
Lecture 11. Graphs, Networks, and Clustering

Bao Wang
Department of Mathematics

Scientific Computing and Imaging Institute
University of Utah

Math 5750/6880, Fall 2023

• Hierarchical clustering

• k-means

• PageRank

• Spectral clustering

• Clustering: grouping a set of objects such that similar objects end up in the same
group and dissimilar objects are separated into different groups.

• Clustering is an unsupervised learning problem: there are no labels that we try to
predict. Instead, we wish to organize the data in some meaningful way.

• How to cluster data? — Closeness?

Is closeness a good measure?

Clustering models – Input

1. A set of elements, X .

2. A distance function over X . That is, a function d : X ×X → R+ that is symmetric,
satisfies d(x , x) = 0 for all x ∈ X and often also satisfies the triangle inequality.

2’. Alternatively, the function could be a similarity function s : X × X → [0, 1] that is
symmetric and satisfies s(x , x) = 1 for all x ∈ X .

3. Additionally, some clustering algorithms also require an input parameter k
(determining the number of required clusters).

Clustering models – Output

• A partition of the domain set X into subsets. That is, C = (C1, · · · ,Xk) where⋃k
i=1 C = X and for all i 6= j , Ci

⋂
Cj = ∅.

• In some situations the clustering is “soft”, namely, the partition of X into the
different clusters is probabilistic where the output is a function assigning to each
domain point, x ∈ X , a vector (p1(x), · · · , pk(x)), where pi (x) = P[x ∈ Ci] is the
probability that x belongs to cluster Ci .

• Another possible output is a clustering dendrogram (from Greek dendron = tree,
gramma = drawing), which is a hierarchical tree of domain subsets, having the
singleton sets on its leaves, and the full domain as its root.

Linkage-based Clustering Algorithms

Linkage-based clustering algorithms

• Linkage-based clustering algorithms proceed in a sequence of rounds.

• Start from the trivial clustering that has each data point as a single-point cluster.
Then, repeatedly, merges the “closest” clusters of the previous clustering.

Linkage-based clustering algorithms: Example

• Let the input be the elements X = {a, b, c, d , e} ⊂ R2 with the Euclidean distance as
depicted on the left, then the resulting dendrogram is the one depicted on the right:

Figure: Illustration of the linkage-based clustering algorithm.

• How to measure the distance between clusters?

Linkage-based clustering algorithms

> Single Linkage clustering, in which the between-clusters distance is defined by the
minimum distance between members of the two clusters, namely,

D(A,B) := min{d(x , y) : x ∈ A, y ∈ B}.

> Average Linkage clustering, in which the distance between two clusters is defined to
be the average distance between a point in one of the clusters and a point in the
order, namely,

D(A,B) :=
1

|A||B|
∑

x∈A,y∈B
d(x , y).

> Max Linkage clustering, in which the distance between two clusters is defined as the
maximum distance between their elements, namely,

D(A,B) := max{d(x , y) : x ∈ A, y ∈ B}.

Linkage-based clustering algorithms

• The linkage-based clustering algorithms start from data that is completely fragmented
and keep building larger and larger clusters as they proceed.

• Without employing a stopping rule, the outcome of such an algorithm can be
described by a clustering dendrogram: that is, a tree of domain subsets, having the
singleton sets on its leaves, and the full domain as its root.

Linkage-based clustering algorithms: Stopping criterion

If one wishes to turn a dendrogram into a partition of the space (a clustering), one
needs to employ a stopping criterion. Common stopping criteria include

> Fixed number of clusters – fix some parameter, k , and stop merging clusters as
soon as the number of clusters is k .

> Distance upper bound – fix some r ∈ R+. Stop merging as soon as all the
between-clusters distances are larger than r . We can also set r to be
αmax{d(x , y) : x , y ∈ X} for some α < 1. In that case the stopping criterion is
called “scaled distance upper bound.”

k-Means

k-Means

Formulate clustering as an optimization problem.

• Objective function G : a function from pairs of an input, (X , d), and a proposed
clustering solution C = (C1, · · · ,Ck), to positive real numbers.

• Goal: Given such an objective function G , the goal of a clustering algorithm is defined
as finding, for a given input (X , d), a clustering C so that G ((X , d),C) is minimized.

Remark. Many common objective functions require the number of clusters, k , as a
parameter. In practice, it is often up to the user of the clustering algorithm to choose
the parameter k that is most suitable for the given clustering problem.

k-means objective function

• In k-means the data is partitioned into disjoint sets C1, · · · ,Ck where each Ci is
represented by a centroid µi .

• It is assumed that the input set X is embedded in some larger metric space (X ′, d)
(so that X ⊂ X ′) and centroids are members of X ′.

