
Lecture 12. Feed-forward Neural Networks and
Backpropagation

Bao Wang
Department of Mathematics

Scientific Computing and Imaging Institute
University of Utah

Math 5750/6880, Fall 2023

Multi-class Logistic Regression

Linear classifier

•
f (x ,W) = Wx + b.

• Consider an image classification task with 3 classes (cat/dot/frog), where each image
has 4 pixels. In this case, W ∈ R3×4 and b ∈ R3.

• Is the output good? How to find optimal W and b?

How to find W and b?

• Define a loss function that quantifies our unhappiness with the scores across the
training data.

• Optimization: Find the parameters W and b that minimize the loss function. Note
that we can absorb b into W by introduce an additional dimension (all 1s) to the
feature.

Loss function

A loss function tells how good our current classifier is.

• Given a dataset of examples {(xi , yi)}Ni=1, where xi is image and yi is (integer) label.

• Loss over the dataset is the average of loss over examples

L =
1
N

∑
i

Li

(
f (xi ,W), yi

)
.

Regularization

L(W) =
1
N

N∑
i=1

Li

(
f (xi ,W), yi

)
︸ ︷︷ ︸

data loss

+ λR(W)︸ ︷︷ ︸
regularization

,

where λ is the regularization strength.

• L2 regularization: R(W) =
∑

k

∑
l W

2
k,l .

• L1 regularization: R(W) =
∑

k

∑
l |Wk,l |.

• Elastic net: R(W) =
∑

k

∑
l βW

2
k,l + |Wk,l |.

Softmax classifier – Multinomial logistic regression

• Interpret raw classifier scores as probabilities.

• Given
s = f (xi ; W),

how to convert s into probabilities?

Softmax classifier – Multinomial logistic regression

• Interpret raw classifier scores as probabilities.

s = f (xi ; W)⇒ P(Y = k |X = xi) =
esk∑
j e

sj
(softmax function).

• We need to maximize probability of correct class, i.e., minimize

Li = − logP(Y = yi |X = xi),

and therefore the loss contributed by xi is

Li = − log
(esyi∑

j e
sj

)
.

• When Li will be minimized?

• When Li will be minimized?

esyi =
∑
j

esj .

Li = − logP(Y = yi |X = xi) = − log
(esyi∑

j e
sj

)
= − log(0.13) = 2.04.

Kullback-Leibier (KL) divergence

DKL(P||Q) =
∑
y

P(y) log
P(y)

Q(y)
.

Cross entropy

H(P,Q) = H(P) + DKL(P||Q),

where H(P) = −
∑

y P(y) logP(y) is the entropy of the distribution P .

Gradient descent (GD)

• So far, we have the following loss function

L(W) =
1
N

N∑
i=1

Li (xi , yi ,W) + λR(W),

and the gradient is

∇W L(W) =
1
N

N∑
i=1

∇W Li (xi , yi ,W) + λ∇WR(W),

then perform the following gradient descent

W k+1 = W k − s∇W L(W k).

• Compute ∇W L(W) can be very expensive when N is large.

Stochastic gradient descent (SGD)

• Replace the true gradient above with the following mini-batch gradient

1
n

n∑
j=1

∇W Lij (xij , vij ,W) + λ∇WR(W), n� N.

Neural Networks

Linear function

• Linear function: f (x ; W) = Wx .

Neural network

• Linear function: f (x ; W) = Wx .

• 2-layer neural network

f (x ; W1,W2) = W2 max(0,W1x),

where x ∈ Rd ,Wq ∈ RH×d , and W2 ∈ RC×H .

max(0, ∗) is the ReLU activation.

Neural network

• Linear function: f (x ; W) = Wx .

• 2-layer neural network

f (x ; W1,W2) = W2 max(0,W1x),

where x ∈ Rd ,Wq ∈ RH×d , and W2 ∈ RC×H .

• 3-layer neural network

f (x ; W1,W2,W3) = W3 max(0,W2 max(0,W1x)),

where x ∈ Rd ,W1 ∈ RH1×d ,W2 ∈ RH2×H1 , and W3 ∈ RC×H2 .

max(0, ∗) is the ReLU activation.

