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Embeddings and Language Models



Converting words to vectors

e In natural language processing (NLP), our inputs are sequences of words, but deep
learning needs vectors.

e How to convert words to vectors?



Converting words to vectors

e In natural language processing (NLP), our inputs are sequences of words, but deep
learning needs vectors.

e How to convert words to vectors?

e Simplest idea: one-hot encoding.



One-hot encoding

Vocabulary
index:  Word:

0 aardvark

1 able
2409 black
2410 bling
3202 candid
3203 cast
3204 cat
5281 is
5282 island
8676 the
8677 thing

9999

zombie

caf
Cal



Problems with one-hot encoding

e Scales poorly with vocabulary size.

e Very high-dimensional sparse vectors: neural network operations work poorly.

e Violates what we know about word similarity (e.g. “run” is as far away from “running”
as from “poetry”).



Map one-hot to dense vectors

sparse one-hot
encoding of words
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Problem: how do we find the values of the embedding matrix?
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Solution: Learn as part of the task

CLASS torch.nn.Embedding (num_embeddings: int, embedding_dim: int,
padding_idx: Optional[int] = None, max_norm: Optional[float] = None,
norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool
= False, _weight: Optional[torch.Tensor] = None)

[SOURCE]

e A simple lookup table that stores embeddings of a fixed dictionary and size.

e This module is often used to store word embeddings and retrieve them using indices.
The input to the module is a list of indices, and the output is the corresponding word
embeddings.



Word2Vec — 1
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Word2Vec — 2

llking"
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MMan"
| 11 1 1
“Woman”



Word2Vec — 3

king - man + woman
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Word2Vec — 4

king - man + woman ~= queen



Some NLP Applications



Q&A: SQUAD

Q&A: SQUAD

* 100K question-answer pairs

* Answers are always spans in

the question

In meteorology, precipitation is any product
of the condensation of atmospheric water vapor
that falls under gravity. The main forms of pre-
cipitation include drizzle, rain, sleet, snow, grau-
pel and hail... Precipitation forms as smaller
droplets coalesce via collision with other rain
drops or ice crystals within a cloud. Short, in-
tense periods of rain in scattered locations are
called “showers”.

What causes precipitation to fall?
gravity

What is another main form of precipitation be-
sides drizzle, rain, snow, sleet and hail?
graupel

Where do water droplets collide with ice crystals
to form precipitation?
within a cloud



Natural Language Inference: SNLI

Natural Language Inference: SNLI

« What relation exists between piece of text and hypothesis?

¢ 570K pairs

A man inspects the uniform of a figure in some East
Asian country.

An older and younger man smiling.

A black race car starts up in front of a crowd of
people.

A soccer game with multiple males playing.

A smiling costumed woman is holding an um-
brella.

contradiction
ccccce

neutral
NNENN

contradiction
ccceccece

entailment
EEEEE

neutral
NNECN

The man is sleeping

Two men are smiling and laughing at the cats play-
ing on the floor.

A man is driving down a lonely road.

Some men are playing a sport.

A happy woman in a fairy costume holds an um-
brella.




GLUE -1

Is the sentence grammatical or
ungrammatical?

Is the movie review positive, negative,
or neutral?

Is the sentence B a paraphrase of
sentence A?

How similar are sentences A and B?

Are the two questions similar?

Does sentence A entail or contradict
sentence B?

"This building is than that one."
= Ungrammatical

"The movie is funny , smart, visually inventive , and most of all , alive ."
=.93056 (Very Positive)

A) "Yesterday , Taiwan reported 35 new infections , bringing the total number of cases to 418 ."
B) "The island reported another 35 probable cases yesterday , taking its total to 418 ."
= A Paraphrase

A) "Elephants are walking down a trail."

B) "A herd of elephants are walking along a trail."

= 4.6 (Very Similar)

A) "How can | increase the speed of my internet connection while using a VPN?"
B) "How can Internet speed be increased by hacking through DNS?"

= Not Similar

A) "Tourist Information offices can be very helpful."