• The k-means objective function measures the squared distance between each point in
X to the centroid of its cluster.

• The centroid of Ci is defined to be

µi (Ci) = arg min
µ∈X ′

∑
x∈Ci

d(x , µ)2.

k-means objective function

• Then, the k-means objective is

Gk−means((X , d), (C1, · · · ,Ck)) = min
µ1,··· ,µk∈X ′

k∑
i=1

∑
x∈Ci

d(x , µi)
2. (1)

• Tasks: 1) Find centers µ1, · · · , µk , and 2) Distribute each x to an appropriate cluster.

k-medoids objective function

• The k-medoids objective function is similar to the k-means objective, except that it
requires the cluster centroids to be members of the input set. The objective function is

GK−medoid((X , d), (C1, · · · ,Ck)) = min
µ1,··· ,µk∈X

k∑
i=1

∑
x∈Ci

d(x , µi)
2.

k-median objective function

• The k-median objective function is quite similar to the k-medoids objective, except
that the “distortion” between a data point and the centroid of its cluster is measured by
distance, rather than by the square of the distance:

GK−median((X , d), (C1, · · · ,Ck)) = min
µ1,··· ,µk∈X

k∑
i=1

∑
x∈Ci

d(x , µi).

• Pros and cons of median? Robust to outliers but not differentiable.

Center-based objectives

• The previous examples can all be viewed as center-based objectives. The solution to
such a clustering problem is determined by a set of cluster centers, and the clustering
assigns each instance to the center closest to it.

• More generally, center-based objective is determined by choosing some monotonic
function f : R+ → R+ and then defining

Gf ((X , d), (C1, · · · ,Ck)) = min
µ1,··· ,µk∈X ′

k∑
i=1

∑
x∈Ci

f (d(x , µi)),

where X ′ is either X or some superset of X .

• Later we will discuss graph cut objective, which is not center-based objectives.

The k-means algorithm

• The k-means objective function is quite popular in practical applications of
clustering.

• However, it turns out that the optimal k-means solution is often computationally
infeasible (the problem is NP-hard, and even NP-hard to approximate to within some
constant).–Nonconvex!

• As an alternative, the following simple iterative algorithm is often used, so often
that, in many cases, the term k-means clustering refers to the outcome of this
algorithm rather than to the clustering that minimizes the k-means objective cost. We
describe the algorithm with respect to the Euclidean distance function
d(x , y) = ‖x − y‖. (See next slide.)

The k-means algorithm

k-Means algorithm
Input: X ⊂ Rn; number of clusters k
Initialize: randomly choose initial centroids µ1, · · · , µk
repeat until convergence
∀i ∈ [k] set Ci = {x ∈ X : i = argminj ‖x −µj‖} (break ties
in some arbitrary manner)
∀i ∈ [k] update µi = 1

|Ci |
∑

x∈Ci
x

The k-means algorithm

Lemma. Each iteration of the k-means algorithm does not increase the k-means
objective function:

Gk−means((X , d), (C1, · · · ,Ck)) = min
µ1,··· ,µk∈X ′

k∑
i=1

∑
x∈Ci

d(x , µ)2. (2)

Proof. • We use the short hand G (C1, · · · ,Ck) for the k-means objective, i.e.,

G (C1, · · · ,Ck) = min
µ1,··· ,µk∈Rn

k∑
i=1

∑
x∈Ci

‖x − µi‖2. (3)

• It is convenient to define µ(Ci) =
1
|Ci |
∑

x∈Ci
x and note that

µ(Ci) = arg min
µ∈Rn

∑
x∈Ci

‖x − µ‖2.

• Therefore, we can rewrite the k-means objective as

G (C1, · · · ,Ck) =
k∑

i=1

∑
x∈Ci

‖x − µ(Ci)‖2. (4)

• Consider the update at iteration t of the k-means algorithm. Let C (t−1)
1 , · · · ,C (t−1)

k

be the previous partition, let µ(t−1)
i = µ(C

(t−1)
i), and let C (t)

1 , · · · ,C (t)
k be the new

partition assigned at iteration t.

• Using the definition of the objective as given in (3) we clearly have that (note that
the LHS needs to minimize over µi s, while RHS fixed µ(t−1)

i s.)

