h and k’ o h’ are homotopic.

2. Given spaces X and Y, let [X, Y] denote the set of homotopy classes of maps
of Xinto Y.
(a) Let I =[O0, 1]. Show that for any X, the set [X, I] has a single element.
(b) Show that if Y is path connected, the set [/, Y] has a single element.

3. A space X is said to be contractible if the identity map ix : X — X is nulho-

motopic.

(a) Show that I and R are contractible.

(b) Show that a contractible space is path connected.

(c) Show that if Y is contractible, then for any X, the set [X, Y] has a single
element.

(d) Show that if X is contractible and Y is path connected, then [X, Y] has a
single element.

§52 The Fundamental Group

The set of path-homotopy classes of paths in a space X does not form a group under the
operation * because the product of two path-homotopy classes is not always defined.
But suppose we pick out a point xp of X to serve as a “base point” and restrict ourselves
to those paths that begin and end at xo. The set of these path-homotopy classes does
form a group under * . It will be called the fundamental group of X.

In this section, we shall study the fundamental group and derive some of its prop-
erties. In particular, we shall show that the group is a topological invariant of the
space X, the fact that is of crucial importance in using it to study homeomorphism
problems.

Let us first review some terminology from group theory. Suppose G and G’ are
groups, written multiplicatively. A homomorphism f : G — G’ is a map such that
f&x-y) = f(x)- f(y) forall x, y; it automatically satisfies the equations f(e) = ¢’ and
f(x™Y = f(x)7!, where e and ¢’ are the identities of G and G’, respectively, and the
exponent —1 denotes the inverse. The kernel of f is the set f L) itis a subgroup
of G. The image of f, similarly, is a subgroup of G’. The homomorphism f is called a
It is called an epimorphism if it is surjective; and it is called an isomorphism if it is
bijective.

Suppose G is a group and H is a subgroup of G. Let x H denote the set of all
products xh, for h € H; it is called a left coset of H in G. The collection of all such
cosets forms a partition of G. Similarly, the collection of all right cosets Hx of H in G
forms a partition of G. We call H a normal subgroup of G if x - h - x~! € H for each
x € G and each h € H. In this case, we have x H = Hx for each x, so that our two
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partitions of G are the same. We denote this partition by G/ H; if one defines
(xH)-(yH) = (x - y)H,

one obtains a well-defined operation on G/H that makes it a group. This group is
called the quotient of G by H. The map f : G — G/H carrying x to xH is an
epimorphism with kernel H. Conversely, if f : G — G’ is an epimorphism, then its
kernel N is a normal subgroup of G, and f induces an isomorphism G/N — G’ that
carries x N to f(x) foreachx € G.

If the subgroup H of G is not normal, it will still be convenient to use the symbol
G/ H; we will use it to denote the collection of right cosets of H in G.

Now we define the fundamental group.

Definition. Let X be a space; let xg be a point of X. A path in X that begins and
ends at xp is called a loop based at xg. The set of path homotopy classes of loops based
at xo, with the operation , is called the fundamental group of X relative to the base
point xg. It is denoted by 71(X, x0)-

It follows from Theorem 51.2 that the operation *, when restricted to this set,
satisfies the axioms for a group. Given two loops f and g based at xg, the product
f * g is always defined and is a loop based at xg. Associativity, the existence of an
identity element [ey,], and the existence of an inverse [ f ] for [ f] are immediate.

Sometimes this group is called the first homotopy group of X, which term implies
that there is a second homotopy group. There are indeed groups m,(X, x¢) for all
n € Z4, but we shall not study them in this book. They are part of the general subject
called homotopy theory.

EXAMPLE 1. Let R"” denote euclidean n-space. Then 7| (R", xp) is the trivial group (the

group consisting of the identity alone). For if f is a loop in R” based at xy, the straight-line

homotopy is a path homotopy between f and the constant path at xo. More generally, if X

is any convex subset of R”, then (X, xp) is the trivial group. In particular, the unit ball
B"™ in R",

has trivial fundamental group.

An immediate question one asks is the extent to which the fundamental group
depends on the base point. We consider that question now.

Definition. Let « be a path in X from xg to x;. We define a map
a : (X, xo) — mi(X, x1)
by the equation
a([f]) = [a] * [f] *[al.

The map @, which we call “a-hat,” is well-defined because the operation * is well-
defined. If f is a loop based at xp, then @ * (f *«) is a loop based at x;. Hence @ maps
m1(X, xp) into (X, x1), as desired; note that it depends only on the path-homotopy
class of a. It is pictured in Figure 52.1.
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Figure 52.1

Theorem 52.1. The map & is a group isomorphism.

Proof. To show that @ is a homomorphism, we compute

a(lf) *a(lgh = (@] * [f1* [a] = ([a] * [g] * [«])
= [a] * [f]*[g] * [«]
=a([f1=I[gD).

To show that & is an isomorphism, we show that if 8 denotes the path @, which is
the reverse of «, then B is an inverse for @. We compute, for each element [k] of
(X, x1),

B([h]) = [B]* [h] *[B] = [a]  [h] % [&],
&(B(IRY)) = [a&] * (la] * [A]* [@]) * [«] = [].

A similar computation shows that f}(&([f])) = [f] foreach [ f] € m1(X, xp). |

Corollary 52.2. If X is path connected and x¢ and x; are two points of X, then
(X, xo) is isomorphic to m (X, x1).

Suppose that X is a topological space. Let C be the path component of X contain-
ing xg. It is easy to see that m1(C, xo) = m1(X, xp), since all loops and homotopies
in X that are based at x¢ must lie in the subspace C. Thus 71 (X, xo) depends on only
the path component of X containing xo; it gives us no information whatever about the
rest of X. For this reason, it is usual to deal with only path-connected spaces when
studying the fundamental group.

If X is path connected, all the groups 71 (X, x) are isomorphic, so it is tempting
to try to “identify” all these groups with one another and to speak simply of the fun-
damental group of the space X, without reference to base point. The difficulty with
this approach is that there is no natural way of identifying 7; (X, xo) with (X, x1);
different paths o and B from xp to x; may give rise to different isomorphisms between
these groups. For this reason, omitting the base point can lead to error.
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It turns out that the isomorphism of 7 (X, xo) with 7(X, x) is independent of
path if and only if the fundamental group is abelian. (See Exercise 3.) This is a
stringent requirement on the space X .

Definition. A space X is said to be simply connected if it is a path-connected space
and if 71 (X, xg) is the trivial (one-element) group for some xg € X, and hence for
every xo € X. We often express the fact that 7y (X, xg) is the trivial group by writing
m1(X, xg) = 0.

Lemma 52.3. In a simply connected space X, any two paths having the same initial
and final points are path homotopic.

Proof Leta and B be two paths from xg to x. Then a * f is defined and is a loop
on X based at xg. Since X is simply connected, this loop is path homotopic to the
constant loop at xo. Then

[ * B % [B] = [ex,] * [B],

from which it follows that [a] = [B]. .

It is intuitively clear that the fundamental group is a topological invariant of the
space X. A convenient way to prove this fact formally is to introduce the notion of the
“homomorphism induced by a continuous map.”

Suppose that & : X — Y is a continuous map that carries the point xg of X to the
point yg of Y. We often denote this fact by writing

h: (Xv XO) — (7, }’0)

If f is aloop in X based at xg, then the composite ho f : I — Y is aloopin Y based
at yo. The correspondence f — h o f thus gives rise to a map carrying 7 (X, xg) into
1 (Y, yo). We define it formally as follows:

Definition. Leth : (X, x9) — (Y, yg) be a continuous map. Define
h* : T[](X, xO) —> JTI(Y, }’0)
by the equation

he(LfD) =[ho f].

The map A, is called the homomorphism induced by h, relative to the base point xg.

The map A, is well-defined, for if F is a path homotopy between the paths f
and f’, then h o F is a path homotopy between the paths 4 o f and h o f’. The fact
that A, is a homomorphism follows from the equation

(hof)x(hog)=ho(fxg).
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The homomorphism 4, depends not only on the map 4 : X — Y but also on the choice
of the base point xo. (Once xg is chosen, yg is determined by 4.) So some notational
difficulty will arise if we want to consider several different base points for X. If xo and
x are two different points of X, we cannot use the same symbol 4, to stand for two
different homomorphisms, one having domain 71 (X, xo) and the other having domain
m1(X, x1). Even if X is path connected, so these groups are isomorphic, they are still
not the same group. In such a case, we shall use the notation

(hxo)x - (X, x0) —> m1(Y, yo)

for the first homomorphism and (A, )« for the second. If there is only one base point
under consideration, we shall omit mention of the base point and denote the induced
homomorphism merely by h,.

The induced homomorphism has two properties that are crucial in the applications.
They are called its “functorial properties” and are given in the following theorem:

Theorem 52.4. Ifh : (X, xo) = (Y, yo) and k : (Y, yo) — (Z, z0) are continuous,
then (k o h), = ki o hy. Ifi : (X, x9) — (X, x0) is the identity map, then i, is the
identity homomorphism.

Proof. The proof is a triviality. By definition,

(ko h)«(LfD) =Ilkoh)o fl,
(ks o B )(Lf D = ki (hu([f 1)) = ku([h 0 f]) = [k o (h o f)].

Similarly, i,([f]) = [i o f] = [f]. =

Corollary 52.5. Ifh: (X, xo) — (Y, yo) is a homeomorphism of X with Y, then h,
is an isomorphism of 71 (X, xg) with m1(Y, yo).

Proof. Letk : (Y, yg) — (X, xg) be the inverse of h. Then k, o hy = (k o h)x = i,
where i is the identity map of (X, xg); and A, o k, = (h o k)x = j«, where j is the
identity map of (Y, yo). Since i, and j, are the identity homomorphisms of the groups
m1(X, xo) and 7y (Y, yo), respectively, k, is the inverse of A,. [ ]

Exercises

1. A subset A of R" is said to be star convex if for some point ag of A, all the line
segments joining ag to other points of A lie in A.
(a) Find a star convex set that is not convex.
(b) Show that if A is star convex, A is simply connected.

2. Let« be a pathin X frorp xo to x1; let B be a path in X from x| to x;. Show that
ify =axpB,theny = fpoa.
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3. Let xg and x7 be points -of the path-connected space X. Show that (X, xg) is
abelian if and only if for every pair o and 8 of paths from xp to x;, we have
& =B

4. Let A C X;supposer : X — A is acontinuous map such that r (@) = a for each
a € A. (The map r is called a retraction of X onto A.) If ag € A, show that

re - (X, ag) — m1(A, ag)

is surjective.

5. Let A be a subspace of R"; let h : (A, ag) — (Y, yo). Show that if & is extend-
able to a continuous map of R” into Y, then A, is the trivial homomorphism (the
homomorphism that maps everything to the identity element).

