$$T: IR \rightarrow IR/n = S'$$

$$t, t' \in IR \quad t = t' + u \quad u \in TL$$

$$T(t) = (1 \in J) \quad L \in J \quad is \quad t \in equivalence$$

$$class$$

LIFTENG LEMMA Let 
$$f:(20,15, 30) \rightarrow (5, 203)$$
.  
 $\exists ! \quad j: (20,15, 303) \rightarrow (10, 203)$   
 $w'iH_{L} \quad f = \pi \circ f$ .  
 $f : s \circ 1iH \circ f f$   
 $if : s \circ 1iH \circ f f$   
 $(20,0) \rightarrow (5', 107)$ 

HOMOTOPY LIFTING LEMMA

Let 
$$F: (L_{0,1}] \times L_{0,1}, \frac{1}{2}, \frac{1}{2},$$

Reall maps 
$$f_n: (10,13, 50, 17) \rightarrow (1R, 72)$$
  
and  $f_1: (10,13, 50, 13) \rightarrow (5', 101)$   
with  $f_n(2) = nt$  and  $f_n = Tr \cdot f_n$ .  
THM Given  $f: (10,13, 50,13) \rightarrow (5', 103)$   
there exists a unique  $n \in 72$  set  
 $f \sim pf_n$ .







NOW WE SHOW THAT IF 
$$f \simeq_{i} f_{in}$$
 THEN  $n=n$ .  
Let G:  $[a_{i}] \times [a_{i}] \Rightarrow S^{i}$  be the  
honotopy realizing  $f \simeq_{p} f_{n}$ .  
Thun  $G(\{a_{i}, i\} \times [a_{i}]) = 1a_{i}$ .  
In particular  $G(a_{i}) = 1a_{i}$ .  
By the H.L.L.  $\exists !$  lift  
 $\tilde{G}: (1a_{i}) \times [a_{i}]_{1}(a_{i}a_{i}) \Rightarrow (R, 1a_{i})$ .  
Note that  $\tilde{g}_{i}$  is a lift of  $f_{n}$ .  $g_{i} = R \cdot \tilde{g}_{i}$ .  
Note that  $\tilde{g}_{i}$  is a lift of  $f_{n}$ .  $g_{i} = R \cdot \tilde{g}_{i}$ .  
Since  $\tilde{f}_{n}$  is also a lift of  $f_{n}$ .







 $=\int \int_{C} (c) = \frac{1}{2} \int_{C} (c) = \frac{1}{2} \int_{C} (c) = \sigma$ 

$$\tilde{g}_{0} \sim p \tilde{s}_{1} \sim \tilde{f}_{n}$$
  
 $\simeq p \tilde{f}_{n} \sim \tilde{f}_{n}$   
 $(Lo, D, 20, B) \sim (IR, 7L)$   
 $\sim is with respect to$   
 $=) \tilde{f}_{0} \sim p \tilde{f}_{n} \simeq h \sim h \sim m$ 

We've proved:  
THM Given 
$$f:([0,1], [0,1]) \rightarrow (51, [03])$$
  
Hhere exists a unique  $n \in 74$  Set  
 $f \sim_p f_n$ 



- If  $t + \epsilon' \in \mathbb{R}$  &  $\pi(\epsilon) = \pi(\epsilon')$  +  $t_{e_1}$  $t = \epsilon' + \eta$ ,  $n \in 7\ell > 1$ .
- The closure of any bounded set
   in IR is compact. Borel
- If  $K \subset IR$  is compact and dian  $K \subset I$  then  $\pi I_k$

is a homeonorphism onto its image

If ACK then π|<sub>A</sub> is a homeomorphism onto its image
 if Ψ is an open interval in IR



LIFTING LEMMA Let 
$$f:(10,15, 101) \rightarrow (5', 105)$$
  
 $\exists I \quad \exists : (10,15, 305) \rightarrow (1R, 303)$   
with  $f = T \circ \vec{f}$ .  
PF We need to find a pertition  
 $t_0 = 0 < t_1 < \dots < t_n = 1$   
of  $I_{0,1}$   $5.4$  that for  
each interval  $I_{i_1}$   $\exists a_{i_1}$   
evenly covered nbd.  $u_i \subset S'$   
with  $f(I_{i_1}, t_{i_1}) \subset U_i$ .

Now assure  $\tilde{f}$  is defined on  $cf^{(ti)}(i+i)$  on [o,t:]. As  $f(t:) \subset U_i$ , we note have  $\tilde{f}(t:) \in \pi^{-1}(u_i)$ .  $\tilde{f}(i=0)$  f(e)=0Let  $\tilde{u}_i$  be the component of  $TT'(u_i)$  that contains  $\tilde{T}(t_i)$ Ti is the inverse of Tily: Extend I to [t:, tim] y  $\tilde{I} = \pi_i \circ f$ 

