
Lecture 13. Recurrent Neural Networks and
Continuous-depth Neural Networks

Bao Wang
Department of Mathematics

Scientific Computing and Imaging Institute
University of Utah

Math 5750/6880, Fall 2023

Feed-forward neural network: Recap

f (x ,W) = Wnσ
(
Wn−1σ

(
· · ·W2σ

(
W1x

)
· · ·
))

Image classification.

Recurrent Neural Networks

Learning sequences with varying sequence length!

Why existing ConvNets are insufficient?

• How to build a machine learning model for variable sequence length inputs and
outputs?

Recurrent neural networks – I (Process sequences)

• One to many

• Image captioning (image → sequence of words)

Recurrent neural networks – II (Process sequences)

• Many to one

• Sentiment classification/sequence of video frames → action class

Recurrent neural networks – III (Process sequences)

• Many to many

• Machine translation, dialogue
• Sequence of video frames → caption

Recurrent neural networks – IV (Process sequences)

• Many to many

• Video captioning (sequence of video frames → caption)

Recurrent neural networks

• Let us start with a task that takes a variable input and produces an output at every
step. Many-to-many.

• RNN internal state: h. Encoding the sequence information.

Unrolled RNN

• RNN internal state: ht is a function of ht−1 and xt .

• Two ingredients: Hidden state updates and output generation.

RNN hidden state update

We can process a sequence of vectors X = [x1, x2, · · ·] by applying a recurrence
formula at every time step:

ht = fW
(
ht−1, xt

)
,

where
• ht is the new state

• fW (·, ·) is a function with parameters W

• ht−1 is the old state

• xt is the input vector at some time step

RNN output generation

We output yt at every time-step t by using the following formula

yt = fWo (ht),

where
• yt is the output

• fWo (·) is a function with parameters Wo

• ht is the new state

RNN

We can process a sequence of vectors X = [x1, x2, · · ·] by applying a recurrence
formula at every time step:

ht = fW
(
ht−1, xt

)
,

output yt at time-step t by using

yt = fWo (ht).

RNNs

ht = fW
(
ht−1, xt

)

Note that the same function and the same set of parameters are used at every time step.

Simple recurrent neural network

Let ht = fW (ht−1, xt) be

ht = tanh
(
Whhht−1 + Wxhxt

)
.

Therefore the simple RNN model can be formulated as

ht = tanh
(
Whhht−1 + Wxhxt

)
yt = Whyht or yt = softmax(Whyht)

RNN: Computational graph

ht = fW (ht−1, xt)

RNN: Computational graph

ht = fW (ht−1, xt)

Re-use the same weight matrix at every time-step.

RNN: Computational graph: Many-to-many

RNN: Computational graph: Many-to-many

The loss is the sum of the loss at each slot.

RNN: Computational graph: Many-to-one – I

RNN: Computational graph: Many-to-one – II

RNN: Computational graph: One-to-many – I

RNN: Computational graph: One-to-many – II

Sequence to sequence modeling: Many-to-one + One-to-many

• Many-to-one: Encode input sequence (x1, · · · , xT) in a single vector hT .
• One-to-many: Produce output sequence (y1, y2, · · ·) from single input vector hT .

Example: Character-level language model

• Vocabulary: [h,e,l,o]

• Example training sequence: “hello”

• Task: predict the next character

ht = tanh
(
Whhht−1 + Wxhxt

)

Training

Testing

At test-time sample one characters at a time, and then feed back to model to predict
the next.

Backpropagation through time

Forward through the entire sequence to compute loss, then backward through the entire
sequence to compute the gradient. (We will discuss the algorithm later). — Note that
the weight is shared!

RNN tradeoff

RNN Advantages:
• Can process any length input
• Computation for step t can (in theory) use information from many steps back
• Model size does not increase for longer input
• Same weights applied on every timestep, so there is symmetry in how inputs are
processed.