6. Show that if X is path connected, the homomorphism induced by a continuous
map is independent of base point, up to isomorphisms of the groups involved.
More precisely, let A : X — Y be continuous, with h(xg) = yo and h(x}) = y;.
Let o be a path in X from x¢ to x;, and let 8 = h o a. Show that

ﬁ o (hxo)* = (hx])* od.
This equation expresses the fact that the following diagram of maps “commutes.”

(h,\’o)*
m (X, xg) — 71 (Y, yo)

g P

(X, x1) ——> 71 (Y, y1)

7. Let G be a topological group with operation - and identity element xg. Let
Q(G, xo) denote the set of all loops in G based at xq. If f,g € Q(G, xp),
let us define a loop * ® g by the rule

(f®8)s) = f(s)-gls).

(a) Show that this operation makes the set Q2 (G, xg) into a group.

(b) Show that this operation induces a group operation ® on 7| (G, xg).

(c) Show that the two group operations * and ® on 7 (G, xg) are the same.
[Hint: Compute (f * ey)) ® (ex, * &).]

(d) Show that (G, xg) is abelian.

§53 Covering Spaces

We have shown that any convex subspace of R” has a trivial fundamental group; we
turn now to the task of computing some fundamental groups that are not trivial. One
of the most useful tools for this purpose is the notion of covering space, which we
introduce in this section. Covering spaces are also important in the study of Riemann
surfaces and complex manifolds. (See [A-S].) We shall study them in more detail in
Chapter 13.
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Definition. Let p : E — B be a continuous surjective map. The open set U of B
is said to be evenly covered by p if the inverse image p~!(U) can be written as the
union of disjoint open sets V, in E such that for each «, the restriction of p to V,
is a homeomorphism of V,, onto U. The collection {V,} will be called a partition of
p~1(U) into slices.

If U is an open set that is evenly covered by p, we often picture the set p~1(U)
as a “stack of pancakes,” each having the same size and shape as U, floating in the air
above U; the map p squashes them all down onto U. See Figure 53.1. Note that if U
is evenly covered by p and W is an open set contained in U, then W is also evenly
covered by p.

p (V)

Figure 53.1

Definition. Let p : E — B be continuous and surjective. If every point b of B has a
neighborhood U that is evenly covered by p, then p is called a covering map, and E
is said to be a covering space of B.

Note that if p : E — B is a covering map, then for each b € B the sub-
space p~l(b) of E has the discrete topology. For each slice V, is open in E and
intersects the set p~1(b) in a single point; therefore, this point is open in p~! (b).

Note also that if p : E — B is a covering map, then p is an open map. For
suppose A is an open set of E. Given x € p(A), choose a neighborhood U of x that is
evenly covered by p. Let {V,} be a partition of p~!(U) into slices. There is a point y
of A such that p(y) = x; let Vg be the slice containing y. The set Vg N A is open
in E and hence open in Vg; because p maps Vg homeomorphically onto U, the set
p(VgN A) is open in U and hence open in B; it is thus a neighborhood of x contained
in p(A), as desired.
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EXAMPLE 1.  Let X be any space; leti : X — X be the identity map. Then i is a
covering map (of the most trivial sort). More generally, let E be the space X x {1, ..., n}
consisting of n disjoint copies of X. The map p : E — X given by p(x,i) = x forall i
is again a (rather trivial) covering map. In this case, we can picture the entire space E as a
stack of pancakes over X.

In practice, one often restricts oneself to covering spaces that are path connected,
to eliminate trivial coverings of the pancake-stack variety. An example of such a non-
trivial covering space is the following:

Theorem 53.1. The map p : R — S! given by the equation
p(x) = (cos2mx, sin2wx)
is a covering map.

One can picture p as a function that wraps the real line R around the circle S', and
in the process maps each interval [n, n + 1] onto S'.

Proof. 'The fact that p is a covering map comes from elementary properties of the sine
and cosine functions. Consider, for example, the subset U of S! consisting of those
points having positive first coordinate. The set p~!(U) consists of those points x for
which cos 27 x is positive; that is, it is the union of the intervals

Va=(—1.n+73),

for all n € Z. See Figure 53.2. Now, restricted to any closed interval V,, the map p
is injective because sin 2w x is strictly monotonic on such an interval. Furthermore,
p carries V, surjectively onto U, and V, to U, by the intermediate value theorem.
Since V,, is compact, p|V, is a homeomorphism of V,, with U. In particular, p|V, is a
homeomorphism of V,, with U.

-3 -2 -1 0 1 2 3
L 1D L1 N 1N 1) L1 DN (1
L4 A L4 N U/ AL AL AL b

V_a V., v V2 Vs

c

a
N

Figure 53.2

Similar arguments can be applied to the intersections of S! with the upper and
lower open half-planes, and with the open left-hand half-plane. These open sets
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cover S!, and each of them is evenly covered by p. Hence p : R — S! is a cov-
ering map. [

If p: E — B is acovering map, then p is a local homeomorphism of E with B.
That is, each point e of E has a neighborhood that is mapped homeomorphically by p
onto an open subset of B. The condition that p be a local homeomorphism does not
suffice, however, to ensure that p is a covering map, as the following example shows.

EXAMPLE 2. The map p : Ry — S! given by the equation
p(x) = (cos2mx, sin2mx)

is surjective, and it is a local homeomorphism. See Figure 53.3. But it is not a covering
map, for the point by = (1, 0) has no neighborhood U that is evenly covered by p. The
typical neighborhood U of by has an inverse image consisting of small neighborhoods V,
of each integer n for n > 0, along with a small interval Vj of the form (0, €). Each of the
intervals V, for n > 0 is mapped homeomorphically onto U by the map p, but the interval
Vo is only imbedded in U by p.

Vo vi v,
S —
0 1 2
P
U
b,
Figure 53.3

EXAMPLE 3. The preceding example might lead you to think that the real line R is the
only connected covering space of the circle S'. This is not so. Consider, for example, the
map p : S — S! given in equations by

p(z) = 2

[Here we consider S! as the subset of the complex plane C consisting of those complex
numbers z with |z] = 1.] We leave it to you to check that p is a covering map.

Example 2 shows that the map obtained by restricting a covering map may not be
a covering map. Here is one situation where it will be a covering map:

Theorem 53.2. Let p: E — B be a covering map. If By is a subspace of B, and if
Eo = p~'(By), then the map po : Ey — By obtained by restricting p is a covering
map.
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Proof. Given bg € By, let U be an open set in B containing by that is evenly covered
by p; let {V,} be a partition of p~1(U) into slices. Then UN By is a neighborhood of bg
in By, and the sets V, N Eg are disjoint open sets in Eg whose union is p~!(U N By),
and each is mapped homeomorphically onto U N By by p. n

Theorem 53.3. Itp: E — Bandp' : E' - B’ are covering maps, then
pxp :ExE —- BxB
1s a covering map.
Proof. Given b € B and b’ € B’, let U and U’ be neighborhoods of b and b/,

respectively, that are evenly covered by p and p’, respectively. Let {V,} and {Vé} be

partitions of p~!(U) and (p’) ! (U’), respectively, into slices. Then the inverse image
under p x p’ of the open set U x U’ is the union of all the sets V, x Vj. These are

disjoint open sets of £ x E’, and each is mapped homeomorphically onto U x U’ by
pxp. n

EXAMPLE 4.  Consider the space T = S! x §'; it is called the torus. The product map
pxp:RxR-— §!x§!

is a covering of the torus by the plane R2, where p denotes the covering map of Theo-
rem 53.1. Each of the unit squares [n, n + 1] x [m, m + 1] gets wrapped by p x p entirely
around the torus. See Figure 53.4.

pPXxp

RZ

Figure 53.4

In this figure, we have pictured the torus not as the product S! x S, which is a subspace
of R* and thus difficult to visualize, but as the familiar doughnut-shaped surface D in R3
obtained by rotating the circle C; in the xz-plane of radius % centered at (1, 0, 0) about

the z-axis. It is not hard to see that S! x S! is homeomorphic with the surface D. Let C;
be the circle of radius | in the xy-plane centered at the origin. Then let us map C; x C»
into D by defining f(a x b) to be that point into which a is carried when one rotates the
circle C) about the z-axis until its center hits the point b. See Figure 53.5. The map f
will be a homeomorphism of C; x C, with D, as you can check mentally. If you wish,
you can write equations for f and check continuity, injectivity, and surjectivity directly.
(Continuity of f~! will follow from compactness of C; x C3.)
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1 y
ad. > ! f(a x b)
c, . -' b
! \
1" C1 \\ D
X
Figure 53.5

EXAMPLE 5. Consider the covering map p x p of the preceding example. Let by denote
the point p(0) of S'; and let By denote the subspace

Bo = (S! x bg) U (bo x SH)

of §' x §'. Then By is the union of two circles that have a point in common; we sometimes
call it the figure-eight space. The space Eq = p~!(Byp) is the “infinite grid”

Eo =R xZ)U(Z x R)
pictured in Figure 53.4. The map po : Ey — By obtained by restricting p x p is thus a
covering map.

The infinite grid is but one covering space of the figure eight; we shall see others later
on.

ExAMPLE 6. Consider the covering map
pxi:RxRy — S' xRy,
where i is the identity map of R and p is the map of Theorem 53.1. If we take the standard
homeomorphism of §! x Ry with R? — 0, sending x x t to tx, the composite gives us a
covering
RxR; — R?2—0
of the punctured plane by the open upper half-plane. It is pictured in Figure 53.6. This cov-

ering map appears in the study of complex variables as the Riemann surface corresponding
to the complex logarithm function.
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. e
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Figure 53.6

Exercises

1.

Let Y have the discrete topology. Show thatif p : X x ¥ — X is projection on
the first coordinate, then p is a covering map.

Let p : E — B be continuous and surjective. Suppose that U is an open set of B
that is evenly covered by p. Show that if U is connected, then the partition of
p~H(U) into slices is unique.

Let p : E — B be a covering map; let B be connected. Show that if p‘l(bo)
has k elements for some by € B, then p~1(b) has k elements for every b € B.
In such a case, E is called a k-fold covering of B.

Letg: X — Yandr : Y — Z be covering maps; let p = r o g. Show that if
r~1(2) is finite for each z € Z, then p is a covering map.

Show that the map of Example 3 is a covering map. Generalize to the map
p(x)=27"

. Let p : E — B be a covering map.

(a) If B is Hausdorff, regular, completely regular, or locally compact Hausdorff,
then so is E. [Hint: If {V,} is a partition of p~!(U) into slices, and C is a
closed set of B such that C C U, then p~1(C) N V, is a closed set of E.]

(b) If B is compact and p~L(b) is finite for each b € B, then E is compact.