G (C
(t)
1 , · · · ,C (t)

k) ≤
k∑

i=1

∑
x∈C (t)

i

‖x − µ(t−1)
i ‖2. (5)

• In addition, the definition of the new partition (C
(t)
1 , · · · ,C (t)

k) implies that it
minimizes the expression

∑k
i=1
∑

x∈Ci
‖x − µ(t−1)

i ‖2 over all possible partitions
(C1, · · · ,Ck). Hence,

k∑
i=1

∑
x∈C (t)

i

‖x − µ(t−1)
i ‖2 ≤

k∑
i=1

∑
x∈C (t−1)

i

‖x − µ(t−1)
i ‖2. (6)

• Using (4) we have that the right-hand side of (6) equals G (C
(t−1)
1 , . . . ,C

(t−1)
k).

Combining this with (5) and (6), we have G (C
(t)
1 , · · · ,C (t)

k) ≤ G (C
(t−1)
1 , · · · ,C (t−1)

k),
which concludes our proof.

The k-means algorithms

Remark.
• While the preceding lemma tells us that the k-means objective is monotonically
nonincreasing, there is no guarantee on the number of iterations the k-means
algorithms needs in order to reach convergence.

• Furthermore, there is no nontrivial lower bound on the gap between the value of the
k-means objective of the algorithm’s output and the minimum possible value of that
objective function. In fact, k-means might converge to a point which is not even a
local minimum. Nonconvex. Consider saddle point.

• To improve the results of k-means it is often recommended to repeat the procedure
several times with different randomly chosen initial centroids (e.g., we can choose the
initial centroids to be random points from the data).

Remarks

• One needs to set the number of clusters a priori (a typical way to overcome this
issue is by trying the algorithm for different number of clusters).

• k-means above requires data points to be defined in an Euclidean space, oftentimes
we are interested in clustering data for which we only have some measure of affinity
between different data points, but not necessarily an embedding in Rp (this issue can
be overcome by reformulating k-means in terms of distances only).

• The solution of k-means are always convex clusters. This means that k-means may
have difficulty in finding cluster as in the figure below.

Graphs

Graphs

• A graph G = (V ,E) contains a set of nodes V = {v1, · · · , vn} and edges E ⊂
(V

2

)
.

An edge (i , j) ∈ E if vi and vj are connected.

• A graph is connected if, for all pairs of vertices, there is a path between these vertices
on the graph.

Graphs

• A particularly useful way to represent a graph is through its adjacency matrix. Given
a graph G = (V ,E) on n nodes (|V | = n), we define its adjacency matrix A ∈ Rn×n as
the symmetric matrix with entries

Aij =

{
1 if (i , j) ∈ E ,

0 otherwise.

• Another important matrix is the degree matrix D, which is diagonal with
Dii =

∑n
j=1 Aij .

• Sometimes, we will consider weighted graphs G = (V ,E ,W), where edges may have
weights wij , we think of the weights as non-negative wij ≥ 0 and symmetric wij = wji .
In this case, Dii =

∑n
j=1 wij .

PageRank

PageRank: Backbone of Google’s search engine?

• The goal of PageRank is to quantitatively rate the importance of each page on the
web, allowing the search algorithm to rank the pages and thereby present to the user
the more important pages first.

• A score will be a nonnegative number. A key idea in assigning a score to any given
webpage is that the page’s score is derived from the links made to that page from other
webpages — “A person is important not if the person knows a lot of people, but if a lot
of people know that person”.

PageRank

• Suppose the web of interest contains n pages, each page indexed by an integer k ,
1 ≤ k ≤ n. A typical example is illustrated below, in which an arrow from page k to
page j indicates a link from page k to page j . Such a web is an example of a directed
graph. The links to a given page are called the backlinks for that page.

Figure: A toy example of the Internet.

• We will use xk to denote the importance score of page k in the web. xk is
nonnegative and xj > xk indicates that page j is more important than page k .

First attempt

Figure: A toy example of the Internet.

• A very simple approach is to take xk as the number of backlinks for page k . In the
example above, we have x1 = 2, x2 = 1, x3 = 3, and x4 = 2, so that page 3 is the most
important, pages 1 and 4 tie for second, and page 2 is least important. A link to page k
becomes a vote for page k ’s importance.

• What is wrong with this?

• The above approach ignores an important feature one would expect a ranking
algorithm to have, namely, that a link to page k from an important page should boost
page k ’s importance score more than a link from an unimportant page.

• In the above example, pages 1 and 4 both have two backlinks: each links to the
other, but the second backlink from page 1 is from the seemingly important page 3,
while the second backlink for page 4 is from the relatively unimportant page 2. As such,
perhaps the algorithm should rate the importance of page 1 higher than that of page 4.

Second attempt

• Let us compute the score of page j as the sum of the scores of all pages linking to
page j . For the above toy example. The score of page 1 would be determined by the
relation x1 = x3 + x4. However, since x3 and x4 will depend on x1, this seems like a
circular definition, since it is self-referential.