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access information from many steps back

Multilayer RNNs

BPTT

ht = tanh
(
Whhht−1 + Wxhxt

)
= tanh

(
(Whh Whx)

(
ht−1
xt

))
:= tanh

(
W
(

ht−1
xt

))

BPTT

ht = tanh
(
Whhht−1 + Wxhxt

)
= tanh

(
(Whh Whx)

(
ht−1
xt

))
:= tanh

(
W
(

ht−1
xt

))

∂ht

∂ht−1
= tanh′

(
Whhht−1 + Wxhxt

)
Whh

Backpropagation from ht to ht−1 multiplies by W (actually W>
hh).

BPTT

Note that
∂L

∂W
=

T∑
t=1

∂Lt
∂W

,

where
∂LT
∂W

=
∂LT
∂hT

· ∂hT

∂hT−1
· · · ∂h1

∂W
=
∂LT
∂hT

(T∏
t=2

∂ht

∂ht−1

) ∂h1

∂W

Vanishing and exploding gradient issue in BPTT

∂LT
∂W

=
∂LT
∂hT

· ∂hT

∂hT−1
· · · ∂h1

∂W
=
∂LT
∂hT

(T∏
t=2

∂ht

∂ht−1

) ∂h1

∂W
.

Since
∂ht

∂ht−1
= tanh′

(
Whhht−1 + Wxhxt

)
Whh,

therefore

∂LT
∂W

=
∂LT
∂hT

· ∂hT

∂hT−1
· · · ∂h1

∂W
=
∂LT
∂hT

(T∏
t=2

tanh′
(
Whhht−1 + Wxhxt

))
W T−1

hh

∂h1

∂W
.

Note that tanh′
(
Whhht−1 + Wxhxt

)
< 1 a.s. Hence, ∂LT∂W → 0 as T →∞.

Vanishing gradient: bottleneck for learning long-term dependencies.

Vanishing and exploding gradient issue in BPTT

If we assume there is no nonlinearity, we have

∂LT
∂W

=
∂LT
∂hT

W T−1
hh

∂h1

∂W
.

• Largest singular value > 1 ⇒ exploding gradients. [Gradient clipping, i.e., scaling
gradient if its norm is greater than 1.]
• Largest singular value < 1 ⇒ vanishing gradients. [Change the RNN architecture.]

Long-short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997.

LSTM

Vanilla RNN:

ht = tanh
(
W
(

ht−1
xt

))

LSTM: 
i
f
o
g

 =


σ
σ
σ

tanh

W
(

ht−1
xt

)

ct = f � ct−1 + i � g
ht = o � tanh(ct)

,

where � represents entry-wise product.

LSTM


i
f
o
g

 =


σ
σ
σ

tanh

W
(

ht−1
xt

)

ct = f � ct−1 + i � g
ht = o � tanh(ct)

,

where
• i : input gate, whether to write to cell
• f : forget gate, whether to erase cell
• o: output gate, how much to reveal cell
• g : how much to write to cell

LSTM 
i
f
o
g

 =


σ
σ
σ

tanh

W
(

ht−1
xt

)

ct = f � ct−1 + i � g
ht = o � tanh(ct)

,

Remarks

LSTM does not guarantee that there is no vanishing/exploding gradient, but it does
provide an easier way for the model to learn long-term dependencies in practice.

Momentum Recurrent Neural Networks

T. Nguyen, R. Baraniuk, A. Bertozzi, S. Osher, B. Wang, MomentumRNN: Integrating
momentum into RNNs, NeurIPS, 2020.

Heavy-ball method vs. RNN

Heavy-ball method

xt = xt−1 − s∇f (xt−1) + µ(xt−1 − xt−2),

let pt = xt−1 − xt , we can rewrite the heavy-ball method as

pt = µpt−1 + s∇f (xt−1); xt = xt−1 − pt .

Heavy-ball method vs. RNN

Heavy-ball method:

pt = µpt−1 + s∇f (xt−1); xt = xt−1 − pt .

Also, the recurrence equation of RNN can be written as

ht = σ
(
Uht−1 + Wxt

)
,

let φ(·) = σ(U(·)) and ut = U−1Wxt , we can rewrite the above equation as

ht = φ(ht−1 + ut).