§54 The Fundamental Group of the Circle

The study of covering spaces of a space X is intimately related to the study of the
fundamental group of X. In this section, we establish the crucial links between the
two concepts, and compute the fundamental group of the circle.
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Definition. Let p: E — B be amap. If f is a continuous mapping of some space X
into B, alifting of f isamap f : X — E suchthatpo f = f.

a
p
X——8B
f
The existence of liftings when p is a covering map is an important tool in studying
covering spaces and the fundamental group. First, we show that for a covering space,

paths can be lifted; then we show that path homotopies can be lifted as well. First, an
example:

EXAMPLE 1. Consider the covering p : R — S! of Theorem 53.1. The path f :
[0,1] — st beginning at by = (1,0) glven by f(s) = (cosms,sinms) lifts to the path
fis) = s /2 beginning at 0 and ending at 2 The path g(s) = (cos s, — sin ms) lifts to the

path g(s) = —s/2 beginning at 0 and ending at —5. The path A(s) = (cos4ms, sin4ms)

lifts to the path h(s) = 2s beginning at 0 and endmg at 2. Intuitively, & wraps the interval
[0, 1] around the circle twice; this is reflected in the fact that the lifted path 4 begins at zero
and ends at the number 2. These paths are pictured in Figure 54.1.

- 4-»-&' I —ow«b—L L e —
-1 0 1
l,, _
h
h
/O ey
——
Figure 54.1

Lemma 54.1. Let p : E — B be a covering map, let pleg) = byg. Any path
f [0, 11 — B beginning at by has a unique lifting to a path f in E beginning at ey.

Proof. Cover B by open sets U each of which is evenly covered by p. Find a subdi-
vision of [0, 1], say sg, ..., s, such that for each i the set f([s;, s;41]) lies in such an
open set U. (Here we use the Lebesgue number lemma.) We define the lifting f step
by step.

First, define f (0) = ep. Then, supposing f (s) is defined for 0 < s < s;, we define
f on [s;, s;+1] as follows: The set f([s;, si+1]) lies in some open set U that is evenly
covered by p. Let {V,} be a partition of p~!(U) into slices; each set V, is mapped
homeomorphically onto U by p. Now f(s;) lies in one of these sets, say in Vg. Define
f (s) for s € [s;, si+1] by the equation

() =(p | Vo) L(f(s)).
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Because p|Vy : Vo — U is a homeomorphism, f will be continuous on L [si, sit+1]-

Continuing in this way, we define f on all of [0, 1]. Continuity of f follows from
the pasting lemma; the fact that p o f = f is immediate from the definition of f.

The uniqueness of fis also proved step by step. Suppose that f is another lifting
of f beginning at ¢p. Then f(0) = ey = f(0). Suppose that f(s) = f(s) for all s
such that 0 < s < s;. Let Vp be as in the preceding paragraph; then for s € [s;, si+1],
f(s) is defined as (p|Vo)~'(f(s)). What can f(s) equal? Since f is a lifting of f,
it must carry the interval [s;, s,~+1]~into the set p*l(U ) = |J Va. The slices V, are
open and disjoint; because the set f(si, si+1]) is connected, it must lie entirely in one
of the sets V,. Because fz (si) = f (si), wh_ich is in Vj, f must carry all of [s;, s;4+1]
into the set Vy. Thus, for s in [s;, 5i+1], f (s) must equal some point y of Vy lying
in p~1(f(s)). But there is only one such point y, namely, (p|Vo)~!(f(s)). Hence
f(s) = fs) fors € [si, sit1]. _

Lemma 54.2. Let p : E — B be a covering map; let p(eg) = by. Let the map
F : I x I — B be continuous, with F (0, 0) = bg. There is a unique lifting of F to a
continuous map

F:IxI—>E

such that F (0, 0) = eq. If F is a path homotopy, then F is a path homotopy.

Proof. Given F, we first define F (0, 0) = ep. Next, we use the preceding lemma to
extend F to the left-hand edge O x I and the bottom edge / x 0 of I x I. Then we
extend F to all of I x I as follows:

Choose subdivisions

S0 <851 < < Sm,

o<t <--- <ty
of I fine enough that each rectangle
I; x Jj = [si—1, 8] x [tj_1, )]

is mapped by F into an open set of B that is evenly covered by p. (Use the Lebesgue
number lemma.) We define the lifting F step by step, beginning with the rectangle
11 x Jp, continuing with the other rectangles /; x J; in the “bottom row,” then with the
rectangles /; x J, in the next row, and so on.

In general, given ip and jp, assume that F is defined on the set A which is the
union of 0 x I and / x 0 and all the rectangles “previous” to [;, x Jj, (those rectangles
I; x J; for which j < jo and those for which j = jp andi < ip). Assume also that F
is a continuous lifting of F|A. We define F on I;, x J;,. Choose an open set U of B
that is evenly covered by p and contains the set F(/;, x Jj,). Let {V,} be a partition
of p~1(U) into slices; each set V, is mapped homeomorphically onto U by p. Now
F is already defined on the set C = A N (J;, x Jj,). This set is the union of the left
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and bottom edges of the rectangle I, x Jj,, so it is connected. Therefore, F(C) is
connected and must lie entirely within one of the sets V,,. Suppose it lies in V. Then,
the situation is as pictured in Figure 54.2.

I, X J,

/ o™ "o
f —
Y

\F‘

lpo

Figure 54.2

Let po : Vo — U denote the restriction of p to Vo. Since F is a lifting of F|A, we
know that for x € C,

po(F(x)) = p(F(x)) = F(x),

so that F (x) = py ! (F(x)). Hence we may extend F by defining

F(x) = py' (F(x))

for x € I, x Jj,. The extended map will be continuous by the pasting lemma.
Continuing in this way, we define F on all of 12
To check uniqueness, note that at each step of the construction of F, as we ex-
tend F first to the bottom and left edges of / 2 and then to the rectangles I; x Jj, one
by one, there is only one way to extend F continuously. Thus, once the value of F at
(0, 0) is specified, F is completely determined.
Now suppose that F is a path homotopy. We wish to show that F is a path homo-
“topy. The map F carries the entire left edge O x I of / 2 into a single point by of B.
Because F is a lifting of F, it carries this edge into the set p~! (bg). But this set has the
discrete topology as a subspace of E. Since 0 x [ is connected and F is continuous,
F (0 x I) is connected and thus must equal a one-point set. Similarly, F (1 x I) must
be a one-point set. Thus F is a path homotopy. |

Theorem 54.3. Let p : E — B be a covering map; let p(eg) = bg. Let f and g
be two paths in B from bg to by ; let f and g be their respective liftings to paths in E
beginning at eq. If f and g are path homotopic, then f and g end at the same point of
E and are path homotopic.
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Proof. Let F : I x I — B be the path homotopy between f and g. Then F (0, 0) =
bo. Let F : I x I — E be the lifting of F to E such that F(0,0) = eg. By the
preceding lemma, Fisa path homotopy, so that FOxI)= {eo} and F(lxI)isa
one-point set {e}}.

The restriction F|I x 0 of F to the bottom edge of I x I is a path on E beginning at
eg that is a lifting of F|I x 0. By uniqueness of path liftings, we must have F (s, 0) =
f(s). Similarly, FII x lisa path on E that is a lifting of F|I x 1, and it begins at eg
because F(0 x 1) = {eg). By uniqueness of path liftings, F(s, 1) = §(s). Therefore,
both f and g end at e}, and F is a path homotopy between them. [ |

Definition. Let p : E — B be a éovering map; let by € B. Choose eg so that
p(eg) = bg. Given an element [ f] of my (B, by), let~f be the lifting of f to a path in E
that begins at eg. Let ¢ ([ f]) denote the end point f(1) of f. Then ¢ is a well-defined
set map

¢ : (B, by) = p~ (ko).

We call ¢ the lifting correspondence derived from the covering map p. It depends of
course on the choice of the point ep.

Theorem 54.4. Let p : E — B be a covering map; let p(eg) = bo. If E is path
connected, then the lifting correspondence

¢ : (B, bo) — p~(by)

is surjective. If E is simply connected, it is bijective.

Proof. If E is path connected, then, given e; € p~!(by), there is a path f in E from
eotoe;. Then f = po fisaloopin B at by, and ¢([f]) = e; by definition.
Suppose E is simply connected. Let [ f] and [g] be two elements of (B, bgy)
such that ¢ ([ f]) = ¢([g]). Let f and g be the liftings of f and g, respectively, to
paths in E that begm at eg; then f (1) = g(l). Smce E is simply connected, there is a
path homotopy F in E between fand g. Then po Fisa path homotopy in B between
f and g. |

Theorem 54.5. The fundamental group of S' is isomorphic to the additive group of
integers.

Proof. Let p : R — S' be the covering map of Theorem 53.1, let ¢y = 0, and let
by = p(eg). Then p~!(by) is the set Z of integers. Since R is simply connected, the
lifting correspondence

¢:m(S' by) > 7Z

is bijective. We show that ¢ is a homomorphism, and the theorem is proved.
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Given [ f] and [g] in mi(B, bo), let f and g be their respective liftings to paths
on R beginning at 0. Letn = f(1) and m = g(1); then ¢([f]) = n and ¢ ([g]) = m,
by definition. Let g be the path

g(s) =n+g(s)

on R. Because p(n + x) = p(x) for all x € R, the path g is a lifting of g; it begins
at n. Then the product f * & is defined, and it is the lifting of f g that begins at 0, as
you can check. The end point of this path is §(1) = n + m. Then by definition,

¢ f1x[gh =n+m=¢(fD)+o(g). n

Definition. Let G be a group; let x be an element of G. We denote the inverse of x
by x~1. The symbol x” denotes the n-fold product of x with itself, x " denotes the
n-fold product of x~! with itself, and x° denotes the identity element of G. If the set
of all elements of the form x™, for m € Z, equals G, then G is said to be a cyclic
group, and x is said to be a generator of G.

The cardinality of a group is also called the order of the group. A group is cyclic of
infinite order if and only if it is isomorphic to the additive group of integers; it is cyclic
of order k if and only if it is isomorphic to the group Z/k of integers modulo k. The
preceding theorem implies that the fundamental group of the circle is infinite cyclic.

Note that if x is a generator of the infinite cyclic group G, and if y is an element
of the arbitrary group H, then there is a unique homomorphism % of G into H such
that A(x) = y; it is defined by setting A(x") = y”" for all .

For later use, in §65 and in Chapters 13 and 14, we prove here a strengthened
version of Theorem 54.4.

*Theorem 54.6. Let p: E — B be a covering map; let p(eg) =
(a) The homomorphism p. : my(E, eg) — m1(B, bg) is a monomorphism.
(b) Let H = p,(m(E, eo)). The lifting correspondence ¢ induces an injective map

& : 7 (B, bo)/H — p~'(bo)

of the collection of right cosets of H into p~'(bg), which is bijective if E is path
connected. "

(c) If f is aloop in B based at by, then [ f] € H if and only if f lifts to a loop in E
~ based at e.

Proof. (a) Suppose hisa loop in E at eg, and p,.([l;]) is the identity element. Let F
be a path homotopy between p o h and the constant loop. If F is the lifting of Fto E
such that F(0,0) = e, then F is a path homotopy between h and the constant loop
at eg.