Activation functions

Architectures

2-layer 3-layer

Backpropagation

A simple example

• Consider the following function

f (x , y , z) = (x + y)z ,

e.g., x = −2, y = 5, z = −4. Note that f (x , y , z) can be decomposed as follows

q = x + y ,
∂q

∂x
= 1,

∂q

∂y
= 1; f = qz ,

∂f

∂q
= z ,

∂f

∂z
= q.

• We need to compute ∂f
∂x ,

∂f
∂y ,

∂f
∂z .

• Note the above function can be represented as the following computational graph

Note that
∂f

∂f
= 1,

then
∂f

∂z
= q = x + y = 3,

∂f

∂q
= z = −4,

thus
∂f

∂x
=
∂f

∂q

∂q

∂x
= −4 ∗ 1 = −4;

∂f

∂y
=
∂f

∂q

∂q

∂y
= −4 ∗ 1 = −4.

Chain rule

∂f

∂x︸︷︷︸
Downstream gradient

=
∂f

∂q︸︷︷︸
Upstream gradient

× ∂q

∂x︸︷︷︸
Local gradient

.

Another example

f (w , x) =
1

1 + e−(w0x0+w1x2+w2)
,

where w0 = 2,w1 = −3,w2 = −3, x0 = −1, and x1 = −2. The function can be
represented by the following computational graph

f (x) =
1
x
⇒ df

dx
= − 1

x2 .

fc(x) = c + x ⇒ dfc
dx

= 1.

f (x) = ex ⇒ df

dx
= ex .

fa(x) = ax ⇒ df

dx
= a.

Convolutional Neural Networks

How linear model classify images?

Image: height × width × channels, e.g. 32× 32× 3.

• First stretch the image to a vector x ∈ R3072×1.

• Feed x into the model y = Wx (fully-connected layer).

Convolution layer

Preserve the spatial structure of the input image.

Convolve the filter with the image, i.e. “slide over the image spatially over height and
width/or over height, width, and channel, computing dot products”.
Recall convolution of two functions

(f ∗ g)(y) =

∫ ∞
−∞

f (x) · g(y − x)dx .

Convolution layer

Preserve the spatial structure of the input image.

Convolve the filter with the image, i.e. “slide over the image spatially over height and
width/or over height, width, and channel, computing dot products”.
Recall convolution of two signals

f (x , y) ∗ g(x , y) =
∞∑

n1=−∞

∞∑
n2=−∞

f (n1, n2) · g(x − n1, y − n2).

Activation map

Multiple activation maps

We can use multiple filters to get multiple activation maps.

Convolutional neural networks (CNNs)

CNN is a sequence of convolution layers, interspersed with activation functions.

CNN for representation learning

Pooling layer

Pooling layer is used to make the representations smaller and more manageable, which
operates over each activation map independently.

Max pooling

Neural Networks vs. Kernel Methods

• Is there any theoretical guarantee in training neural networks using gradient descent?

How does neural network relate to kernel method?

• Neural networks in the infinite-width regime simplify to linear models with a kernel
called the neural tangent kernel.

• Under this regime, we can show that gradient descent will converge to 0 training loss.

A 1D example

• Let us start with a very simple example with 1D input and 1D output. In particular, a
simple 2-hidden layer ReLU network with width m.

• Denote the neural network function as f (x ,w) where x is the input and w is the
combined vector of weights (say of size p).
• Assume the training dataset is {x̄i , ȳi}Ni=1.

Let us consider performing full-batch gradient descent on the following least squares loss

L(w) =
1
N

N∑
i=1

1
2

(
f (x̄i ,w)− ȳi

)2
.

• Stack all the output dataset value ȳi into a single vector of size N, and call it ȳ .

• Stack all the model outputs for each input, f (x̄i ,w) into a single prediction vector
y(w) ∈ RN , i.e., y(w)i = f (x̄i ,w).

• Our loss simplifies to

L(w) =
1
N
· 1
2
‖y(w)− ȳ‖22.

We can rescale it and consider L(w) = 1
2‖y(w)− ȳ‖22.

How does the weight change under gradient descent?

• Consider the relative change in the norm of the weight vector from initialization:

‖w(n)−w0‖2
‖w0‖2

Figure: Loss curves and how much the weights change as training progress. The weight norms
are calculated using all parameters in the model stacked into a single vector. Also, all other
hyperparameters (like learning rate) are kept constant.