What if we treat −ut in RNN as ∇f (xt) in the heavy-ball method? Also, regard φ(·) as
a projection.

Momentum RNN

pt = µpt−1 − sut ; ht = φ(ht−1 − pt),

where µ ≥ 0, s > 0 are two hyperparameters.

Let vt := −Upt , we arrive at the following Momentum RNN

vt = µvt−1 + sWxt ; ht = σ
(
Uht−1 + vt

)
.

Momentum RNN

Momentum RNN overcomes vanishing gradients

RNN BPTT:

∂L

∂ht
=

∂L

∂hT
· ∂hT

∂ht
=

∂L

∂hT
·
T−1∏
k=t

∂hk+1

∂hk
=

∂L

∂hT
·
T−1∏
k=t

(DkU>),

where Dk = diag(σ′(Uhk + Wxk+1)) is a diagonal matrix with σ′(Uhk + Wxk+1)
being its diagonal entries.

Momentum RNN overcomes vanishing gradients

Momentum RNN:

vt = µvt−1 + sWxt ; ht = σ
(
Uht−1 + vt

)
,

which can be rewritten as

ht = σ

(
U(ht−1 − µht−2) + µσ−1(ht−1) + sWxt

)
,

where σ−1(·) is the inverse function of σ(·). We compute ∂L/∂ht as follows

∂L

∂ht
=

∂L

∂hT
· ∂hT

∂ht
=

∂L

∂hT
·
T−1∏
k=t

∂hk+1

∂hk
=

∂L

∂hT
·
T−1∏
k=t

D̂k [U> + µΣk], (1)

where D̂k = diag(σ′(U(hk − µhk−1) + µσ−1(hk) + sWxk+1)) and Σ = diag((σ−1)′(hk)).
For mostly used σ, e.g., sigmoid and tanh, (σ−1(·))′ > 1 and µΣk dominates U>.

Neural Ordinary Differential Equations

R. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, Neural Ordinary Differential
Equations, NeurIPS 2018.

Neural ODEs

• RNNs: Information carried by the time interval between different frames is missing.

• Neural ODE:
dh(t)
dt

= f (h(t), t, θ),

where f (h(t), t, θ) is a neural network, e.g., f (h(t), t, θ) = θ2σ(θ1h(t)).

Neural ODEs

• Forward propagation: starting from the input h(0), we define the output layer
h(T) to be the solution to the above ODE initial value problem at some time T .

• h(T) can be computed by a black-box numerical ODE solver, which evaluates the
hidden unit dynamics f whenever necessary to determine the solution with the desired
accuracy.

• Forward Euler solver:
hk+1 = hk + sf (hk , tk , θ)

Neural ODEs

• Loss function: consider the scalar-valued loss function L(·), whose input is the result
of an ODE solver

L(h(T)) = L
(
h(0) +

∫ T

0
f (h(t), t, θ)dt

)
= L

(
ODESolve(h(0), f , 0,T , θ)

)
.

Training neural ODEs: Adjoint sensitivity method

Adjoint state: a(t) := ∂L
∂h(t)

Theorem 1.
dL

dθ
= −

∫ 0

T
a(t)>

∂f (h(t), t, θ)
∂θ

dt,

where a(t) satisfies the following adjoint ODE

da(t)
dt

= −a(t)>
∂f (h(t), t, θ)

∂h
.

Eliminate the use of backpropagation.

Proof.
• Let h(t) follow the ODE dh(t)

dt = f (h(t), t, θ), where θ are the parameters.

• We will prove that if we define an adjoint state

a(t) :=
dL

dh(t)
, (2)

then it follows the following ODE

da(t)
dt

= −a(t)>
∂f (h(t), t, θ)

∂h(t)
. (3)

For ease of notation, we denote vectors as row vectors, whereas the vectors in the
previous part are column vectors.