§54 The Fundamental Group of the Circle 347

(b) Given loops f and g in B, let f and g be liftings of them to E that begin at ¢p.
Then ¢([f]) = f(1) and ¢([g]) = g(1). We show that ¢ ([ f]) = ¢([g]) if and only
if [f]€ H [gl. )

First, suppose that [ f] € H * [g]. Then [ f] = [h * g], where h = p o h for some
loop # in E based at ey. Now the product / * § is defined, and it is a lifting of & * g.
Because [ f] = [h * g], the liftings f and h x g, which begin at eg, must end at the
same point of E. Then f and g end at the same point of E, so that ¢ ([ f]) = ¢ ([g]).
See Figure 54.3.
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Figure 54.3

Now suppose that ¢([f1) = ¢([g]). Then f and g end at the same point of E.
The product of f and the reverse of g is defined, and it is a loop h in E based at ep.
By direct computatlon [h xg]l = f ]. If Fisa path homotopy in E between the loops
h % gand f,then po Fisa path homotopy in B between 4 x g and f, where h = p oh.
Thus [ f] € H % [g], as desired.

If E is path connected, then ¢ is surjective, so that & is surjective as well.

(c) Injectivity of @ means that ¢([ f]) = ¢([g]) if and only if [f] € H * [g].
Applying this result in the case where g is the constant loop, we see that ¢ ([ f]) = ep
ifand only if [ f] € H. But ¢ ([ f]) = e precisely when the lift of f that begins at ey
also ends at eg. n

Exercises

1. What goes wrong with the “path-lifting lemma” (Lemma 54.1) for the local
homeomorphism of Example 2 of §53?

2. In defining the map F in the proof of Lemma 54.2, why were we so careful about
the order in which we considered the small rectangles?

3. Let p : E — B beacovering map. Let « and 8 be paths in B with ¢ (1) = B(0);
let @ and ;B be liftings of them such that a(1) = ﬂ(O) Show that & * ﬁ is a lifting
of a x B.



348 The Fundamental Group Ch. 9

4. Consider the covering map p : R x R, — R? — 0 of Example 6 of §53. Find
liftings of the paths

f@)=@2-10),
gty =((1+1t)cos2nt, (1 +1¢)sin2nt)
h(t) = f x g.

Sketch these paths and their liftings.

5. Consider the coveringmap p x p : R x R —» S! x S! of Example 4 of §53.
Consider the path

f(@t) = (cos2nmt,sin2mt) x (cosdnt,sindnt)

in $1 x 1. Sketch what f looks like when S! x S! is identified with the doughnut
surface D. Find a lifting f of f to R x R, and sketch it.

6. Consider the maps g,k : S! — S! given g(z) = z” and h(z) = 1/7". (Here
we represent S as the set of complex numbers z of absolute value 1.) Compute
the induced homomorphisms gy, ., of the infinite cyclic group 71 (S', bg) into
itself. [Hint: Recall the equation (cos 8 + i sin6)” = cosné + i sinnb.]

7. Generalize the proof of Theorem 54.5 to show that the fundamental group of the
torus is 1somorphic to the group Z x Z.

8. Let p : E — B be a covering map, with E path connected. Show that if B is
simply connected, then p is a homeomorphism.

8§55 Retractions and Fixed Points

We now prove several classical results of topology that follow from our knowledge of
the fundamental group of S'.

Definition. If A C X, aretraction of X onto A is a continuous mapr : X — A such
that r|A is the identity map of A. If such a map r exists, we say that A is a retract
of X.

Lemma 55.1. If A is a retract of X, then the homomorphism of fundamental groups
induced by inclusion j : A — X is injective.

Proof. Ifr: X — A is aretraction, then the composite map r o j equals the identity
map of A. It follows that r, o j, is the identity map of 71(A, a), so that j, must be
injective. |

Theorem 55.2 (No-retraction theorem). There is no retraction of B? onto S!.

Proof. If S! were a retract of B2, then the homomorphism induced by inclusion
j : S' = B? would be injective. But the fundamental group of §' is nontrivial and
the fundamental group of B? is trivial. [
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Lemma 55.3. Leth : S' — X be a continuous map. Then the following conditions
are equivalent:

(1) h is nulhomotopic.

(2) h extends to a continuous mapk : B> — X.

(3) h is the trivial homomorphism of fundamental groups.

Proof. (1) = (2). Let H : S'x 1 > Xbea homotopy between /4 and a constant
map. Let 7 : S! x I — B? be the map

a(x,t)y =1 —t)x.

Then 7 is continuous, closed and surjective, so it is a quotient map; it collapses S' x 1
to the point 0 and is otherwise injective. Because H is constant on S P x 1, it induces,
via the quotient map 7, a continuous map k : B> — X that is an extension of h. See
Figure 55.1.

H
P —_—
h(s'
s'x1 TE\\ k. 4 (59 X
Kk
B2
Figure 55.1

(2) = (3).If j : S' — B? s the inclusion map, then / equals the composite k o j.
Hence h, = k4 o j.. But

e 1 m1(S'. bo) = (B, bp)

is trivial because the fundamental group of B? is trivial. Therefore k. is trivial.

(3) = (1). Let p : R — S’ be the standard covering map, and let py : [ — S! be
its restriction to the unit interval. Then [ py| generates (S ' bg) because po 1s a loop
in §' whose lift to R begins at 0 and ends at 1.

Let xo = h(bg). Because h, 1s trivial, the loop f = h o pg represents the identity
element of 71 (X, xg). Therefore, there 1s a path homotopy I in X between f and the
constant path at xo. The map pg x id : / < f — §' x [ is a quotient map, being
continuous, closed, and surjective; it maps 0 < ¢ and 1 x 1 to bg x t for each ¢, but
is otherwise injective. The path homotopy /" maps 0 x 7 and 1 x [ and [ x | to the
point xo of X, so it induces a continuous map H : S' x [ — X that is a homotopy
between A and a constant map. See Figure 55.2. |



350 The Fundamental Group Ch. 9

Ixl1
pOXi;\

stx1i

Figure 55.2

Corollary 55.4. The inclusion map j : S' — R? — 0 is not nulhomotopic. The
identity map i : ' — S! is not nulhomotopic.

Proof. There is a retraction of R — 0 onto S! given by the equation r(x) = x /| x||.
Therefore, j, is injective, and hence nontrivial. Similarly, i, is the identity homomor-
phism, and hence nontrivial. a

Theorem 55.5. Given a nonvanishing vector field on B2, there exists a point of S'
where the vector field points directly inward and a point of S! where it points directly
outward.

Proof. A vector field on B? is an ordered pair (x, v(x)), where x is in B2 and v is a
continuous map of B? into R2. In calculus, one often uses the notation

v(x) = vy ()i + va(x)j

for the function v, where i and j are the standard unit basis vectors in R2. But we shall
stick with simple functional notation. To say that a vector field is nonvanishing means
that v(x) # 0 for every x; in such a case v actually maps B? into R? — 0.

We suppose first that v(x) does not point directly inward at any point x of S! and
derive a contradiction. Consider the map v : B> — R? — 0; let w be its restriction to
S!. Because the map w extends to a map of B? into R? — 0, it is nulhomotopic.

On the other hand, w is homotopic to the inclusion map j : S! — R? — 0.
Figure 55.3 illustrates the homotopy; one defines it formally by the equation

Fx,t) =tx + (1 — Hw(x),

for x € S!. We must show that F(x, t) # 0. Clearly, F(x,t) # 0fort =0andt = 1.
If F(x,t) = 0 for some ¢t with0 < t < 1, then tx + (1 — t)w(x) = 0, so that w(x)
equals a negative scalar multiple of x. But this means that w(x) points directly inward
at x! Hence F maps S! x I into R? — 0, as desired.

It follows that j is nulhomotopic, contradicting the preceding corollary.

To show that v points directly outward at some point of S!, we apply the result
just proved to the vector field (x, —v(x)). u
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Figure 55.3

We have already seen that every continuous map f : [0, I] — [0, 1] has a fixed
point (see Exercise 3 of §24). The same is true for the ball B2, although the proof is
deeper:

Theorem 55.6 (Brouwer fixed-point theorem for the disc). If f : B> — B? is
continuous, then there exists a point x € B? such that f(x) =x.

Proof. 'We proceed by contradiction. Suppose that f(x) # x for every x in B2, Then
defining v(x) = f(x) — x gives us a nonvanishing vector field (x, v(x)) on B?. But
the vector field v cannot point directly outward at any point x of S!, for that would
mean

fx) —x =ax

for some positive real number a, so that f(x) = (1 + a)x would lie outside the unit
ball B2. We thus arrive at a contradiction. [ ]

One might well wonder why fixed-point theorems are of interest in mathematics. It
turns out that many problems, such as problems concerning existence of solutions for
systems of equations, for instance, can be formulated as fixed-point problems. Here is
one example, a classical theorem of Frobenius. We assume some knowledge of linear
algebra at this point.

*Corollary 55.7. Let A be a 3 by 3 matrix of positive real numbers. Then A has a
positive real eigenvalue (characteristic value).

Proof. Let T : R} — R3 be the linear transformation whose matrix (relative to the
standard basis for R®) is A. Let B be the intersection of the 2-sphere.S? with the first
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octant

{(x1,x2,x3) | xy > 0and x; > 0 and x3 > 0}

of R3. It is easy to show that B is homeomorphic to the ball B2, so that the fixed-point
theorem holds for continuous maps of B into itself.

Now if x = (xy, x2, x3) is in B, then all the components of x are nonnegative and
at least one is positive. Because all entries of A are positive, the vector T (x) is a vector
all of whose components are positive. As a result, the map x — T(x)/||T(x)] is a
continuous map of B to itself, which therefore has a fixed point xo. Then

T (x0) = IIT (x0)llxo,

so that T (and therefore the matrix A) has the positive real eigenvalue || 7 (xo)||. [ ]

Finally, we prove a theorem that implies that the triangular region
T={(x,y)|x>0andy>0andx +y < 1}

in R? has topological dimension at least 2. (See §50.)

*Theorem 55.8. There is an € > 0 such that for every open covering A of T by sets
of diameter less than €, some point of T belongs to at least three elements of A.

Proof. We use the fact that T’ is homeomorphic to B, so that we can apply the results
proved in this section to the space T.

Choose € > 0 so that no set of diameter less than ¢ intersects all three edges of 7.
(In fact, € = % will do.) We suppose that A = {U), ..., U} is an open covering of T
by sets of diameter less than €, such that no three elements of A intersect, and derive
a contradiction.

Foreachi = 1, ..., n, choose a vertex v; of T as follows: If U; intersects two
edges of T, let v; be the vertex common to these edges. If U; intersects only one edge
of T, let v; be one of the end points of this edge. If U; intersects no edge of T, let v;
be any vertex of T.