• We also seek a scheme in which a webpage does not gain extra influence simply by
linking to lots of other pages. We can do this by reducing the impact of each link, as
more and more outgoing links are added to a webpage.

• If page j contains nj links, one of which links to page k , then we will boost page k ’s
score by xj/nj , rather than by xj . In this scheme, each webpage gets a total of one
vote, weighted by that web page’s score, that is evenly divided up among all of its
outgoing links. To quantify this for a web of n pages, let Lk ⊂ {1, 2, · · · , n} denote the
set of pages with a link to page k , that is, Lk is the set of page k ’s backlinks. For each
k we require

xk =
∑
j∈Lk

xj
nj
,

where nj is the number of outgoing links from page j .

• Apply the above scheme to the toy example above, then for page 1 we have
x1 = x3/1+ x4/2, since pages 3 and 4 are backlinks for page 1 and page 3 contains
only one link, while page 4 contains contains 2 links (splitting its vote in half).
Similarly, x2 = x1/3, x3 = x1/3+ x2/2+ x4/2, and x4 = x1/3+ x2/2. These conditions
can be expressed as linear system of equations Ax = x , where x = [x1, x2, x3, x4]

> and

A =

0 0 1 1

2
1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0

• Thus, we end up with an eigenvalue/eigenvector problem: Find the eigenvector x of
the matrix A, associated with the eigenvalue 1.

• Why 1 is an eigenvalue of A?

• Def. A square matrix is column-stochastic if all its entries are nonnegative and the
sum of each column is 1.

• Theorem. A column-stochastic matrix A has an eigenvalue equal to 1 and 1 is also
its largest eigenvalue.

Proof.
• Let A be an n × n column-stochastic matrix. We first note that A and A> have the
same eigenvalues (their eigenvectors will usually be different though). — A and A>

have the same characteristic polynomial.

• Let ~1 = [1, 1, · · · , 1]> be the vector of length n which has all ones as entries. Since A
is column-stochastic, we have A>~1 = ~1 (since all columns of A sum up to 1). Hence ~1
is an eigenvector of A> (but not for A) with eigenvalue 1. Thus 1 is also an eigenvalue
of A.

• Lemma. [Gershgorin circle theorem] Let A ∈ Cn×n with entries aij . For i ∈ {1, . . . , n} let Ri be the
sum of the absolute values of the non-diagonal entries in the i-th row, i.e., Ri =

∑
j 6=i |aij |. Let

D(aii ,Ri) ⊆ C be a closed disc centered at aii with radius Ri . Such a disc is called a Gershgorin disc.
Then, every eigenvalue of A lies within at least one of the Gershgorin discs D(aii ,Ri).

• To show that 1 is the largest eigenvalue of A we apply the Gershgorin circle theorem
to A>. Consider row k of A>. Let us call the diagonal element ak,k and the radius will
be
∑

i 6=k |ak,i | =
∑

i 6=k ak,i = 1− ak,k . Hence, this circle has 1 on its perimeter. This
holds for all Gershgorin circles for this matrix. Thus, since all eigenvalues lie in the
union of the Gershgorin circles, all eigenvalues λi satisfy |λi | ≤ 1.

Back to the toy example

• In the above toy example, we obtain as eigenvector x of A associated with eigenvalue
1 the vector x = [12

31 ,
4
31 ,

9
31 ,

6
31]
>. Hence, perhaps somewhat surprisingly, page 3 is no

longer the most important one, but page 1.

• This can be explained by the fact, that the in principle quite important page 3 (which
has three webpages linking to it) has only one outgoing link, which gets all its “voting
power”, and that link points to page 1.

Practical challenges

• In reality, A can be of size billions times billions.

• Fortunately, we do not need compute all eigenvectors of A, only the eigenvector
associated with the eigenvalue 1, which, as we know, is also the largest eigenvalue of A.

• This in turn means we can resort to standard power iteration to compute x fairly
efficiently (and we can also make use of the fact that A will be a sparse matrix, i.e.,
many of its entries will be zero).

Power iteration

• Let the eigenvalue of A be λ1 > λ2 > · · · > λn and the associated eigenvectors be
v1, v2, · · · , vn. Then any vector x0 can be written as

x0 = c1v1 + c2v2 + · · ·+ cnvn.

• Then

Akx0 = c1λ
k
1v1+c2λ

k
2v2+· · ·+cnλ

k
nvn = c1λ

k
1(v1+c2(

λ2

λ1
)kv2+· · ·+cn(

λn
λ1

)kvn)→ c1λ
k
1v1,

i.e., we obtain the eigenvalue belong to the largest eigenvalue.

