$$\frac{1}{n \operatorname{duced}} + \operatorname{boronorphisms} \qquad \operatorname{Recall} + \operatorname{tut} \quad \text{if} \quad h^{1}(X,X) \rightarrow (Y,Y_{0})$$
is continuous there is an induced honomorphism
$$h_{X}: \Pi_{1}(X,X_{0}) \rightarrow \Pi_{1}(Y_{1},Y_{0}) \qquad f^{1}: \Sigma_{9}, \eta_{-9} \times f_{1}(Y_{1},Y_{0}) \qquad f^{1}: \Sigma_{9}, \eta_{-9} \times f_{2}(Y_{1},Y_{0}) \qquad f^{1}: \Sigma_{9}$$

similarly
$$\phi(-n) = -n \cdot k$$
 so ϕ is uniquely determined by $\phi(1)$.
LEMMA Define $\phi_k: 7L \rightarrow 7L$ by $\phi_k(n) = k \cdot n$. If $\phi: 7L \rightarrow 7L$ is a honomorphism
 $\exists ! | k \in 7L \ st \ \phi = \phi_k$.

Lets apply this to maps from
$$S^{1}$$
 to S^{1} . In homework we saw that
every continuous map $g: S^{2} \rightarrow S^{2}$ is homotopic to a unique map $g_{k}: S^{4} \rightarrow S^{2}$ where
 $g_{k}(Ix3) = [kx]$.
LEMMA $(g_{k})_{*} = q_{k}$.
PROOF
 f_{n} f

Then $g \simeq h$ iff $g_{*} = h_{*}$. By lemma $g_{K_0} \simeq g_{K_1}$ iff $K_0 = K_1$ since $\Phi_{K_0} = \Phi_{K_1}$ iff $K_0 = (<, ...)$ But every map from $(s', [s_0]) \rightarrow (s', [o_0])$ is to motopic to a unique J_{K_1} .