Now let {¢; } be a partition of unity dominated by {U, ..., U,}. (See §36.) Define
k : T — R? by the equation

k(x) =Y ¢i()vi.
i=1

Then £ is continuous. Given a point x of 7, it lies in at most two elements of +4; hence
at most two of the numbers ¢; (x) are nonzero. Then k(x) = v; if x lies in only one
open set U;, and k(x) = tv; + (1 —t)v; for some r with0 < ¢ < 1if x lies in two open
sets U; and U;. In either case, k(x) belongs to the union of the edges of T, which is
BdT. Thus k maps T into BdT.
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Furthermore, k maps each edge of T into itself. For if x belongs to the edge vw
of T, any open set U; containing x intersects this edge, so that v; must equal either v
or w. The definition of k then shows that k(x) belongs to vw.

Let h : BAT — BdT be the restriction of k to Bd 7. Since A can be extended
to the continuous map k, it is nulhomotopic. On the other hand, A4 is homotopic to
the identity map of Bd T to itself; indeed, since » maps each edge of T into itself, the
straight-line homotopy between ~ and the identity map of Bd T is such a homotopy.
But the identity map i of Bd T is not nulhomotopic. |

Exercises

1. Show that if A is a retract of B2, then every continuous map f : A — A hasa
fixed point.

2. Show thatif 4 : S' — S! is nulhomotopic, then A has a fixed point and # maps
some point x to its antipode —x.

3. Show that if A is a nonsingular 3 by 3 matrix having nonnegative entries, then A
has a positive real eigenvalue

4. Suppose that you are given the fact that for each n, there is no retraction r :
B"+tl — §" (This result can be proved using more advanced techniques of
algebraic topology.) Prove the following:

(a) The identity mapi : S — S” is not nulhomotopic.

(b) The inclusion map j : §" — R"**! — 0 is not nulhomotopic.

(c) Every nonvanishing vector field on B"*! points directly outward at.some
point of S”, and directly inward at some point of S”.

(d) Every continuous map f : B"*! — B"*1 has a fixed point.

(e) Every n + 1 by n + 1 matrix with positive real entries has a positive eigen-
value.

(f) If h: 8" — S” is nulhomotopic, then 4 has a fixed point and # maps some
point x to its antipode —x.

*§56 The Fundamental Theorem of Algebra

It is a basic fact about the complex numbers that every polynomial equation
" ta x4 rax+ag=0

of degree n with real or complex coefficients has n roots (if the roots are counted
according to their multiplicities). You probably first were told this fact in high school
algebra, although it is doubtful that it was proved for you at that time.

The proof is, in fact, rather hard; the most difficult part is to prove that every
polynomial equation of positive degree has at least one root. There are various ways
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of doing this. One can use only techniques of algebra; this proof is long and arduous.
Or one can develop the theory of analytic functions of a complex variable to the point
where it becomes a trivial corollary of Liouville’s theorem. Or one can prove it as a
relatively easy corollary of our computation of the fundamental group of the circle;
this we do now.

Theorem 56.1 (The fundamental theorem of algebra). A polynomial equation
X"tap x4 tax+ag=0

of degree n > () with real or complex coefficients has at least one (real or complex)
root.

Proof. Step 1. Consider the map f : S! — S! given by f(z) = z", where z is a
complex number. We show that the induced homomorphism f, of fundamental groups
is injective.

Let pg : I — S! be the standard loop in ',
2ris

po(s) = e”™* = (cos2ms, sin 27 s).

Its image under f, is the loop
f(po(s)) = (e¥5)" = (cos 2mns, sin2mns).

This loop lifts to the path s — ns in the covering space R. Therefore, the loop f o pg
corresponds to the integer n under the standard isomorphism of (S L bg) with the
integers, whereas pg corresponds to the number 1. Thus f, is “multiplication by n”” in
the fundamental group of § ! sothatin particular, f, is injective.

Step 2. We show that if g : S| — R? — 0 is the map g(z) = 2", then g is not
nulhomotopic.

The map g equals the map f of Step 1 followed by the inclusion map j : §' —
R? — 0. Now f, is injective, and j, is injective because S' is a retract of R? — 0.
Therefore, g. = j« o f« is injective. Thus g cannot be nulhomotopic.

Step 3. Now we prove a special case of the theorem. Given a polynomial equation
n n—1 —
x"+ap_1x +---4ax+ay=0,
we assume that
lan—1]+ -+ lai] + lao| < 1

and show that the equation has a root lying in the unit ball B2,
Assume it has no such root. Then we can define a map k : B> — R? — 0 by the
equation

k(z) =7" Jra,,_lz"'1 + - 4+ a1z + ap.
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Let h be the restriction of k to S!. Because h extends to a map of the unit ball into
R? — 0, the map A is nulhomotopic.

On the other hand, we shall define a homotopy F between & and the map g of
Step 2; since g is not nulhomotopic, we have a contradiction. We define F : §! x I —
R? — 0 by the equation

F(z,) =2" + (@127 + - + ag).
See Figure 56.1; F(z, t) never equals 0 because

Fz.0| > 2" = 1t @12 + - - + ao)|
>1- t(|a,,~lz""'1| + -+ |ag)
=1—1t(lap—1| + - + laol) > 0.

s1

Figure 56.1

Step 4. Now we prove the general case. Given a polynomial equation
X"+ a1 x" '+ +ax+ag =0,
let us choose a real number ¢ > 0 and substitute x = cy. We obtain the equation
)" +an—1(cy)" "+ +ai(cy) +ag =0
or

an-1 ,- ai ao
yn_+__%?_yn 1 +.e 4 _

ch—1 ch
If this equation has the root y = yo, then the original equation has the root xg = cyo.
So we need merely choose ¢ large enough that

an—1 ai

|+

an—2}
4.
c? +

-— | <
c ch—1 ch

to reduce the theorem to the special case considered in Step 3. [
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Exercises
1. Given a polynomial equation
" dap x4 4ax+ap=0

with real or complex coefficients. Show that if |a,—1| + - -+ + |a1| + |ao] < 1,
then all the roots of the equation lie interior to the unit ball B2. [Hint: Let
g(x) =1l4ap_1x+---+ax* ! +apx", and show that g(x) # O for x € B2.]

2. Find a circle about the origin containing all the roots of the polynomial equation
xT+x24+1=0.

*8§57 The Borsuk-Ulam Theorem

Here is a “brain-teaser” problem: Suppose you are given a bounded polygonal region A
in the plane R?. No matter what shape A has, it is easy to show that there exists a
straight line that bisects A, that is, one that cuts the area of A in half. Simply take the
horizontal line y = c, let f(c) denote the area of that part of A that lies beneath this
line, note that f is a continuous function of ¢, and use the intermediate-value theorem
to find a value of ¢ for which f(c) equals exactly half the area of A.

But now suppose instead that you are given two such regions A and A3, you are
asked to find a single line that bisects them both. It is not obvious even that there
exists such a line. Try to find one for an arbitrary pair of triangular regions if you have
doubts!

In fact, such a line always exists. This result is a corollary of a well-known theorem
called the Borsuk-Ulam theorem, to which we now turn.

Definition. If x is a point of §”, then its antipode is the point —x. Amaph : §" —
S™ is said to be antipode-preserving if h(—x) = —h(x) for all x € S".

Theorem 57.1. Ifh : S' — S! is continuous and antipode-preserving, then h is not
nulhomotopic.

Proof. Let by be the point (1, 0) of § I Letp: S' — S! bearotation of S! that maps
h(bp) to by. Since p preserves antipodes, so does the composite p o h. Furthermore, if
H were a homotopy between h and a constant map, then p o H would be a homotopy
between p o h and a constant map. Therefore, it suffices to prove the theorem under
the additional hypothesis that h(bg) = byp.

Step 1. Letq : S! — S! be the map q(z) = z%, where z is a complex number. Or
in real coordinates, g(cos @, sin®) = (cos 26, sin260). The map ¢ is a quotient map,
being continuous, closed, and surjective. The inverse image under ¢ of any point of S'
consists of two antipodal points z and —z of § 1 Because h(—z) = —h(z), one has the
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equation g (h(—z)) = q(h(z)). Therefore, because q is a quotient map, the map g o h
induces a continuous map k : S! — S! suchthatk o g = g o .

Sl _L:’Sl
|
Sl .......... > Sl

Note that g (bo) = h(bg) = bg, so that k(bg) = bg as well. Also, h(—by) = —

Step 2. We show that the homomorphism &, of ) (S 1 bg) with itself is nontrivial.

For this purpose, we first show that g is a covering map. (We gave this as an
exercise in §53.) The proof is similar to the proof that the standard map p : R — S!is
a covering map. If, for instance, U is the subset of S! consisting of those points having
positive second coordinate, then p~! (U) consist of those points of S! lying in the first
and third quadrants of R%. The map g carries each of these sets homeomorphically
onto U. Similar arguments apply when U is the intersection of S! with the open lower
half-plane, or with the open right and left half-planes.

Second, we note that if £ is any pathin S! from bo to —byp, then the loop f = go f
represents a nontrivial element of 7 (S", I bg). For f is a lifting of f to S I that begins
at by and does not end at by.

Finally, we show k, is nontrivial. Let f be a path in S! from bg to —byg, and let f
be the loop g o f. Then k[ f] is not trivial, for k,[f]1 = [ko (g o f)] =[g o (ho f)];
the latter is nontrivial because 4 o f is a path in S! from bg to —by.

Step 3. Finally, we show that the homomorphism 4, is nontrivial, so that # cannot
be nulhomotopic.

The homomorphism k. is injective, being a nontrivial homomorphism of an in-
finite cyclic group with itself. The homomorphism g, is also injective; indeed, g,
corresponds to multiplication by two in the group of integers. It follows that k. o g, is
injective. Since g« o hy = ky 0 g«, the homomorphism 4, must be injective as well. B

g
.
sz sl
Figure 57.1

Theorem 57.2. There is no continuous antipode-preserving map g : § — S!.

Proof. Suppose g : S — S! is continuous and antipode preserving. Let us take S to
be the equator of S2. Then the restriction of g to S! is a continuous antipode-preserving
map h of S! to itself. By the preceding theorem, 4 is not nulhomotopic. But the upper
hemisphere E of S? is homeomorphic to the ball B2, and g is a continuous extension
of hto E! See Figure 57.1. [
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Theorem 57.3 (Borsuk-Ulam theorem for S2). Given a continuous map f : §* —
R2, there is a point x of 2 such that f(x) = f(=x).

Proof. Suppose that f(x) # f(—x) for all x € S%. Then the map

g(x) =Lf(x) = fF(=01/lI f(x) = fF(=x0)]

is a continuous map g : % — S! such that g(—x) = —g(x) for all x. [ |

Theorem 57.4 (The bisection theorem). Given two bounded polygonal regions
in R2, there exists a line in R? that bisects each of them.

Proof. 'We take two bounded polygonal regions A; and A; in the plane R? x 1in R3,
and show there is a line L in this plane that bisects each of them.

