Given f: ([0,1], go,1]) - (x, 1x3) We let [f] be the equivalence class of maps honotopic to f as pairs. As a set II, (x, xo) is equivalence dasses [f]. We've defined f * 9. Not initially defined on equivalence We need to show that [f] * [g] = [f*g] is well defined. That is we need to show if fo ~ f, & 3~ pg, then [fo * 9.] = [f, * 9.].

Let F, G be the two
honotopies (between for f, and
between golg.).

Deline

H is a homotopy between to \$ 90

& f. * 9.

=> [for 90] = [f. * 9.]

CLOSURE

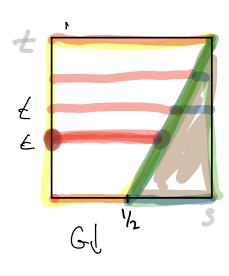
I DENTITY Need to find a Map e_{x_0} : ([0,1], {0,13) \longrightarrow (\times , { \times 3)

Such that $f * e_{x_0} = e_{x_0} * f = p f$.

The constant map! $e_{x_0} = e_{x_0} * f = e_{x_0}$

Again $f * e_{x_0} \neq f$ but only $f * e_{x_0} \sim_p f$.

Again need to reparameterize:

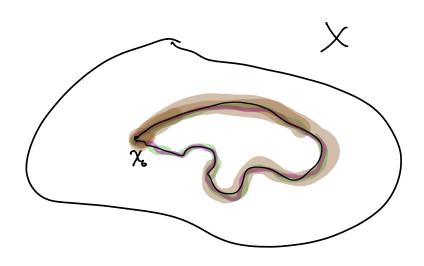


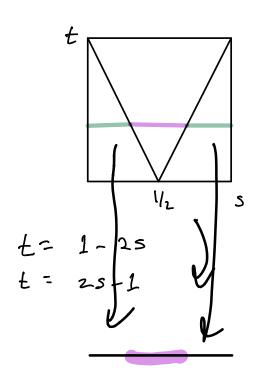
INVERSE Given $f:(6,7,50,3) \rightarrow (x,5x3)$

need to find \bar{f} s. ϵ $f * \bar{f} \sim_p \bar{f} * f \sim_p e_{x_0}$.

DEFINE: } (+) = f(1-0)

We'll "wind back" f.





Pause on parple
$$f_{\ell}(s) = \begin{cases} f(2s) & S \leq \frac{1-t}{2} \\ f(\frac{1-t}{2}) & \frac{1-t}{2} < S \leq \frac{t+1}{2} \\ f(2s-1) & \frac{t+1}{2} < S \end{cases}$$

The fundamental group of 5' We have done all the work to calculate II, (8', 103).

An element f(s) of $\pi_1(s', so)$ is an equivalence class of maps $f'(s, so) \rightarrow (s', so)$

We have seen that If]=[fn] for a unique $n \in 7L$. This defines a map $\phi: \pi_1(s'_1 \bowtie) \longrightarrow 7L$ by $\phi([f]) = n$

where n is the unique integer such that [f]=[fn].

Clearly $\phi([f_n]) = n$ so this map is surjective. By uniqueness it is also injective \Rightarrow the map is a bijection. $\phi(M \leq M \leq M \leq M)$ We have also seen that $[f_n * f_n] = [f_{n+m}]$ so

φ([t"*t")) = φ([t"")) = N+M = φ ([") + φ ([t"])

Therefore & is a honomorphism. A honomorphism that is a bijection is an isomorphism.

What is the /.ft of $f_n * f_n$? $(P_1, 0)$ $(P_1, 0)$ $(P_1, 0)$ $(P_2, 0)$ $(P_3, 0)$ $(P_4, 0)$

Fix for is continuous since $f_{\Lambda}(2UL) = f(2(4L-1) + \mu = N)$ Fix for is a lift sine $f_{\Lambda} = \pi = \pi = \pi = \pi$ The form $f_{\Lambda} = \pi = \pi = \pi = \pi$ What is $f_{\Lambda} = \pi = \pi = \pi$ The form $f_{\Lambda} = \pi = \pi = \pi$ The form $f_{\Lambda} = \pi$ T