• The adjoint state is the gradient w.r.t. the hidden state at time t. In neural networks,
the gradient of a hidden layer ht depends on the gradient from ht+1 by chain rule

dL

dht
=

dL

dht+1

dht+1

dht
. (4)

• With a continuous hidden state, we can write the transformation after an ε change in
time as (note ḣ(t) = f (h(t), t, θ), implying h(t) =

∫
f (h(t), t, θ)dt)

h(t + ε) =

∫ t+ε

t
f (h(t), t, θ)dt + h(t) := Tε(h(t), t) (5)

and chain rule can also be applied (∂h(t + ε)/∂h(t) = ∂Tε(h(t), t)/∂h(t))

dL

dh(t)
=

dL

dh(t + ε)

dh(t + ε)

dh(t)
or a(t) = a(t + ε)

∂Tε(h(t), t)
∂h(t)

. (6)

• The proof of (3) follows from the definition of derivative:

da(t)
dt

= lim
ε→0+

a(t + ε)− a(t)
ε

= lim
ε→0+

a(t + ε)− a(t + ε)∂(Tε(h(t)))/(∂h(t))
ε

(by (6))

= lim
ε→0+

a(t + ε)− a(t + ε) ∂
∂h(t)

(
h(t) + εf (h(t), t, θ) +O(ε2)

)
ε

(Taylor series of h(t + ε) = Tε(h(t), ε))

= lim
ε→0+

a(t + ε)− a(t + ε)
(
I + ε ∂f (h(t),t,θ)

∂h(t) +O(ε2)
)

ε

= lim
ε→0+

−εa(t + ε) ∂f (h(t),t,θ)
∂h(t) +O(ε2)
ε

= lim
ε→0+

−a(t + ε)
∂f (h(t), t, θ)

∂h(t)
+O(ε)

= −a(t)
∂f (h(t), t, θ)

∂h(t)

(7)

• Next, we compute gradient w.r.t. θ. We can generalize (3) to obtain gradient w.r.t. θ
and t. We view θ (θ(t) = θ) and t (t(t) = t) as states with constant differential
equations and write

∂θ(t)

∂t
= 0,

dt(t)

dt
= 1. (8)

• We can then combine these with h to form an augmented state with corresponding
differential equation and adjoint state,

d

dt

h
θ
t

 (t) = faug ([h, θ, t]) :=

f ([h, θ, t]
0
1

 , (9)

• The Jacobian of faug has the form

∂faug (t)

∂[h, θ, t]
=

 ∂f
∂h

∂f
∂θ

∂f
∂t

0 0 0
0 0 0

 (t) (10)

where 0 is a matrix of zeros with the appropriate dimensions.

• We plug this into (3) to obtain

daaug (t)
dt

= −[a(t) aθ(t) at(t)]
∂faug

∂[h, θ, t]
(t) = −

[
a
∂f

∂h
a
∂f

∂θ
a
∂f

∂t

]
(t).

where

aaug :=

 a
aθ
at

 , aθ(t) :=
dL

dθ(t)
, at(t) :=

dL

dt(t)
.

• The first element is the adjoint differential equation (3), as expected. The second
element can be used to obtain the total gradient w.r.t. the parameters, by integrating
over the full interval and setting aθ(T) = 0 (L is independent of θ(T)).

dL

dθ
= aθ(0) = −

∫ 0

T
a(t)

∂f (h(t), t, θ)
∂θ

dt. (11)

Advantages of Neural ODEs

• Memory efficiency: Recall that in backpropagation we need to store any
intermediate quantities of the forward pass, which is expensive in memory footprint.
Later, we will see that in training neural ODEs we do not need to store these
intermediate quantities.

• Continuous time-series models: Neural ODE can learn time-series that are
irregularly-observed in time, which is significantly different from RNNs.

Computational bottleneck of neural ODEs

NFEs can be excessively high in training neural ODEs, resulting in complicated models.

As training goes, the stiffness of NODE keeps increasing!

Learning bottleneck of neural ODEs

Lemma 1. For neural ODEs, we have
∂L

∂ht
=

∂L

∂hT

∂hT

∂ht
=

∂L

∂hT
exp

{
−
∫ t

T

∂f

∂h
(h(s), s, θ)ds

}
,

the adjoint state ∂L/∂ht vanishes quickly, making neural ODE cannot learn long-term
dependencies.