Given a point « of S?, let us consider the plane P in R? passing through the origin
that has u as its unit normal vector. This plane divides R into two half-spaces; let
fi(u) equal the area of that portion of A; that lies on the same side of P as does the
vector u.

If u is the unit vector k, then f;(u) = area A;; and if u = —Kk, then f;(u) = 0.
Otherwise, the plane P intersects the plane R? x | in a line L that splits R? x 1 into
two half-planes, and f; () is the area of that part of A; that lies on one side of this line.
See Figure 57.2.

Figure 57.2

Replacing 4 by —u gives us the same plane P, but the other half-space, so that
fi(—u) is the area of that part of A; that lies on the other side of P from u. It follows
that

fi(w) + fi(—u) = area A;.

Now consider the map F : $? —> R2 given by F(u) = (fi(u), f2(u)). The
Borsuk-Ulam theorem gives us a point u of S? for which F (u) = F(—u). Then
fiu) = fi(—u) fori = 1,2, that fi(u) = %area A;, as desired. [ |
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We have proved the bisection theorem for bounded polygonal regions in the plane.
However, all that was needed in the proof was the existence of an additive area function
for A and A;. Thus, the theorem holds for any two sets A; and A, that are “Jordan-
measurable” in the sense used in analysis.

These theorems generalize to higher dimensions, but the proofs are considerably
more sophisticated. The generalized version of the bisection theorem states that given
n Jordan-measurable sets in R”, there exists a plane of dimension n — 1 that bisects
them all. In the case n = 3, this result goes by the pleasant name of the “ham sandwich
theorem.” If one considers a ham sandwich to consist of two pieces of bread and a slab
of ham, then the bisection theorem says that one can divide each of them precisely in
half with a single whack of a cleaver!

Exercises

1. Prove the following “theorem of meteorology”: At any given moment in time,
there exists a pair of antipodal points on the surface of the earth at which both
the temperature and the barometric pressure are equal.

2. Show that if g : §2 — $? is continuous and g(x) # g(—x) for all x, then g is
surjective. [Hint: If p € S?, then §? — {p} is homeomorphic to R?.]

3. Leth : S! — S! be continuous and antipode-preserving with A(bg) = bg. Show
that &, carries a generator of (S 1. by) to an odd power of itself. [Hint: If k is
the map constructed in the proof of Theorem 57.1, show that &, does the same.]

4. Suppose you are given the fact that for each n, no continuous antipode-preserving
map & : §" — §”" is nulhomotopic. (This result can be proved using more
advanced techniques of algebraic topology.) Prove the following:

(a) There is no retraction r : B"+t1 — §”.

(b) There is no continuous antipode-preserving map g : $"*!1 — §”.

(c) (Borsuk-Ulam theorem) Given a continuous map f : §h+l 5 R+ there
is a point x of $”*! such that f(x) = f(—x).

(d) If Ay, ..., Any are bounded measurable sets in R**!, there exists an n-
plane in R”*! that bisects each of them.

§58 Deformation Retracts and Homotopy Type

As we have seen, one way of obtaining information about the fundamental group of
a space X is to study the covering spaces of X. Another is one we discuss in this
section, which involves the notion of homotopy type. It provides a method for reducing
the problem of computing the fundamental group of a space to that of computing the
fundamental group of some other space—preferably, one that is more familiar.

We begin with a lemma.
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Lemma 58.1. Let h,k : (X,x9) — (Y, yo) be continuous maps. If h and k are
homotopic, and if the image of the base point xo of X remains fixed at yo during the
homotopy, then the homomorphisms h, and k, are equal.

Proof. The proof is immediate. By assumption, there is a homotopy H : X x I — Y
between h and k such that H(xp, t) = yo for all z. It follows that if f is a loop in X
based at xg, then the composite
id
I x1I &—> X x 1 2~ Y
is a homotopy between ko f and k o f; it is a path homotopy because f is a loop at xg
and H maps xg x I to yo. [

Using this lemma, we generalize a result about the space R? — 0 proved earlier,
proving that the homomorphism induced by inclusion j : §! — R? — 0 is not only
injective but surjective as well. More generally, we prove the following:

Theorem 58.2. The inclusion map j : S* — R"*! — 0 induces an isomorphism of
fundamental groups.

Proof. Let X = Rl — 0; let bp = (1,0,...,0). Letr : X — S”" be the map
r(x) = x/||x|l. Then r o j is the identity map of S”, so that r, o j, is the identity
homomorphism of 7| (S", by).

Now consider the composite j o r, which maps X to itself;

X T —21sx.

This map is not the identity map of X, but it is homotopic to the identity map. Indeed,
the straight-line homotopy H : X x I — X, given by

H(x,t) = —t)x +tx/| x|,

is a homotopy between the identity map of X and the map j o r. For H(x,t) is
never equal to 0, because (1 — t) + t/||x|| is a number between | and 1/]x|. Note

that the point by remains fixed during the homotopy, since ||bg|| = 1. It follows
from the preceding lemma that the homomorphism (j o r), = j.« o ry is the identity
homomorphism of 71 (X, byp). [ ]

What made the preceding proof work? Roughly speaking, it worked because we
had a natural way of deforming the identity map of R"*! — 0 to a map that collapsed
all of R**! — 0 onto S". The deformation H gradually collapsed each radial line em-
anating from the origin to the point where it intersected S”; each point of S” remained
fixed during this deformation.

Figure 58.1 illustrates, in the case n = 1, how the deformation H gives rise to a
path homotopy H (f(s), t) between the loop f in R?> — 0 and the loop g = f/| f]l
in S1.
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Figure 58.1

These comments lead us to formulate a more general situation in which the same
procedure applies.

Definition. Let A be a subspace of X. We say that A is a deformation retract of X if
the identity map of X is homotopic to a map that carries all of X into A, such that each
point of A remains fixed during the homotopy. This means that there is a continuous
map H : X x I — X suchthat H(x,0) = x and H(x, 1) € A forall x € X, and
H(a,t) = aforall a € A. The homotopy H is called a deformation retraction of X
onto A. The map r : X — A defined by the equation r(x) = H(x, 1) is a retraction
of X onto A, and H is a homotopy between the identity map of X and the map j or,
where j : A — X is inclusion.

The proof of the preceding theorem generalizes immediately to prove the follow-
ing:

Theorem 58.3. Let A be a deformation retract of X ; let xo € A. Then the inclusion
map

J (A, x0) = (X, x0)

induces an isomorphism of fundamental groups.
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EXAMPLE 1.  Let B denote the z-axis in R?. Consider the space R* — B. It has the
punctured xy-plane (R?> — 0) x O as a deformation retract. The map H defined by the
equation

Hx,y,z,t) =(x,y, 1 -1)2)

is a deformation retraction; it gradually collapses each line parallel to the z-axis into the
point where the line intersects the xy-plane. We conclude that the space R3 — B has an
infinite cyclic fundamental group.

EXAMPLE 2. Consider R? — p — g, the doubly punctured plane. We assert it has
the “figure eight” space as a deformation retract. Rather than writing equations, we merely
sketch the deformation retraction; it is the three-stage deformation indicated in Figure 58.2.

A
&P — OO0
GG

Figure 58.2

EXAMPLE 3.  Another deformation retract of R? — p — g is the “theta space”
=S UxI[-1,1};

we leave it to you to sketch the maps involved. As a result, the figure eight and the theta
space have isomorphic fundamental groups, even though neither is a deformation retract of
the other.

Of course, we do not know anything about the fundamental group of the figure eight
as yet. But we shall.

The example of the figure eight and the theta space suggests the possibility that
there might be a more general way of showing two spaces have isomorphic fundamen-
tal groups than by showing that one is homeomorphic to a deformation retract of the
other. We formulate such a notion now.
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Definition. Let f : X — Y and g : Y — X be continuous maps. Suppose that the
map go f : X — X is homotopic to the identity map of X, andthe map fog:Y — Y
is homotopic to the identity map of Y. Then the maps f and g are called homotopy
equivalences, and each is said to be a homotopy inverse of the other.

It is straightforward to show that if f : X — Y is a homotopy equivalence of X
with Y and h : Y — Z is a homotopy equivalence of Y with Z,then ho f : X — Z
is a homotopy equivalence of X with Z. It follows that the relation of homotopy
equivalence is an equivalence relation. Two spaces that are homotopy equivalent are
said to have the same homotopy type.

Note that if A is a deformation retract of X, then A has the same homotopy type
as X. Forlet j : A — X be the inclusion mapping and letr : X — A be the retraction
mapping. Then the composite r o j equals the identity map of A, and the composite
J or is by hypothesis homotopic to the identity map of X (and in fact each point of A
remains fixed during the homotopy).

We now show that two spaces having the same homotopy type have isomorphic
fundamental groups. For this purpose, we need to study what happens when we have
a homotopy between two continuous maps of X into Y such that the base point of X
does not remain fixed during the homotopy.

Lemma 58.4. Leth,k : X — Y be continuous maps; let h(xo) = yo and k(xg) = y.
If h and k are homotopic, there is a path « in Y from yg to y; such thatk, = & o h,.
Indeed, if H : X x I — Y is the homotopy between h and k, then « is the path
a(t) = H(xg, t).

71(X, x0) > w1 (Y, yo)
\ &l
T (Y, y1)
Proof. Let f : 1 — X be aloop in X based at xo. We must show that
ko (LfD) = @ (LfD.
This equation states that [k o f] = [a] * [h o f] * [«], or equivalently, that
[a]lx [k o fl=[hof]*[a]

This is the equation we shall verify.
To begin, consider the loops fp and f) in the space X x I given by the equations

fo(s) = (f(5),0) and  fi(s) = (f(s), D).

Consider also the path ¢ in X x I given by the equation

c(t) = (xo, ).
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H CW
s Y
?/’/ \ hof

Figure 58.3

Then Ho fo = ho f and Ho f) = ko f, while H oc equals the path «. See Figure 58.3.
Let F: I x 1 — X x I bethe map F(s,t) = (f(s),t). Consider the following
paths in / x I, which run along the four edges of I x I:
Po(s) =(s,0) and Bi(s)=(s, 1),
o) =(0,1) and y() =(1,0).

ThenFoﬂoszandFoﬂl =f1,whileFoy0=Foy1 =_cC.

The broken-line paths B¢ * y; and yp * B; are paths in I x I from (0, 0) to (1, 1);
since I x I is convex, there is a path homotopy G between them. Then F o G is a path
homotopy in X x I between fp * ¢ and ¢ * fi. And H o (F o G) is a path homotopy
in Y between

(Ho fo) x(Hoc)=(ho f)*a and
(Hoc)x(Ho fi)=ax(ko f),

as desired. |

Corollary 58.5. Leth,k : X — Y be homotopic continuous maps; let h(xg) = yp
and k(xg) = y1. If h. is injective, or surjective, or trivial, so is k.

Corollary 58.6. ILeth : X — Y. If h is nulhomotopic, then h, is the trivial homo-
morphism.

