Groups - A cheat sheet

A group is a pair (G, \cdot) where G is a set and \cdot is a binary operation with:

- Closure: for all $a, b \in G$, $a \cdot b \in G$.
- Identity: there exists an $e \in G$ such that $e \cdot a = a \cdot e = a$ for all $a \in G$.
- Inverses: for all $a \in G$ there exists a $a^{-1} \in G$ with $a \cdot a^{-1} = a^{-1} \cdot a = e$.
- Associativity: for all $a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

If $a \cdot b = a \cdot c$ then b = c. Similarly if $b \cdot a = c \cdot a$ then b = c.

Examples

Trivial group: Here G is a single element which is necessarily the identity element e.

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$: These are all groups with the usual operation of addition.

Matrix groups: The set of $n \times n$ matrices with non-zero determinant and group operation matrix multiplication is a group. This is usually denoted $GL_n(\mathbb{F})$ where \mathbb{F} is the field of entries of the matrices. The most common example is $\mathbb{F} = \mathbb{R}$.

Bijections: Let X be a set and Bij(X) the set of bijections of X to itself. This set is a group with group operation composition. If X is a topological space the **Homeo**(X) is the set of homeomorphisms of X to itself and this is also a group with group operation composition.

Homorphisms

A map

 $\phi: G_0 \to G_1$

between groups G_0 and G_1 is a homomorphism if for all $a, b \in G_0$ we have

 $\phi(a \cdot b) = \phi(a) \cdot \phi(b).$

• If $k \in \mathbb{Z}$ then

given by

 $\phi_k(n) = kn$

 $\phi_k \colon \mathbb{Z} \to \mathbb{Z}$

is a homomorphism.

• The determinant map

det: $GL_n(\mathbb{R}) \to \mathbb{R}$

is a homorphism.

Subgroups

A subset $H \subset G$ is a subgroup of (G, \cdot) if (H, \cdot) is a group. The inclusions

$$\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

are all subgroup inclusions.

If $\phi: G_0 \to G_1$ is a homomorphism and $H_0 \subset G_0$ is a subgroup then the image $\phi(H_0) \subset G_1$ is a subgroup of G_1 . If $H_1 \subset G_1$ then $\phi^{-1}(H_1) \subset G_0$ is a subgroup. An important special case is when $H_0 = \phi^{-1}(\{e\})$ is the trivial subgroup. In this case $\phi^{-1}(e)$ is the *kernel* of the homomorphism.

Cosets

If H is a subgroup of G and g is an element of G then the a *left coset* is

$$gH = \{g \cdot h | h \in H\}.$$

We similarly define right cosets Hg. If $g_0H \cap g_1H \neq \emptyset$ then $g_0H = g_1H$ with a similar statement for right cosets. For any coset the map

 $h \mapsto g \cdot h$

is a bijection from H to gH. Therefore the left (or right) cosets partition G into sets that have the same cardinality.

Normal subgroups

The left coset gH and the right coset Hg both contain g so they will always have a non-empty intersection. If the cosets are always equal then the set of cosets has a natural group structure. In this case H is a normal subgroup. That is His a normal subgroup if for all $g \in G$, gH = Hg.

We define an operation on the set of cosets by

$$g_0 H \cdot g_1 H = (g_0 \cdot g_1) H.$$

One needs to check that this is well defined and for this one needs to use that the left and right cosets are equal.

This group is a *quotient group* and is denoted G/H. The map from G to G/H given by

$$g \mapsto gH$$

is a homomorphism. The identity of G/H is the coset eH = H so the kernel of this homomorphism is the original subgroup H.

Conversely given any homomorphism

$$\phi: G_0 \to G_1$$

is a normal subgroup of G_0 .

If the group operation is commutative $(a \cdot b = b \cdot a \text{ for all } a, b \in G)$ then every subgroup is normal. Such groups are usually called *abelian*. One basic example comes from subgroups of \mathbb{Z} where subgroups are multiples of a fixed integer k. In this case the quotient group is \mathbb{Z}_k , the integers modulo k.