• The weights don’t change much at all for larger hidden widths. – What can we do to
analyze f (x ,w)?

Linearize neural networks

• Taylor expand the network function w.r.t. the weights around its initialization.
(Note in training, the weights do not change much.)

f (x ,w) ≈ f (x ,w0) +∇w f (x ,w0)>(w −w0).

• We’ve turned the non-linear neural network function into a linear function of the
weights.

• Using our more concise vector notation for the model outputs on a specific dataset
we can rewrite as:

y(w) ≈ y(w0) +∇wy(w0)>(w −w0),

where y(w) ∈ Rn×1, ∇wy(w0)> ∈ Rn×p, and w ∈ Rp×1 with n and p are the number
of datapoints and parameters, respectively.

• Note that the initial output y(w0) and the model Jacobian ∇wy(w0) are just
constants. Thus

y(w) ≈ y(w0) +∇wy(w0)>(w −w0),

is just a linear model in the weights, so minimizing the least squares loss reduces to
just doing linear regression!

• But, notice that the model function is still non-linear in the input. In fact,
y(w0) +∇wy(w0)>(w −w0) is just a linear model using a feature map φ(x) which is
the gradient vector at initialization:

φ(x) = ∇w f (x ,w0).

Gradient descent dynamics

• We’ve considered the linearization of neural networks, y(w0) + φ(x)(w −w0).
• Let us now get into their training dynamics under gradient descent

wk+1 = wk − η∇wL(wk).

i.e.,
wk+1 −wk

η
= −∇wL(wk).

• Let η → 0, we have
dw(t)

dt
= −∇wL(w(t)).

This is called a gradient flow. To simplify notation, we denote time derivatives with a
dot, the gradient flow is:

ẇ(t) = −∇L(w(t)).

Gradient flow

• Dropping the time variable, and substituting for the loss and taking the gradient, we
get (note L(w(t)) = 1

2‖y(w)− ȳ‖22.)

ẇ = −∇y(w)(y(w)− ȳ). (∇y(w) = ∇wy(w))

• We can now derive the dynamics of the model outputs y(w) (this is basically the
dynamics in function space) induced by this gradient flow using the chain rule:

ẏ(w) = ∇y(w)>ẇ = −∇y(w)>∇y(w)
(
y(w)− ȳ

)
.

• The quantity H(w) := ∇y(w)>∇y(w) is called the neural tangent kernel (NTK).

Neural tangent kernel

• Recall that the linearized model has a feature map φ(x) = ∇w f (x ,w0). The kernel
matrix corresponding to this feature map is obtained by taking pairwise inner products
between the feature maps of all the data points. This is exactly H(w0).

• H(w0) is ∼ positive definite if p � n.

Gradient flow

• If the model is close to its linear approximation, the Jacobian of the model outputs
does not change as training progresses, i.e.,

∇y(w(t)) ≈ ∇y(w0)⇒ H(w(t)) ≈ H(w0).

• This is referred to as the kernel regime, because the tangent kernel stays constant
during training. The training dynamics now reduces to a very simple linear ordinary
differential equation:

ẏ(w) = −H(w0)(y(w)− ȳ).

Gradient flow

• Clearly, y(w) = ȳ is an equilibrium of this ODE, and it corresponds to a train loss of
0.

• Let u = y(w)− ȳ , the flow simplifies to

u̇ = −H(w0)u.

• The solution of this ODE is given by a matrix exponential

u(t) = u(0)e−H(w0)t .

When over-parameterized (p � n), the NTK ∇y(w0)>∇y(w0) is positive definite.

•
u(t) = u(0)e−Ht ,

where H := H(w0) is positive definite.

• Let H = UDU−1 be the spectral decomposition of H , where U is orthogonal and D
is diagonal with diagonal entries be positive. Therefore, using the fact that

e−UDU−1t =
∞∑
k=0

1
k!

(
U(−Dt)U−1

)k
= U

(∞∑
k=0

1
k!

(−Dt)k
)
U−1 = Ue−DtU−1,

we have
u(t) = u(0)Ue−DtU−1 → 0,

where (e−Dt)ii = e−dii t .