Proof. 'The constant map induces the trivial homomorphism. [

Theorem 58.7. Let f : X — Y be continuous; let f(xo) = yo. If f is a homotopy
equivalence, then

fe 1 mi(X, x0) — m (Y, yo)

is an isomorphism.
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Proof. Letg:Y — X be a homotopy inverse for f. Consider the maps

(X, x0) —— (¥, yo) —*= (X, x1) —L> (¥, y1) ,

where x; = g(yo) and y; = f(x1). We have the corresponding induced homomor-
phisms:

(fro)s
mi(X, xo) ——> w1 (Y, yo)

8=

s
nl(Xa xl) —>7rl(Y1 )’1)

[Here we have to distinguish between the homomorphisms induced by f relative to
two different base points.] Now

go f:(X,x0) — (X, x1)
is by hypothesis homotopic to the identity map, so there is a path « in X such that
(go flx=ao(ix)«=a.

It follows that (g o f)« = g« o (fx,)« is an isomorphism.

Similarly, because f o g is homotopic to the identity map iy, the homomorphism
(f 0 8)x = (fx,)x © g« is an isomorphism.

The first fact implies that g, is surjective, and the second implies that g, is in-
jective. Therefore, g, is an isomorphism. Applying the first equation once again, we
conclude that

(fxo)* = (g*)_l o &,

so that ( fy,)« is also an isomorphism.
Note that although g is a homotopy inverse for f, the homomorphism g, is not an
inverse for the homomorphism ( fy,)x. [ |

The relation of homotopy equivalence is clearly more general than the notion of
deformation retraction. The theta space and the figure eight are both deformation
retracts of the doubly punctured plane. Therefore, they are homotopy equivalent to the
doubly punctured plane, and hence to each other. But neither is homeomorphic to a
deformation retract of the other; in fact, neither of them can even be imbedded in the
other.

It is a striking fact that the situation that occurs for these two spaces is the standard
situation regarding homotopy equivalences. Martin Fuchs has proved a theorem to the
effect that two spaces X and Y have the same homotopy type if and only if they are -
homeomorphic to deformation retracts of a single space Z. The proof, although it uses
only elementary tools, is difficult [F].
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Exercises
1. Show that if A is a deformation retract of X, and B is a deformation retract of A,

2.

*8.

then B is a deformation retract of X.

For each of the following spaces, the fundamental group is either trivial, infinite
cyclic, or isomorphic to the fundamental group of the figure eight. Determine for
each space which of the three alternatives holds.

(a) The “solid torus,” B x S!.

(b) The torus T with a point removed.

(c) The cylinder S! x I.

(d) The infinite cylinder § I'w R.

(e) R3 with the nonnegative x, y, and z axes deleted.

The following subsets of R?:

® {x1lxll>1})

(8 {x[lxll=1}

(h) {x|lxll <1}

(i) S'U (R, x 0)

G) STU@®R; x R)

& STU®R x 0)

(1) R? - (R4 x 0)

Show that given a collection C of spaces, the relation of homotopy equivalence
is an equivalence relation on C.

Let X be the figure eight and let ¥ be the theta space. Describe maps f : X — Y
and g : Y — X that are homotopy inverse to each other.

Recall that a space X is said to be contractible if the identity map of X to itself
is nulhomotopic. Show that X is contractible if and only if X has the homotopy
type of a one-point space.

Show that a retract of a contractible space is contractible.

. Let A be a subspace of X;let j : A — X be the inclusion map, and let f : X —

A be a continuous map. Suppose there is a homotopy H : X x I — X between
the map j o f and the identity map of X.

(a) Show thatif f is a retraction, then j, is an isomorphism.

(b) Show that if H maps A x [ into A, then j, is an isomorphism.

(c) Give an example in which j, is not an isomorphism.

Find a space X and a point xg of X such that inclusion {xg} — X is a homotopy
equivalence, but {xg} is not a deformation retract of X. [Hint: Let X be the
subspace of R? that is the union of the line segments (1/n) x I, forn € Z, the
line segment O x I, and the line segment I x 0; let xg be the point (0, 1). If {xg}
is a deformation retract of X, show that for any neighborhood U of xg, the path
component of U containing xg contains a neighborhood of x¢.]
We define the degree of a continuous map & : S! — S! as follows:

Let by be the point (1,0) of § 1. choose a generator y for the infinite cyclic
group m (S!, bo). If xg is any point of S!, choose a path « in S! from by to xg,
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and define y (x9) = @(y). Then y (xo) generates (S 1. x0). The element ¥ (x0)
is independent of the choice of the path «, since the fundamental group of S! is
abelian.

Now given h : S! — S, choose xg € S! and let h(xg) = x;. Consider the
homomorphism

he s m1(S', x0) —> mi(S', x1).
Since both groups are infinite cyclic, we have
() hy(y (x0)) = d -y (x1)

for some integer d, if the group is written additively. The integer d is called the
degree of h and is denoted by deg 4.
The degree of A is independent of the choice of the generator y; choosing the

. other generator would merely change the sign of both sides of (x).

(a) Show that d is independent of the choice of xp.

(b) Show thatif h, k : S' — §' are homotopic, they have the same degree.

(c) Show thatdeg(h o k) = (degh) - (deg k).

(d) Compute the degrees of the constant map, the identity map, the reflection
map p(xy, x2) = (x1, —x2), and the map h(z) = 2", where z is a complex
number.

*(e) Show thatif 4, k : S' — S! have the same degree, they are homotopic.

10. Suppose that to every map & : §" — S" we have assigned an integer, denoted

by deg & and called the degree of h, such that:

(i) Homotopic maps have the same degree.

(ii) deg(h o k) = (degh) - (degk).
(iii) The identity map has degree 1, any constant map has degree 0, and the

reflection map p(xy, ..., Xp+1) = (x1, ..., Xn, —Xn+1) has degree —1.
[One can construct such a function, using the tools of algebraic topology. Intu-
itively, deg h measures how many times 7 wraps S” about itself; the sign tells
you whether h preserves orientation or not.] Prove the following:
(a) There is no retraction r : B"*1 — §".
(b) If h : S" — S" has degree different from (— 1)"+1 then 4 has a fixed point.
[Hint: Show that if & has no fixed point, then 4 is homotopic to the antipodal

map a(x) = —x.]
(c) If h: $" — S" has degree different from 1, then 4 maps some point x to its
antipode —x.

(d) If " has a nonvanishing tangent vector field v, then n is odd. [Hint: If v
exists, show the identity map is homotopic to the antipodal map.}]
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§59 The Fundamental Group of S"

Now we turn to a problem mentioned at the beginning of the chapter, the problem
of showing that the sphere, torus, and double torus are surfaces that are topologically
distinct. We begin with the sphere; we show that S” is simply connected for n > 2.
The crucial result we need is stated in the following theorem.

Theorem 59.1. Suppose X = UUV, where U and V are open sets of X. Suppose that
U NV is path connected, and that xo € U N V. Leti and j be the inclusion mappings
of U and V, respectively, into X. Then the images of the induced homomorphisms

iy :m (U, x0) > mi(X,x0) and j,:m(V, x0) > 7m1(X, x0)
generate w1 (X, xg).

Proof. 'This theorem states that, given any loop f in X based at xp, it is path homo-
topic to a product of the form (g; * (g2 * (--- * g,))), where each g; is a loop in X
based at xg that lies eitherin U orin V.

Step 1. We show there is a subdivision ag < a; < --- < a, of the unit interval
such that f(a;) € UNYV and f([a;—1, a;]) is contained eitherin U orin V, for each i.

To begin, choose a subdivision by, ..., b, of [0, 1] such that for each i, the set
fbi-1, b;i]) is contained in either U or V. (Use the Lebesgue number lemma.) If
f(b;) belongs to U N V for each i, we are finished. If not, let i be an index such that
f(bi) ¢ U N V. Each of the sets f([bi—1, bi]) and f([b;, bi+1]) lies either in U or
in V. If f(b;) € U, then both of these sets must lie in U; and if f(b;) € V, both of
them must lie in V. In either case, we may delete b;, obtaining a new subdivision co,
..., Cm—1 that still satisfies the condition that f([c;—1, c¢;]) is contained either in U or
in V, foreach i.

A finite number of repetitions of this process leads to the desired subdivision.

Step 2. We prove the theorem. Given f, let ag, ..., a, be the subdivision con-
structed in Step 1. Define f; to be the path in X that equals the positive linear map of
[0, 1] onto [a;—1, a;] followed by f. Then f; is a path that lies either in U or in V, and
by Theorem 51.3,

[f1=1A1*[fal % %[ Sl

For each i, choose a path ¢; in U N V from x¢ to f(a;). (Here we use the fact that
U NV is path connected.) Since f(ag) = f(a,) = x9, Wwe can choose ag and a, to be
the constant path at xo. See Figure 59.1.

Now we set

8 = (ai—1 % fi) xa;

for each i. Then g; is a loop in X based at xo whose image lies either in U orin V.
Direct computation shows that

(g1l * [g2] * - - *[gn]l = [f1l ¥ [ 2] % - - * [ ful. u
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. .
f, f,
\.
)
. /v

Figure 59.1

The preceding theorem is a special case of a famous theorem of topology called
the Seifert-van Kampen theorem, which expresses the fundamental group of the space
X = UUYV quite generally, when U NV is path connected, in terms of the fundamental
groups of U and V. We shall study this theorem in Chapter 11.

Corollary 59.2. Suppose X = U UV, where U and V are open sets of X; suppose
U NV is nonempty and path connected. If U and V are simply connected, then X is
simply connected.

Theorem 59.3. Ifn > 2, the n-sphere S" is simply connected.

Proof Letp = (0,...,0,1) € R**!'andg = (0,...,0, —1) be the “north pole”
and the “south pole” of S”, respectively.

Step 1. We show that if n > 1, the punctured sphere S™ — p is homeomorphic
to R”.
Define f : (S" — p) — R” by the equation
1

f(x) = f(xls . ";xfl+1) = 1__-_(x1v . "vxn)'
~ Xp41

The map f is called stereographic projection. (If one takes the straight line in R"*!
passing through the north pole p and the point x of S" — p, then this line intersects the
n-plane R” x 0 C R**! in the point f(x) x 0.) One checks that f is a homeomorphism
by showing that the map g : R* — (S” — p) given by

EM =80, ) =@ ¥, 1Y) - yn, L —£(),

where 7(y) = 2/(1 + |ly||?), is a right and left inverse for f.
Note that the reflection map (xi, ..., xXa+1) — (x1,...,X%n, —Xn4+1) defines a
homeomorphism of S* — p with S” — g, so the latter is also homeomorphic to R”.
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Step 2. We prove the theorem. Let U and V be the open sets U = S” — p and
V=S8"—-qof§".

Note first that for n > 1, the sphere §” is path connected. This follows from the
fact that U and V are path connected (being homeomorphic to R") and have the point
(1,0,...,0) of S” in common.