Note that if
∫ t
T
∂f
∂h (h(s), s, θ) is large, then

∂L
∂ht
≈ 0, i.e., vanishing gradient.

Remark. BPTT for training the RNN model ht = σ
(
Uht−1 + Wxt

)
:

∂L

∂ht
=

∂L

∂hT
· ∂hT

∂ht
=

∂L

∂hT
·
T−1∏
k=t

∂hk+1

∂hk
=

∂L

∂hT
·
T−1∏
k=t

(DkU>),

where Dk = diag(σ′(Uhk + Wxk+1)) is a diagonal matrix with σ′(Uhk + Wxk+1) being its
diagonal entries.

Heavy-ball Neural Ordinary Differential Equations

H. Xia*, V. Suliafu*, H. Ji, T. Nguyen, A. Bertozzi, S. Osher, B. Wang, Heavy-ball
Neural Ordinary Differential Equations, NeurIPS 2021.

Drawbacks of neural ODEs

• Computationally expensive: requiring solving an ODE in both forward and backward
propagation.

• Cannot learn long-range dependencies: For neural ODEs, we have

∂L

∂ht
=

∂L

∂hT

∂hT

∂ht
=

∂L

∂hT
exp

{
−
∫ t

T

∂f

∂h
(h(s), s, θ)ds

}
,

the adjoint state ∂L/∂ht vanishes quickly, making neural ODE cannot learn long-term
dependencies.

Recap: Derivation of the heavy-ball ODE

x t+1 = x t − η∇f (x t) + θ(x t − x t−1),

Let mt+1 := (x t+1 − x t)/
√
η and let θ := 1− γ√η, where γ ≥ 0 is another

hyperparameter. Then we have

x t+1 − x t

√
η

= −√η∇f (x t) + (1− γ√η)x
t − x t−1
√
η

,

therefore, we can rewrite the heavy-ball method as

mt+1 = (1− γ√η)mt −√η∇f (x t); x t+1 = x t +
√
ηmt+1.

Let η → 0; we obtain the following system of first-order ODEs

dX (t)

dt
= M(t);

dM(t)

dt
= −γM(t)−∇f (X (t)),

which can be further written as

Ẍ (τ) + γẊ (τ) +∇f (X (τ)) = 0.

What if we parameterize −∇f (X (τ)) by a neural network?

Heavy-ball neural ODE can accelerate forward and backward propagation.

Heavy-ball Neural ODEs

Heavy-ball neural ODE (HBNODE)

d2h(t)
dt2

+ γ
dh(t)
dt

= f (h(t), t, θ), γ ≥ 0. (12)

The above HBNODE is equivalent to the following system of first-order neural ODEs

dh(t)
dt

= m(t);
dm(t)

dt
= −γm(t) + f (h(t), t, θ). (13)

Stiffness analysis of the linearized models

Let us compare the stiffness of the following two ODE models

dh(t)
dt

= Ah(t)

and

dh(t)
dt

= m(t)

dm(t)

dt
= −γm(t) + Ah(t),

i.e.,
d

dt

(
h(t)
m(t)

)
=

(
0 I
A −γI

)
︸ ︷︷ ︸

:=B

(
h(t)
m(t)

)

The stiffness of ODEs is defined by the ratio between the largest and the smallest
eigenvalues (in absolute value). We consider the case when A is positive definite.

Stiffness of the linearized models

Let the eigenvalues and the corresponding eigenvectors of A ∈ Rd×d be {λi , vi}di=1.
We assume the eigenvectors of B has the following form(

vi
cvi

)
, where c is a constant,

then we have (
0 I
A −γI

)(
vi
cvi

)
=

(
cvi

λivi − γcvi

)
Let λ̃ be the eigenvalue of B, then we have

c

1
= λ̃ =

λi − γc
c

Thus:

c2 + γc − λi = 0 =⇒ c = λ̃ =
γ ±

√
γ2 + 4λi
2

Stiffness of linearized models

Each eigenvalue λi of the matrix A correspond to two eigenvalues of the matrix B,
given by

λ̃i ,1 =
γ +

√
γ2 + 4λi
2

, and λ̃i ,2 =
γ −

√
γ2 + 4λi
2

.