Spectral Clustering

Spectral clustering

• A natural way to overcome the issues of k-means in the above figure is transforming
the data into a graph and cluster the graph.

• Given the data points we can construct a weighted graph G = (V ,E ,W) using a
similarity kernel Kε, such as Kε(u) = exp(1

2εu
2), by associating each point to a vertex

and, for which pair of nodes, set the edge weight as

wij = Kε(‖xi − xj‖).

Graph construction

• Alternatively, we can construct the graph where data points are connected if they
correspond to the nearest neighbors.

• Next, we will address the problem of clustering the nodes of a graph.

Graph representation of data

Graph cut

• Given a graph G = (V ,E ,W), the goal is to partition the graph in clusters in a way
that keeps as many of the edges within the clusters and has as few edges as possible
across clusters. We will first focus on the case of two clusters.

Graph cut

Graph cut

• A natural way to measure a vertex partition (S , Sc) is

cut(S) =
∑
i∈S

∑
j∈Sc

wij .

• If we represent the partition by a vector y ∈ {±1}n where yi = 1 if i ∈ S , and
yi = −1 otherwise. Then, the cut is a quadratic form on the graph Laplacian.

Graph Laplacian and graph cut

Def. [Graph Lapplacian and Degree Matrix.]

• Let G = (V ,E ,W) be a graph and W the matrix of weights (or adjacency matrix if
the graph is unweighted). The degree matrix D is a diagonal matrix with diagonal
entries

Dii = deg(i) =
n∑

j=1

wij .

• The graph Laplacian of G is given by

LG := D −W .

• Equivalently,
LG :=

∑
i<j

wij(ei − ej)(ei − ej)
>.

Graph Laplacian and graph cut

• Note that the entries of LG are given by

(LG)ij =

{
−wij if i 6= j

deg(i) if i = j .

• If S ⊂ V and y ∈ {±1}n such that yi = 1 if i ∈ S , and yi = −1 otherwise, then it is
easy to see that

cut(S) =
1
4

∑
i<j

wij(yi − yj)
2.

• Next, we will show that

cut(S) =
1
4
y>LGy , (7)

for y ∈ {±1}n such that yi = 1 if and only if i ∈ S .

Graph Laplacian and graph cut

• Proposition. Let G = (V ,E ,W) be a graph and LG be its graph Laplacian, let
y ∈ Rn then

y>LGy =
∑
i<j

wij(yi − yj)
2.

• Proof. ∑
i<j

wij(yi − yj)
2 =

∑
i<j

wij

[
y>(ei − ej)

][
y>(ei − ej)

]
=
∑
i<j

wij

[
y>(ei − ej)

][
y>(ei − ej)

]>
=
∑
i<j

wijy
>(ei − ej)(ei − ej)

>y

= y>
[∑

i<j

wij(ei − ej)(ei − ej)
>
]
y

= y>LGy .

Graph cut

• While cut(S) is a good way of measuring the fit of a partition, it suffers from an
issue:

• The minimum cut is achieved for S = ∅ (since cut(∅) = 0) which is a rather
meaningless choice of partition.

• Next, we will discuss how to promote (almost) balanced partitions.

Graph cut

• One way to address the above problem is to simply ask for an exactly balanced
partition, |S | = |Sc | (let us assume the number of vertices n = |V | is even).

• We can then identify a partition with a label vector y ∈ {±1}n where yi = 1 if i ∈ S ,
and yi = −1 otherwise (notice that in this case, graph cut is equivalent to assign -1 and
1 to each node). The balanced condition can be written as

∑n
i=1 yi =

~1y = 0. This
means, we can write the minimum balanced cut as

min
S⊂V , |S |=|Sc |

cut(S) =
1
4

min
y∈{−1,1}n,~1>y=0

y>LGy .

Balanced cut

• Asking for the partition to be exactly balanced is too restrictive in many cases. There
are several ways to evaluate a partition that are variations of cut(S) that take into
account the intuition that one wants both S and Sc to not be too small (not
necessarily equal to |V |/2).

Cheeger’s cut

• Def. [Cheeger’s cut] Given a graph and a vertex partition (S , Sc), the Cheeger cut
(also known as conductance, or expansion) of S is given by

h(S) =
cut(S)

min{vol(S), vol(Sc)}
,

where vol(S) =
∑

i∈S deg(i).

• Optimal graph cut requires to solve the problem minS⊂V h(S).

• The Cheeger’s constant of G is given by

hG = min
S⊂V

h(S),

where V is the whole vertex set.

Normalized cut: Ncut

• A similar object to the Cheeger’s cut is the Normalized cut, Ncut, which is given by

Ncut(S) =
cut(S)

vol(S)
+

cut(Sc)

vol(Sc)
.

