$$
\pi: \mathbb{R} \to \mathbb{R}/\sim \mathbb{S}^{1}
$$
\n
$$
\leq \leq \mathbb{R} \quad \text{and} \quad \mathbb{R}/\sim \mathbb{S}^{1}
$$
\n
$$
\pi(\mathbb{C}) = \text{[E]} \quad \text{[E]} \quad \text{[E]} \quad \text{if} \quad \mathbb{E} = \text{quivalence}
$$

HOMOTOPY LIFTING LEMMA

Let
$$
F: (L_0, J_0; L_0, J, \mathcal{L}_0, J) \rightarrow (s^1, L_0, J)
$$
 and
\n $\exists ! \quad \tilde{F}: (L_0, J_0; L_0, J, \mathcal{L}_0, J) \rightarrow (R, f_0, J)$
\n $\forall ! \downarrow \qquad F = \pi \circ \tilde{F}$

Recall maps
\n
$$
\pi_{n}: (10,1,50,11) \rightarrow CIR,72)
$$
\nand
\n
$$
\pi_{n}: (10,1,50,13) \rightarrow (5,101)
$$
\nwith
\n
$$
\pi_{n}(k)=nt
$$
\nand
\n
$$
\pi_{n}: (10,1,50,13) \rightarrow (5,101)
$$

Now we show that if
$$
f
$$
 from the $n = n$.
\nLet G : $2e^{t} + e^{t} + \frac{1}{n} + \frac{1}{n}$

 $=$) $\int_{c}^{c} (c) =$ $\frac{d}{d} (c) = 0$
 $=$) $\int_{c}^{c} (c) = c$

$$
\tilde{g}_{o} \approx_{p} \tilde{g}_{i} \tilde{I}_{m}
$$

\n $\approx_{p} \tilde{f}_{n} \approx_{p} (IR, 7L)$
\n $\approx_{i} \tilde{h} \approx_{i} (R, 7L)$
\n $\approx_{i} \tilde{h} \approx_{i} (R, 7L)$
\n $\approx_{i} \tilde{h} \approx_{i} (R, 7L)$

We've proved:
\n
$$
\frac{\pi}{\pi} \int Give A : (to, \frac{1}{2} \cdot \frac{1}{2}
$$

- \cdot If $\frac{1}{2}$ \frac $t = t' - 1$ $n \in 72 > 50$ \Rightarrow $\left| \epsilon - \epsilon' \right|$ > 1.
- The closure of any bounded set Heine i IK is compact. Rand
- If KC IR is compact and dian $K < 1$ then $\pi|_k$

is a homeomorphism onto its inage

 \cdot If ACK then $\pi|_{A}$ is a homeomorphism onto its image \Rightarrow $\int f$ \tilde{u} is an open interval in IR

 $\int_{0}^{1} vidH 2I$ then $\pi|_{\alpha}$ is a homeo. onto its image

LEFTLOG LENMA	Let $f:(I_{\circ,10},I_{\circ 1}) \rightarrow (f_{\circ,10},I_{\circ 2})$		
\exists	\uparrow	\uparrow	\uparrow
\uparrow	\uparrow	\uparrow	
\downarrow	\downarrow	\downarrow	
\downarrow	\downarrow		
$\$			

Now assure \tilde{f} is defined σ_1

[o,e:] As $f(f) \subset Y$, we note

have $\tilde{f}(f) \in \pi^{-1}(Y)$. $\tilde{f}(f) = 0$ Let \tilde{u}_i be the component of $\pi^{-1}(u_i)$ that contains $\tilde{f}(t_i)$ π_i is the inverse of $\pi|_{\ell_i}$ $Extend$ $\begin{array}{ccc} 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 \end{array}$ $\frac{b}{d}$ $\int_{0}^{1} \overrightarrow{f} = \pi i \int_{0}^{1} \overrightarrow{f}$