Stiffness of linearized models

We assume the eigenvalues of A are sorted as follows:

0 < λmin ≤ λ2 ≤ λ3 ≤ . . . ≤ λmax.

Therefore, we have

λ̃max =
γ +

√
γ2 + 4λmax

2
and |λ̃min| =

∣∣∣∣∣γ −
√
γ2 + 4λmin

2

∣∣∣∣∣.
Thus the stiffness ratio of the matrix B satisfies

S(B) =
γ +

√
γ2 + 4λmax

|γ −
√
γ2 + 4λmin|

≤︸︷︷︸
let γ=0

√
λmax

λmin
=
√
S(A).

Analysis of the adjoint state of the heavy-ball neural ODEs.

Adjoint of HBNODE

Theorem 2. The adjoint state ah and am of the following HBNODE

dh(t)
dt

= m(t);
dm(t)

dt
= −γm(t) + f (h(t), t, θ),

satisfies the following first-order ODEs

dah

dt
= am(t)

∂f

∂h
;

dam

dt
= −ah(t) + γam(t). (14)

Proof of Theorem 2.
• First, recall the adjoint state a(t) of the neural ODE dh(t)

dt = f (h(t), t, θ) satisfy the
following ODE

da(t)
dt

= −a(t)
∂f (h(t), t, θ)

∂h(t)
.

• Let n(t) = [h(t) m(t)] and a(t) = [ah(t) am(t)], then we can rewrite HBNODE as

d

dt
[h(t), m(t)] = [m(t), −γm(t) + f (h(t), t, θ)]

• Therefore, we have

d

dt
[ah am] = −[ah am]

[
∂m
∂h

∂m
∂m

∂
(
−γm(t)+f (h(t),t,θ)

)
∂h

∂
(
−γm(t)+f (h(t),t,θ)

)
∂m

]

i.e.,
dah

dt
= am(t)

∂f

∂h
;

dam

dt
= −ah(t) + γam(t).

Adjoint ODE of the HBNODE

Theorem 3. The adjoint state a(t) := ∂L/∂m(t) for the HBNODE (12) satisfies the
following HBODE with the same damping parameter γ as that in (12),

d2a(t)
dt2

− γ da(t)
dt

= a(t)
∂f

∂h
(h(t), t, θ). (15)

Remark. Note that we solve the adjoint equation (15) from time t = T to t = t0 in
the backward propagation. By letting τ = T − t and b(τ) = a(T − τ), we can rewrite
(15) as follows (note that da(t)

dt = da(T−τ)
dt = −da(T−τ)

dτ = −db(τ)
dτ),

d2b(τ)
dτ2 + γ

db(τ)
dτ

= b(τ)
∂f

∂h
(h(T − τ),T − τ, θ). (16)

The adjoint of HBNODE is also a HBNODE with the same damping parameter.

Adjoint state analysis

Theorem 4. The adjoint states ∂L
∂ht

and ∂L
∂mt

of the following HBNODE

dh(t)
dt

= m(t);
dm(t)

dt
= −γm(t) + f (h(t), t, θ). (17)

satisfy [
∂L
∂ht

∂L
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

]
exp

{
−
∫ t

T

[
0 I
∂f
∂h −γI

]
ds︸ ︷︷ ︸

:=M

}
. (18)

Proof of Theorem 4.
• Recall for neural ODE dh(t)

dt = f (h(t), t, θ), we have

∂L

∂ht
=

∂L

∂hT

∂hT

∂ht
=

∂L

∂hT
exp

{
−
∫ t

T

∂f

∂h
(h(s), s, θ)ds

}
,

• Let n(t) = [h(t) m(t)] and a(t) = [ah(t) am(t)], then we can rewrite HBNODE as

d

dt
[h(t), m(t)] = [m(t), −γm(t) + f (h(t), t, θ)]

• Therefore, we have[
∂L
∂ht

∂L
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

]
exp

{
−
∫ t

T

[
∂m
∂h

∂m
∂m

∂(−γm+f)
∂h

∂(−γm+f)
∂m

]
ds
}

=
[
∂L
∂hT

∂L
∂mT

]
exp

{
−
∫ t

T

[
0 I
∂f
∂h −γI

]
ds︸ ︷︷ ︸

:=M

}
.