• We can find the desired graph cut by minimizing Ncut(S).

• Ncut(S) and h(S) are tightly related; it is easy to see that:

h(S) ≤ Ncut(S) ≤ 2h(S).

• How to minimize h(S) and Ncut(S)?

• Recall: Cut(S) = 1
4y
>LGy . Therefore minimize cut(S) amounts to solve a quadratic

minimization problem.

• How to solve for the balanced graph cut?

min
S⊂V , |S|=|Sc |

cut(S) =
1
4

min
y∈{−1,1}n,~1>y=0

y>LGy .

Constraint quadratic optimization: 1) -1 and 1 constraint, and 2) ~1>y = 0.

Relax balanced cut → Ncut

• Below we will show Ncut can also be written in terms of a minimization of a
quadratic form involving the graph Laplacian LG .

• Recall that the balanced partition can be written as

1
4

min
y∈{−1,1}n,~1>y=0

y>LGy .

• An intuitive way to relax the balanced condition is to allow the labels y to take values
in two different real values a and b (e.g. yi = a if i ∈ S and yi = b if i /∈ S) but not
necessarily ±1.

Relax balanced cut → Ncut

• We can then use the notion of volume of a set to ensure a less restrictive notion of
balanced by asking that

avol(S) + bvol(Sc) = 0, (Relaxed version of ~1>y = 0) (8)

where
vol(S) =

∑
i∈S

deg(i). (9)

Thus (8) corresponds to ~1>Dy = 0, where y is formed by a and b, and D is the degree
matrix. (In balanced cut, we have ~1>y = 0)

• We also need to fix a scale for a and b:

a2vol(S) + b2vol(Sc) = 1,

which corresponds to y>Dy = 1.

Relaxed balanced cut → Ncut

• This suggests considering

min
y∈{a,b}n,~1>Dy=0,y>Dy=1

y>LGy .

• We will show this corresponds precisely to Ncut.

Relaxed balanced cut → Ncut

• Proposition. For a and b to satisfy avol(S) + bvol(Sc) = 0 and
a2vol(S) + b2vol(Sc) = 1 it must be that

a =

(
vol(Sc)

vol(S)vol(G)

) 1
2

and b = −

(
vol(S)

vol(Sc)vol(G)

) 1
2

,

corresponding to

yi =

(

vol(Sc)
vol(S)vol(G)

) 1
2 if i ∈ S ,

−
(

vol(S)
vol(Sc)vol(G)

) 1
2 if i ∈ Sc .

Note that vol is defined as (9), i.e., the sum of degrees.

• Proof. The proof involves only doing simple algebraic manipulations together with
noticing that vol(S) + vol(Sc) = vol(G).

Relaxed balanced cut → Ncut

• We are ready to show relaxed balanced cut is exactly Ncut.

• Proposition.
Ncut(S) = y>LGy ,

where y is given by

yi =

(

vol(Sc)
vol(S)vol(G)

) 1
2 if i ∈ S ,

−
(

vol(S)
vol(Sc)vol(G)

) 1
2 if i ∈ Sc .

Proof.

y>LGy =
∑
i ,j

wij(yi − yj)
2

=
∑
i∈S

∑
j∈Sc

wij(yi − yj)
2

=
∑
i∈S

∑
j∈Sc

wij

[(vol(Sc)

vol(S)vol(G)

) 1
2
+
(vol(S)

vol(Sc)vol(G)

) 1
2
]2

=
∑
i∈S

∑
j∈Sc

wij
1

vol(G)

[vol(Sc)

vol(S)
+

vol(S)

vol(Sc)
+ 2
]

=
∑
i∈S

∑
j∈Sc

wij
1

vol(G)

[vol(Sc)

vol(S)
+

vol(S)

vol(Sc)
+

vol(S)

vol(S)
+

vol(Sc)

vol(Sc)

]
=
∑
i∈S

∑
j∈Sc

wij

[1
vol(S)

+
1

vol(Sc)

]
= cut(S)

[1
vol(S)

+
1

vol(Sc)

]
= Ncut(S).

Ncut is the relaxed balanced cut

• This means that finding the minimum Ncut corresponds to solving the following
relaxed balanced cut

min y>LGy

s.t.

y ∈ {a, b}n for some a and b,

y>Dy = 1,

y>D~1 = 0.

(10)

Relaxed Ncut

• Solving (10) is, in general, NP-hard since y ∈ {a, b}n (combinatorial optimization),
we consider a similar problem where the constraint that y can only take two values is
removed:

min y>LGy

s.t.

y ∈ Rn,

y>Dy = 1,

y>D~1 = 0.

