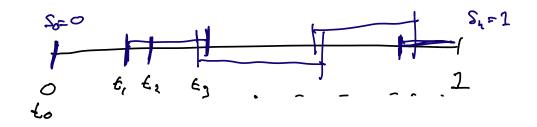
LIFTING LEMMA Let
$$f:(10,13,10) \rightarrow (5',163)$$
,
 $\exists ! \quad \exists : (10,13,203) \rightarrow (1R, 203) \quad f \qquad \exists n$
 $with f= \pi \circ f \qquad (1R, 203) \quad f \qquad \exists n$
 $with f= \pi \circ f \qquad (1R, 203) \quad f \qquad \exists n$
 $with f= \pi \circ f \qquad (1R, 203) \quad f \qquad \exists n$
 $\psi ih \qquad f= \pi \circ f \qquad (1R, 203) \quad f \qquad \exists n$
 $\psi ih \qquad f= \pi \circ f \qquad (1R, 203) \quad f \qquad \exists n$
 $\psi ih \qquad f= \pi \circ f \qquad (1R, 203) \quad f \qquad \exists n$
 $\psi ih \qquad f= \pi \circ f \qquad (1R, 203) \quad f \qquad (1R, 203) \quad f \qquad (2', 163)$
 $f \qquad f \qquad (2', 163) \qquad f \qquad (2', 163$

Now assure
$$\tilde{f}$$
 is defined on
 $[o, \epsilon; J]$. As $f(\epsilon;) \subset U_i$, we
have $\tilde{f}(\epsilon;) \in \pi^{-i}(U_i)$.
Let \tilde{U}_i be the component of
 $\pi^{-i}(U_i)$ that contains $\tilde{f}(\epsilon;)$.
 π^{-i} is the inverse of $\pi(u_i)$.
Extend \tilde{f} to $\epsilon_i, \epsilon_{i+1}$ by
 $\tilde{f}|_{\epsilon_i,\epsilon_i} = fot \pi_i^{-i}$.

PF OF EXISTENCE OF PARTITION

f:
$$(Lo, B, \{20, 1\}) \rightarrow (5^1, Los)$$

for all $s \in Lo, S$ $3 \leq 2 \leq d \leq d$
with $f(E \leq 0, \delta) \subset U_{S1}$ $U_S \in Verily converd.$
since fix
If $s = 0$ then t_{020} , $s = 1$ the $d = 1$.
 $[0, d]$
 $f'(u_s)$
 $f'(u_s)$

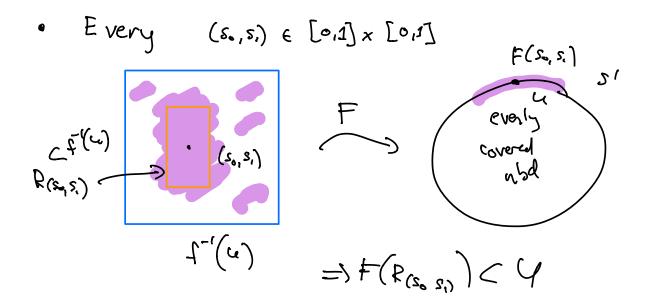


Each $f([\zeta_i, \xi_{i+1}]) \subset U_{s_k}$

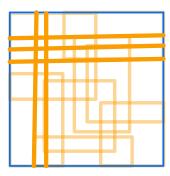
HOMOTOPY LIFTING LEMMA

Let F:
$$(L_{0,i}\overline{J} \times L_{0,i}\overline{J}, \frac{1}{2}(0,0)3) \rightarrow (s', \underline{J})$$

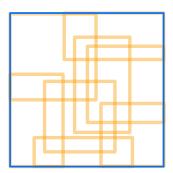
 $\exists \downarrow \widetilde{F} : (L_{0,i}\overline{J} \times L_{0,i}\overline{J}, \frac{1}{2}(0,0)3) \rightarrow (\mathbb{R}, \frac{1}{2})$

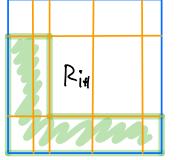


the interior of the K(So,S) will cover 20, 17x [a] => 3 a frike subcover.