Adjoint analysis

Proposition 1. The eigenvalues of the matrix −M can be paired so that the sum of
each pair equals (t − T)γ.

Remark: The eigenvalues cannot all be very small, thus the adjoint will not vanish.

Proof of Proposition 1. Let F = 1
t−T

∫ t
T
∂f
∂h (h(s), s, θ)ds and H = 1

t−T M , then we
have the following equation

H =
1

t − T
M =

[
0 I
F −γI

]
. (19)

Then the characteristic polynomial of H satisfies

chH(λ) = det(λI −H) = det

[
λI −I
−F (λ+ γ)I

]
= det(λ(λ+ γ)I − F) = −chF (λ(λ+ γ)).

(20)

We can write the characteristic polynomial of F as

chF (λ) =
n∏

i=1

(λ− λF ,i),

therefore

chH(λ) = −chJF (λ(λ+ γ)) = −
n∏

i=1

(λ(λ+ γ)− λF ,i). (21)

Therefore, the eigenvalues of H appear in n pairs with each pair satisfying the
quadratic equation

λ(λ+ γ)− λF ,i = 0. (22)

By Vieta’s formulas, the sum of these pairs are all −γ. Therefore, the eigenvalues of M
comes in n pairs and the sum of each pair is −(t − T)γ.

Remark on vanishing adjoint states

• By Schur decomposition, there exists an orthogonal matrix Q and an upper triangular
matrix U , where the diagonals of U are eigenvalues of Q ordered by their real parts, s.t.

−M = QUQ> =⇒ exp{−M} = Q exp{U}Q>. (23)

• Let v> :=
[
∂L
∂hT

∂L
∂mT

]
Q,[

∂L
∂ht

∂L
∂mt

]
=
[

∂L
∂hT

∂L
∂mT

]
exp{−M} =

[
∂L
∂hT

∂L
∂mT

]
Q exp{U}Q> = v> exp{U}Q>. (24)

• By taking the `2 norm in (24) and dividing both sides by
∥∥∥ [∂L

∂hT

∂L
∂mT

] ∥∥∥
2
, we arrive at∥∥∥ [∂L

∂ht

∂L
∂mt

] ∥∥∥
2∥∥∥ [∂L

∂hT

∂L
∂mT

] ∥∥∥
2

=

∥∥v> exp{U}Q>
∥∥

2
‖v>Q>‖2

=
‖v> exp{U}‖2

‖v‖2
= ‖e> exp{U}‖2, (25)

i.e.,
∥∥∥ [∂L

∂ht

∂L
∂mt

] ∥∥∥
2
=
∥∥∥e> exp{U}

∥∥∥
2

∥∥∥ [∂L
∂hT

∂L
∂mT

] ∥∥∥
2
where e = v/‖v‖2.

Remark on vanishing adjoint states

• For a given constant a > 0, we can group the upper triangular matrix exp{U} as
follows

exp{U} :=
[
exp{UL} P

0 exp{UV }

]
, (26)

where the diagonal of UL (UV) contains eigenvalues of −M that are no less (greater)
than (t − T)a.

• Then, we have ‖e> exp{U}‖2 ≥ ‖e>L exp{UL}‖2 where the vector eL denotes the first
m columns of e with m be the number of columns of UL. By choosing 0 ≤ γ ≤ 2a, for
every pair of eigenvalues of −M there is at least one eigenvalue whose real part is no
less than (t − T)a. Therefore, exp{UL} decays at a rate at most (t − T)a, and the
dimension of UL is at least n × n.