(11)

• Given a solution of (11) we can round it to a partition by setting a threshold τ and
taking S = {i ∈ V : yi ≤ τ}. Next, we will show (11) is an eigenvector problem, and
thus we call (11) a spectral relaxation.

Ncut: spectral relaxation

• To see (11) is an eigenvector problem (and thus computationally tractable), set
z = D

1
2 y and

LG = D−
1
2LGD

− 1
2 , (12)

then (11) is equivalent to
min z>LG z

s.t.

z ∈ Rn,

‖z‖2 = 1,(
D

1
2~1
)>

z = 0.

(13)

• Note that LG = I − D−
1
2WD−

1
2 . We order its eigenvalues in increasing order

0 = λ1(LG) ≤ λ2(LG) ≤ · · · ≤ λn(LG). (D−1/2WD−1/2 is a row stochastic matrix,
thus the largest eigenvalue is 1.)

Recap: Min-max theorem.

• Based on the min-max theorem, we have the following variational interpretation of
eigenvalues:

σk = max
S:dim(S)=n−k+1

min
x∈S,‖x‖=1

‖Ax‖,

where σk denotes the k-th entry in the increasing sequence of σ’s, so that
σ1 ≤ σ2 ≤ · · · , where σk is the k-th singular value of A, i.e., the square root of the
eigenvalue of A>A.

LG = I − D−
1
2WD−

1
2 .

• Note the constraint (D
1
2~1)z = 0 constraints the space S to dimensional n − 1. By

the variational interpretation of eigenvalues, the minimum of (13) is λ2(LG) and the
minimizer is given by the second smallest eigenvector of LG = I − D−

1
2WD−

1
2 , which

we call v2.

• Note that v2 is also the second largest eigenvector of D−
1
2WD−

1
2 . This means that

the optimal y in (11) is given by φ2 = D−
1
2 v2.

The above arguments motivate the following spectral clustering algorithm.

Algorithm 1. Spectral Clustering
• Given a graph G = (V ,E ,W), let v2 be the eigenvector
corresponding to the second smallest eigenvalue of the nor-
malized Laplacian LG , as defined in (12).

• Let φ2 = D−
1
2 v2 ∈ Rn.

• Given a threshold τ (one can try all different possibilities,
or run k-means for k = 2), set

S = {i ∈ V : φ2(i) ≤ τ}.

Guarantees for spectral clustering

• The relaxation (11) is obtained from (10) by removing a constraint, therefore we have

λ2(LG) ≤ min
S⊂V

Ncut(S).

This means that
1
2
λ2(LG) ≤ hG .

• Recall that h(S) ≤ Ncut(S) ≤ 2h(S) for any S . Collect to Cheeger’s cut.

Guarantees for spectral clustering

Lemma. There is a threshold τ producing a partition S such that

h(S) ≤
√

2λ2(LG).

Remark. The lemma above implies in particular that

h(S) ≤
√

4hG ,

meaning that Algorithm 1 is suboptimal at most by a square-root factor. Note that the
optimal is hG .

Proof. We will show that given y ∈ Rn satisfying

R(y) :=
y>LGy

y>Dy
≤ δ,

and y>D~1 = 0. There is a “rounding of it”, meaning a threshold τ and a corresponding
choice of partition

S = {i ∈ V : yi ≤ τ},

such that
h(S) ≤

√
2δ,

since y = φ2 satisfies the conditions and gives δ = λ2(LG) this proves the Lemma.

We will pick this threshold at random and use the probabilistic method to show that at
least one of the thresholds works.

W.L.O.G., up to relabel the vertices, we assume y1 ≤ · · · ≤ yn. Also, note that scaling
of y does not change the value of R(y). Also, note that scaling of y does not change
the value of R(y). Also, if y>D~1 = 0 adding a multiple of ~1 to y can only decrease the
value of R(y): the numerator does not change and the denominator

(y + c~1)>D(y + c~1) = y>Dy + c2~1>D~1 ≥ y>Dy .

This means that we can construct (from y by adding a multiple of ~1 and scaling) a
vector x such that

x1 ≤ · · · ≤ xn, xm = 0, and x2
1 + x2

n = 1,

and
x>LGx

x>Dx
≤ δ,

where m be the index for which vol({1, · · · ,m − 1}) ≤ vol({m, · · · , n}) but
vol({1, · · · , n}) > vol({m, · · · , n}).

