BNSIC LEPTENG LEMMA Let
$$p: E \rightarrow B$$
 be
a covering space, $e \in E$ a basepoint &
be = $p(e_0) \in B$. Let $f: (LO, I3, 503) \rightarrow (B, b_2)$
be a continuous map. Thun $\exists I$ $I+f$
 $f: (LO, I3, 503) \rightarrow (E_1 e)$.

Homotopy Lifting Lemma Let $p: (E_0) \supset (B_1 e) = 0$
 $for e = 0$.

Homotopy Lifting Lemma Let $p: (E_0) \supset (B_1 e_1) = 0$ covering
 $space d F: LO. IN \times LO, II \rightarrow B$ a continuous
 map with $f(O_0 e_1) = 0$. Then $\exists I$
 $f: DO, II = DO, II \rightarrow E$ with $f'(e_1 e_2) = e_1$ and $f: p = \tilde{F}$.

COP. Let $p: E \rightarrow B$ be a covering
 $space \& Ief$
 $f_1g: [O, I] \rightarrow B$
be paths with $f(e_1 e_2 Ge2)$, $f(d) = g(d)$,
 $ond from g$. If $f_1g: Le(I) \rightarrow E$
 $are lifts of I & g$ with $f(e_1 = g(d))$.

X is simply connected if X is path connected and M(X,x)= find?

A NOTHER!! LIPTING LEARPH Assume that X
is simply connected and locally path
connected. Let P: [Eic] > (Sib) be
a covering space. Fix a basepoint
Root. Then any rap
f: (X, X) → (B, b)
has a unique (ift
f: (X, X) → (E, c). f= Pof.
PROOF. Given XEX define f(X) by
Chusing a path
X: [0, [] → X
with v(G)= Xo & a(2)=X. Then
fo x: [0, i] → B
is a bath to B with fod(0)=b.. By
the lifting learna, f=2 has a lift
a; : [0, D] → E
with of Gn= co & fod= po X. We define
f(X) = X(1). This is well defined since for
any other pt B with fod(0)= foB(0) & f-a(2) + f-B(2)
we have
$$X(1)= f(x)$$
 by lemma. $f(x)$
 X

To prove continuity we need to use that X is locally path connected. That is VxoX, and all modes U of x, there is a path connected mod V of x with VCU.

Let U be an evenly covered nbd. of fixe. Then file) is a nubd of x in X and there is a path connected nbd V of x with V c f'(u). Let Uz be the component of p'(u) that contains f(x). Let px⁻¹ be the inverse of the restriction of p to Ux. We claim that $\tilde{f} = p \times f$ on V. Given yeV let B: LO, J - VCX be a path with BGD=X & B(1)= y. Note that p(\$G))=f(x) So we can apply the lifting lemma to for to find a 1:44 $\tilde{\mathcal{B}}: [0, \tilde{\mathcal{B}} \longrightarrow E$ with $\tilde{\mathcal{B}}(0) = \tilde{f}(x)$. We can also define a lift of fob by taking P'x of 6. As $\pi_{x^{\circ}}^{-1} \circ \mathcal{G}(x) = \tilde{f}(x)$ the uniqueness of lifts implies that $\mathcal{B} = p_{x^{\circ}}^{-1} \circ f \circ \mathcal{B}$. To define f(y) we need a path from xo to y. The Concatention X #B is such a path so f(y)= XXB(1) where dies is the lift of fo (des). However, the Concrtention 248 is a (and hence the) lift of fo (24B) So $\hat{f}(y) = \alpha * \beta(1) = \tilde{a} * \tilde{\beta}(1) = \tilde{\beta}(1) = \pi^{-1} * \delta = p_X \circ f(y).$

Let
$$p: (E, e_0) \rightarrow (B, b_0)$$
 be a covering space. Then
 $P_{*}: \pi, (E, e_0) \rightarrow \pi, (B, b_0)$
is the induced homomorphism.

We can apply the lifting lemma to $(f) \in \Pi_1(B, b_0)$. **PROPOSITION** If $(f) \in P_{\mathbf{x}}(\pi, (e, e_0)) \subset \Pi_1(B, b_0)$ if \tilde{f} is the lift of f with $\tilde{f}(0) = e$ then $\tilde{f}(1) = e_0$. **PROOF** Choose [3]e $\Pi_1(E, e_0)$ such that $P_{\mathbf{x}}([g]) = [f]$. Then $p \circ g \simeq_p f$. By the COPE it $p \circ g$ is the lift of $p \circ g$ then $\tilde{p} \circ g (1) = \tilde{f}(1)$. But the (unique) lift of $p \circ g$ is g so $g(1) = \tilde{f}(1) = e_0$. PROPOSITION P* is injective. PROOF Assume that $\widehat{H} \in T_1(E, e_0)$ with $P_*(It) = id$. Then there is a homotopy of pairs $F: [o, i] \times [o, i] \longrightarrow B$ tron pof to id. By the homotopy lifting lemma there is a lift $\widehat{F}: [o, i] \times [o, 1] \longrightarrow E$ of F with $\widehat{F}(o_1 o) = e_0$. This is a homotopy of pairs from F to the id. so [f] = id. FINAL LIFTING LEMMA Assue X is locally peth connected, p: $(E_1 e_0) \rightarrow (B, 5_0)$ gf: $(X, x_1) \rightarrow (B, 5_0)$ with $f_{\ast}(\pi_1(X, g_0)) \subset P_{\ast}(\pi_1(E_1 e_0)) \subset R_1(B, f_0)$. The J! (if f $f: (X, x_0) \rightarrow (E_1 e_0)$.