Now we show that for n > 2, the sphere §” is simply connected. The spaces U
and V are simply connected, being homeomorphic to R"”. Their intersection equals
§" — p — g, which is homeomorphic under stereographic projection to R” — 0. The
latter space is path connected, for every point of R® — 0 can be joined to a point of
5"~1 by a straight-line path, and $"~! is path connected if n > 2. Then the preceding
corollary applies. |

Exercises

1. Let X be the union of two copies of $2 having a single point in common. What
is the fundamental group of X? Prove that your answer is correct. [Be careful!
The union of two simply connected spaces having a point in common is not
necessarily simply connected. See [S], p. 59.]

2. Criticize the following “proof” that S? is simply connected: Let f be a loop
in $? based at xo. Choose a point p of S? not lying in the image of f. Since
$2 — p is homeomorphic with R?, and R? is simply connected, the loop f is path
homotopic to the constant loop.

3. (a) Show that R! and R” are not homeomorphic if n > 1.
(b) Show that R? and R” are not homeomorphic if n > 2.
It is, in fact, true that R” and R” are not homeomorphic if n # m, but the proof
requires more advanced tools of algebraic topology.

4. Assume the hypotheses of Theorem 59.1.
(a) What can you say about the fundamental group of X if j, is the trivial ho-
momorphism? If both i, and j, are trivial?
(b) Give an example where i, and j, are trivial but neither U nor V have trivial
fundamental groups.

§60 Fundamental Groups of Some Surfaces

Recall that a surface is a Hausdorff space with a countable basis, each point of which
has a neighborhood that is homeomorphic with an open subset of R2. Surfaces are of
interest in various parts of mathematics, including geometry, topology, and complex
analysis. We consider here several surfaces, including the torus and double torus, and
show by comparing their fundamental groups that they are not homeomorphic. In a
later chapter, we shall classify up to homeomorphism all compact surfaces.
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First, we consider the torus. In an earlier exercise, we asked you to compute
its fundamental group using the theory of covering spaces. Here, we compute its
fundamental group by using a theorem about the fundamental group of a product space.

Recall that if A and B are groups with operation -, then the cartesian product A x B
is given a group structure by using the operation

(@axb)-(@xby=@-a)x@-b).
Recall also thatif h : C — A and k : C — B are group homomorphisms, then the

map ¢ : C — A x B defined by ®(c) = h(c) x k(c) is a group homomorphism.

Theorem 60.1. (X X Y, xo X yg) is isomorphic with (X, xo) X m1(Y, yp).

Proof. lLetp: X xY — Xandgq : X x Y — Y be the projection mappings. If
we use the base points indicated in the statement of the theorem, we have induced
homomorphisms

P - Ti(X x Y, xg X yo) — m1(X, x0),
g« T1(X X Y, x0 X yo) —> m1(Y, yo).
We define a homomorphism
P m(X xY,x0 x yo) — mi(X, x0) x m1(Y, yo)

by the equation

QAfD = p([fD X qu([fD) =[po flx g0 f].

We shall show that & is an isomorphism.

The map  is surjective. Let g : I — X be a loop based at xg; leth : I — Y be
a loop based at yp. We wish to show that the element [g] x [A] lies in the image of ®.
Define f : I — X x Y by the equation

f(s) = g(s) x h(s).

Then f is aloopin X x Y based at xo x ygp, and

Q(fD =1[po flxIgo f1=I[g]lx [h],

as desired.

The kernel of ® vanishes. Suppose that f : I — X x Y isaloopin X x Y based
at xg X yp and ®([f]) = [p o f] x [q o f] is the identity element. This means that
po f ~peyandqgo f =, ey;let G and H be the respective path homotopies. Then
themap F : I x I — X x Y defined by

F(s,t) =G(s,t) x H(s, 1)

is a path homotopy between f and the constant loop based at xp X yp. [
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Corollary 60.2. The fundamental group of the torus T = S' x §! is isomorphic to
the group Z x Z.

Now we define a surface called the projective plane and compute its fundamental
group.

Definition. The projective plane P? is the quotient space obtained from S? by iden-
tifying each point x of $? with its antipodal point —x.

The projective plane may not be a space that is familiar to you; it cannot be imbed-
ded in R3 and is thus difficult to visualize. It is, however, the fundamental object of
study in projective geometry, just as the euclidean plane R? is in ordinary euclidean
geometry. Topologists are primarily interested in it as an example of a surface.

Theorem 60.3. The projective plane P? is a compact surface, and the quotient map
p: 8% > P?jsacovering map.

Proof. First we show that p is an open map. Let U be open in S2. Now the antipodal
map a : §2 5 §?2 given by a(x) = —x is a homeomorphism of 52: hence a(U) is
open in S2. Since

p N (pU)) =U va),

this set also is open in S2. Therefore, by definition, p(U) is open in P2. A similar
proof shows that p is a closed map.

Now we show that p is a covering map. Given a point y of P2, choose x € p~1(y).
Then choose an e-neighborhood U of x in S for some € < I, using the euclidean
metric d of R3. Then U contains no pair {z, a(z)} of antipodal points of §2, since
d(z,a(z)) = 2. As aresult, the map

p:U— pU)
is bijective. Being continuous and open, it is a homeomorphism. Similarly,

p:allU) = paU)) = pU)

is a homeomorphism. The set p~1(p(U)) is thus the union of the two disjoint open
sets U and a(U), each of which is mapped homeomorphically by p onto p(U). Then
p(U) is a neighborhood of p(x) = y that is evenly covered by p.

Since S? has a countable basis {U,}, the space P? has a countable basis {p(Uy)).

The fact that P2 is Hausdorff follows from the fact that 2 is normal and p is a
closed map. (See Exercise 6 of §31.) Alternatively, one can give a direct proof: Let y;
and y, be two points of P2. The set p~!(y1) U p~1(y2) consists of four points; let 2¢
be the minimum distance between them. Let U; be the ¢-neighborhood of one of the
points of p~1(y1), and let U, be the e-neighborhood of one of the points of p~!(y,).
Then

UyUa(Uy) and U, U a(Usp)
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are disjoint. It follows that p(U;) and p(U,) are disjoint neighborhoods of y; and y»,
respectively, in P2,

Since S is a surface and every point of P2 has a neighborhood homeomorphic
with an open subset of S2, the space P2 is also a surface. |

Corollary 60.4. 7;(P2, y) is a group of order 2.

Proof. The projection p : §2 — P? is a covering map. Since $? is simply connected,
we can apply Theorem 54.4, which tells us there is a bijective correspondence between
1 (P2, y) and the set p! (y). Since this set is a two-element set, 7] (P2, y) is a group
of order 2.

Any group of order 2 is isomorphic to Z/2, the integers mod 2, of course. [ |

One can proceed similarly to define P”, for any n € Z, as the space obtained
from S” by identifying each point x with its antipode —x; it is called projective n-
space. The proof of Theorem 60.3 goes through without change to prove that the
projection p : S" — P" is a covering map. Then because S” is simply connected for
n > 2, it follows that r; (P", y) is a two-element group for n > 2. We leave it to you
to figure out what happens whenn = 1.

Now we study the double torus. We begin with a lemma about the figure eight.

Lemma 60.5. The fundamental group of the figure eight is not abelian.

Proof. Let X be the union of two circles A and B in R? whose intersection consists
of the single point xg. We describe a certain covering space E of X.

The space E is the subspace of the plane consisting of the x-axis and the y-axis,
along with tiny circles tangent to these axes, one circle tangent to the x-axis at each
nonzero integer point and one circle tangent to the y-axis at each nonzero integer point.

The projection map p : E — X wraps the x-axis around the circle A and wraps
the y-axis around the other circle B; in each case the integer points are mapped by p
into the base point xg. Each circle tangent to an integer point on the x-axis is mapped
homeomorphically by p onto B, while each circle tangent to an integer point on the
y-axis is mapped homeomorphically onto A; in each case the point of tangency is
mapped onto the point xg. We leave it to you to check mentally that the map p is
indeed a covering map.

We could write this description down in equations if we wished, but the informal
description seems to us easier to follow.

Now let f : I — E be the path f (s) = s x 0, going along the x-axis from the
origin to the point 1 x 0. Let g : I — E be the path g(s) = 0 x s, going along the
y-axis from the origin to the point O x 1. Let f = po f and g = pog;then f and g are
loops in the figure eight based at xp, going around the circles A and B, respectively.
See Figure 60.1.

We assert that f % g and g % f are not path homotopic, so that the fundamental
group of the figure eight is not abelian.
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B_, B

1x0

Figure 60.1

To prove this assertion, let us lift each of these to a path in E beginning at the
origin. The path f * g lifts to a path that goes along the x-axis from the originto 1 x 0
and then goes once around the circle tangent to the x-axis at 1 x 0. On the other hand,
the path g % f lifts to a path in E that goes along the y-axis from the originto 0 x 1,
and then goes once around the circle tangent to the y-axis at 0 x 1. Since the lifted
paths do not end at the same point, f x g and g * f cannot be path homotopic. [ ]

We shall prove later that the fundamental group of the figure eight is, in fact, the
group that algebraists call the “free group on two generators.”

Theorem 60.6. The fundamental group of the double torus is not abelian.

Proof. The double torus T#T is the surface obtained by taking two copies of the
torus, deleting a small open disc from each of them, and pasting the remaining pieces
together along their edges. We assert that the figure eight X is a retract of T#T.
This fact implies that inclusion j : X — T#T induces a monomorphism j,, so that
m1(T#T, xp) is not abelian.

One can write equations for the retraction r : T#T' — X, but it is simpler to
indicate it in pictures, as we have done in Figure 60.2. Let Y be the union of two tori
having a point in common. First one maps T#7 onto Y by a map that collapses the
dotted circle to a point but is otherwise one-to-one; it defines a homeomorphism 4 of
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Figure 60.2

the figure eight in T#7 with the figure eight in Y. Then one retracts Y onto its figure
eight by mapping each cross-sectional circle to the point where it intersects the figure
eight. Then one maps the figure eight in Y back onto the figure eight in T#7 by the
map kL. u

Corollary 60.7. The 2-sphere, torus, projective plane, and double torus are topolog-
ically distinct.

Exercises

1.

Compute the fundamental groups of the “solid torus” S' x B? and the product
space S1 x §2.

Let X be the quotient space obtained from B? by identifying each point x of S!
with its antipode —x. Show that X is homeomorphic to the projective plane P2.

Let p : E — X be the map constructed in the proof of Lemma 60.5. Let E’ be
the subspace of E that is the union of the x-axis and the y-axis. Show that p|E’
is not a covering map.

The space P! and the covering map p : S! — P! are familiar ones. What are
they?

Consider the covering map indicated in Figure 60.3. Here, p wraps A around A
twice and wraps B; around B twice; p maps Agp and By homeomorphically
onto A and B, respectively. Use this covering space to show that the fundamental
group of the figure eight is not abelian.

)

()

Figure 60.3