We consider a random construction of S with the following distribution.
S = {i ∈ V : xi ≤ τ} where τ ∈ [x1, xn] is drawn at random with the distribution

P{τ ∈ [a, b]} =
∫ b

a
2|τ |dτ,

where x1 ≤ a ≤ b ≤ xn.
It is not difficult to check that

P{τ ∈ [a, b]} =

{
|b2 − a2| if a and b have the same sign
a2 + b2 if a and b have different signs

Let us start by estimating E[cut(S)]:

E[cut(S)] = E
[1
2

∑
i∈V

∑
j∈V

wij1(S ,Sc) cuts the edge (i ,j)

]
=

1
2

∑
i∈V

∑
j∈V

wijP{(S , Sc) cuts the edge (i , j)}

Note that P{(S ,Sc) cuts the edge (i , j)} is |x2
i − x2

j | is xi and xj have the same sign
and x2

i + x2
j otherwise. Both cases can be conveniently upper bounded by

|xi − xj |(|xi |+ |xj |). This means that

E[cut(S)] ≤ 1
2

∑
i ,j

wij |xi − xj |(|xi |+ |xj |) ≤
1
2

√∑
ij

wij(xi − xj)2
√∑

ij

wij(|xi |+ |xj |)2

where the second inequality follows from the Cauchy-Schwarz inequality.
From the construction of x we know that∑

ij

wij(xi − xj)
2 = 2x>LGx ≤ 2δx>Dx .

Also,∑
ij

wij(|xi |+|xj |)2 ≤
∑
ij

wij(2x2
i +2x2

j) = 2
(∑

i

deg(i)x2
i

)
+2
(∑

j

deg(j)x2
j

)
= 4x>Dx .

This means that

E[cut(S)] ≤ 1
2

√
2δx>Dx

√
4x>Dx =

√
2δx>Dx .

On the other hand,

E[min{volS , volSc}] =
n∑

i=1

deg(i)P
{
xi is in the smallest set (in terms of volume)

}
,

to break ties, if vol(S) = vol(Sc) we take the “smallest” set to be the one with the first
indices.
Note that m is always in the largest set. Any vertex j < m is in the smallest set if
xj ≤ τ ≤ xm = 0 and any j > m is in the smallest set if 0 = xm ≤ τ ≤ xj . This means,

P{xi is in the smallest set (in terms of volume)} = x2
j ,

which means that

E[min{volS , volSc}] =
n∑

i=1

deg(i)x2
i = x>Dx .

Hence,
E[cut(S)]

E[min{volS , volSc}]
≤
√
2δ.

Note however that because E[cut(S)]/E[min{volS , volSc}] is not necessarily the same
as E[cut(S)]/E[min{volS , volSc}] and so, we do not necessarily have

E[cut(S)]
E[min{volS , volSc}]

≤
√
2δ.

However, since both random variables are positive,

E[cut(S)] ≤ E[min{volS , volSc}
√
2δ] i .e., E[cut(S)−min{volS , volSc}

√
2δ] ≤ 0,

which guarantees, by the probabilistic method, the existence of S such that

cut(S) ≤ min{volS , volSc}
√
2δ,

which is equivalent to

h(S) =
cut(S)

min{volS , volSc}
≤
√
2δ,

which concludes the proof of the Lemma.

Cheeger’s Inequality

Theorem. [Cheeger’s inequality] The following inequality holds

1
2
λ2(LG) ≤ hG ≤

√
2λ2(LG).

Multiple clusters

Algorithm 2. Spectral Clustering for multi-clusters
• Given a graph G = (V ,E ,W), let v2, · · · , vk be the eigen-
vector corresponding to the second through (k − 1)th eigen-
values of the normalized Laplacian LG = D−

1
2LGD

− 1
2 .

• Let φm = D−
1
2 vm ∈ Rn.

• Consider the map φ : V → Rk−1 defined as

φ(vi) =

φ2(i)
...

φk(i)

 .
Cluster the n points in k − 1 dimensions into k clusters using
k-means.

Multiple clusters

There is an analogue of Cheeger’s inequality.
• A natural way of evaluating k-way clustering is via the k-way expansion constant

ρG (k) = min
S1,··· ,Sk

max
l=1,··· ,k

{cut(S)
vol(S)

}
,

where the maximum is over all choice of k disjoin subsets of V (but not necessarily
forming a partition).
• Another natural definition is

φG (k) = min
S :volS≤ 1

k
vol(G)

cut(S)

vol(S)
.

Clearly,
φG (k) ≤ ρG (k).

Multiple clusters

The following are analogues of Cheeger’s inequality for multiple clusters.

Theorem. Let G = (V ,E ,W) be a graph and k a positive integer

ρG (k) ≤ O(k2)
√
λk .

Also,
ρG (k) ≤ O

(√
λ2k log k

)
.