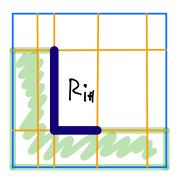


•

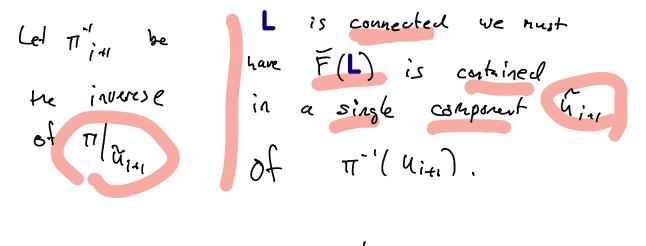


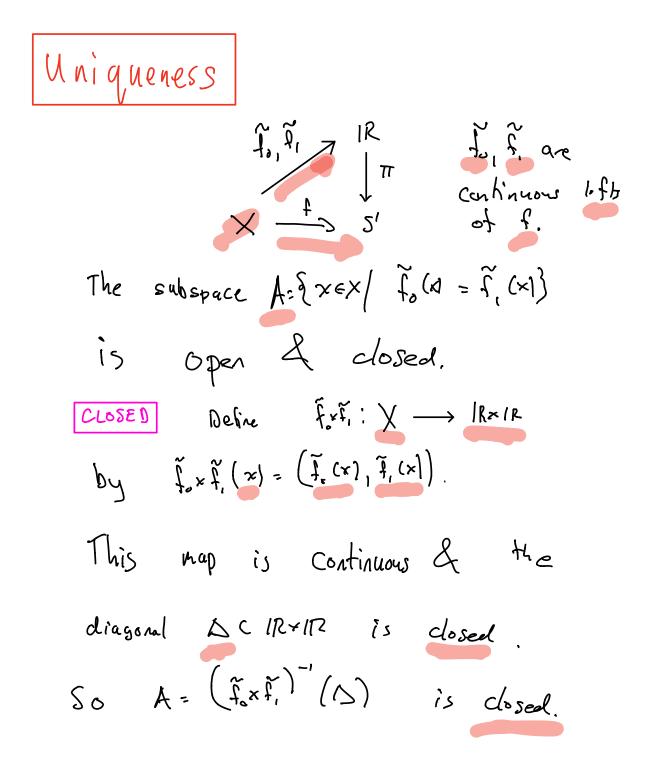


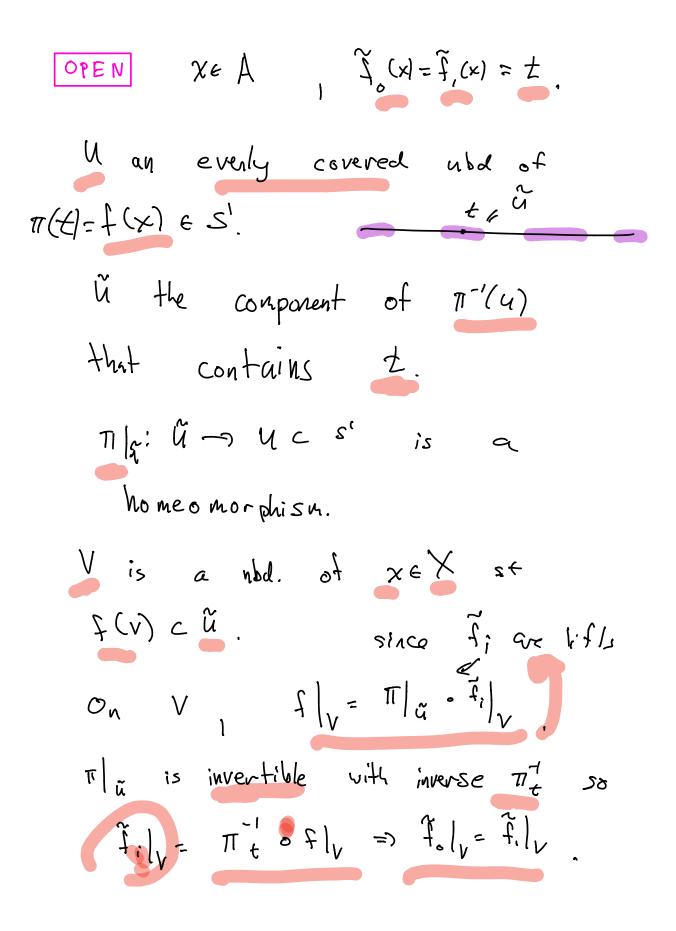
	ωπ	ખે દા	my com
A 5	sune	F is	defined
01	لملر	first)
rec	tangles		



$$\tilde{F}$$
 is continuous on
the dark blue edges.
Since $F(L) \subset U_{i+i}$ we have
 $\tilde{F}(L) \subset \pi^{-1}(u_{i+i})$ and







$$\begin{aligned} f_{n} = f_{1} \quad \text{on } V \\ = \ i \ i \ x \in A \quad =) \quad \exists \quad \alpha_{n} \\ open \quad nbd \quad V \quad of \quad x \\ with \quad V \subset A \\ = \ A \quad (r \quad open \\ \hline \\ uniqueness \quad for \quad L.L. \\ (n, sol) \quad f_{n} \quad (f_{n}, sol) \\ f_{n} \quad (f_{n}, sol) \quad f_{n} \quad (f_{n}, sol) \\ (f_{n}, sol) \quad f_{n} \quad (f_{n}, sol) \\ A \quad (s \quad open \quad d \quad c(oxed. \\ A \quad is \quad open \quad d \quad c(oxed. \\ A \quad is \quad open \quad d \quad c(oxed. \\ A \quad is \quad open \quad d \quad c(oxed. \\ A \quad is \quad of so \quad non-empty \quad since \\ o \in A. \quad = \ A : Lo, I] \in f_{n} \in f_{n}, \end{aligned}$$

The fundamental group.

$$(X, x) \quad X \text{ is a topological space} \\ x_{o} \in X \quad \text{base point} \\ We \quad will \quad give \quad a \quad group \quad structure \\ to \quad the \quad set \quad of \quad homotopy \quad clesser \\ (10, 1], (0, 13) \rightarrow (X, 5x3). \end{cases}$$

First we need to define the
operation:

$$f_1 g: ([0,1], [0,1]) \rightarrow (X, [x_2])$$

 $f_* g(t) = \begin{cases} g(2t) & t \in [0, \frac{1}{2}] \\ f(2t-1) & t \in (\frac{1}{2}, 1] \end{cases}$
 $f_* g \stackrel{([0,1], [0,1])}{\to} (X, [x_2])$