Universal Approximation Theorem

Capacity of the Perceptron

• What kind of function can a neural network represent? Let is start with the simplest
neural network, the Perceptron, a NN with a single hidden layer having 1 hidden unit
with an activation function σ. Both the input layer and the weights are a 1× n vector.

Figure: The perceptron.

• Perceptron:

σ
(n∑
i=1

wixi + b
)

= σ
(
w>x + b

)
,

where σ can be sigmoid: 1
1+e−x , tanh: e2x−1

e2x+1 , ReLU: max(0, x) ...

Figure: xOR is not linearly separable.

• Perceptron is a linear classifier, and as such it can’t model an XOR.

Capacity of multiple neurons

• By allowing ourselves more than 1 neuron in the hidden layer, we can model a XOR
and in fact, we get the simplest universarial approximator.

Figure: A NN with 2 hidden units.

Universal approximation theorem

• Universal approximation theorem: any continuous function f : [0, 1]n → [0, 1] can
be approximated arbitrarily well by a neural network with at least one hidden layer with
a finite number of weights.

A visual proof is available at
http://neuralnetworksanddeeplearning.com/chap4.html.

http://neuralnetworksanddeeplearning.com/chap4.html

Visual proof of universal approximation

Suppose we want to approximate a function with 1 input and 1 output like:

Figure: A continuous function.

We will first consider a simple NN with 2 hidden neurons that have a sigmoid activation
function, and for now the output neuron will just be linear.

Visual proof of universal approximation – Step 1

Make a step function with 1 of the neuron.

Figure: Making a step function with the top neuron.

Let us focus on the top hidden neuron first, by using a big weight on the top neuron we
can approximate the step function with a sigmoid arbitrarily well, and by adjusting the
bias we can place it anywhere. (The same argument can be made for the tanh
activation, but not for ReLU.) Note that σ(wx) becomes steeper as w increases.

Visual proof of universal approximation – Step 1

In the toy example above, we won’t be interested in changing the weights of the first
layer, they just have to be high enough, so we will just consider them to be constant,
Additionally, to make the plots clearer, we will display the position of the step instead of
the bias, which is easily computed with s = −b/w .
With these changes, the plot above becomes:

Figure: Making a step function with the top neuron.

Visual proof of universal approximation – Step 2

Make a “bin” with an opposite step function.

Figure: Making a bin with 2 opposite step functions.

As illustrated above, by using the other neuron to make a step function, and setting
opposing weights in the second layer, we can effectively approximate a bin and control
its position, size and height.

Visual proof of universal approximation – Step 2

Now you can probably see where this is going, to make things even clearer, we will just
use 1 value for both w1 and −w2, called h, representing the height of the “bin”.

Figure: Making a bin with 2 opposite step functions.

Visual proof of universal approximation – Step 3

Discretize the function

Figure: Approximating f with an histogram.

In this final step, we combine several “bias” to make an histogram approximating the
function. Illustrated above is a very rough approximation using only 5 bins (10 hidden
units), but we can obviously make it sharper by simply adding more bins.

Question: If we want to use this technique to approximate an L-Lipschitz function
f : R→ R on the interval [0, 1] with an error at most ε at any point, how many bins
would we need?

What if we don’t want linear neurons in the output layer? The above network’s output
layer is linear, giving us the histogram approximating f , if we add a sigmoid activation
function on the output we just have to approximate σ−1 ◦ f instead of f , which we can
do with the same method.

Cybenko approximation by superposition of sigmoid function

We first define a sigmoidal function σ as:

σ(x)→

{
1 as x → +∞
0 as x → −∞

While sigmoidal functions are usually assumed to be monotonic increasing, this
assumption is not necessary for this result.

Theorem. Let C ([0, 1]n) denote the set of all continuous function [0, 1]n → R, let σ
be any sigmoid activation function then the finite sum of the form
f (x) =

∑N
i=1 αiσ(w>i x + bi) is dense in C ([0, 1]n).

Informally, the above theorem says that for any g ∈ C ([0, 1]n) for any ε > 0, there
exists f : x →

∑N
i=1 αiσ(w>i x + b) such that |f (x)− g(x)| < ε for all x ∈ [0, 1]n.