B) "Tourist Information offices are never of any help."
= Contradiction



GLUE -2

A) "What is essential for the mating of the elements that create radio waves?"

B) "Antennas are required by any radio receiver or transmitter to couple its electrical connection
Does sentence B contain the answer to  to the electromagnetic field."
the question in sentence A? = Answerable

A) "In 2003, Yunus brought the microcredit revolution to the streets of Bangladesh to support
more than 50,000 beggars, whom the Grameen Bank respectfully calls Struggling Members."
B) "Yunus supported more than 50,000 Struggling Members."

Does sentence A entail sentence B? = Entailed

Sentence B replaces sentence A's A) "Lily spoke to Donna, breaking her concentration."
ambiguous pronoun with one of the B) "Lily spoke to Donna, breaking Lily's concentration."
nouns - is this the correct noun? = Incorrect Referent

e O tasks, model score is averaged across them.



Large Language Models

e ChatGPT

e Bard



Transformers



Attention is all you need

Output
Probabilities

Add & Norm
Feed
Forward

Add & Norm

Muilti-Head

Add & Norm
Feed Attention
Forward Nx
N Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
\ J
Positional Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

e Encoder-decoder with only attention and fully
connected layers (no recurrent or convolutions).

e Set new SOTA on translation datasets and many
more.

Vaswani et al., Attention is all you need, NeurlPS 2017.



Attention is all you need

4 )
Add & Norm
Feed
Forward
Nx ~{"Add & Norm
Multi-Head
Attention
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Positional D
Encoding
Input
Embedding

I

Inputs

e For simplicity, we can focus just on the encoder. For
instance, BERT is just the encoder.

e The components:
o (Masked) Self-attention

e Positional encoding

e Layer normalization



Basic self-attention

e Input: sequence of tensors xi, xp, - -+ , X;.
e Output: sequence of tensors, each one a weighted sum of the input sequence:
Yi,¥2,: -, Y, where Yi = Z Wi X;.
J

— wjj is a function of x; and x;

/
exo() -
, where w = x; x;.

5 exp(w}) i

wjj =



Basic self-attention

X1 X2 X3 X4

The Cat is yawning



Basic self-attention — Problems

e No learned weights — Let us learn some weights!

e Order of the sequence does not affect the result of computations. (Permutation
invariance)



Query, key, value

e Every input vector x; is used in 3 ways:

I e Compared to every other vector to compute
attention weights for its own output y; (query).

e Compared to every other vector to compute

@ attention weight w;; for output y; (key).
|
(|

e Summed with other vectors to form the result
of the attention-weighted sum (value).



Query, key, value

Y2

Wixs W,x3

O
W, xz

X2 X3 X4

e We can process each input vector to fulfill
the three roles with matrix multiplication.

e Learning the matrices, i.e., learning
attention Each vector is mapped to three
vectors: query, key, and value.

qi = Wyx;, ki=W,x;, vi=W,x;
/ _ q’ k

wijj = softmax( wj)

Yi= E WijVj.
J



Multi-head attention

. Xi
L]
w, q.
W, q?
3
Wq H B q?
[ | []

e Multiple “heads” of attention just means learning
different sets of W, W, and W, matrices
simultaneously.

e Implemented as just a single matrix anyway ...



Transformer

e Self-attention layer — Layer normalization — Dense layer

input transformer block output

G




Layer normalization

input vectors have uniform mean
and std in each dimension.

( /.\ ot N ‘ /@ ] e Neural net layers work best when
~ 1 — ‘\\ /,/‘

Gradient of larger parameter Both parameters can be
dominates the update updated in equal proportions

e As inputs flow through the
network, means and std’s get
blown out.

e Layer normalization is a hack to
reset things to when we want them
in between layers.




Transformer

So far:
e Learned query, key, value weights.
e Multiple heads.

e Order of the sequence does not affect result of computations: Let us encode
each vector with position.



Transformer

e Position embedding: just what it sounds!

input word position output
sequence embedding embedding sequence

e [+ [T
movie [ 1+ I

90| JauLoysues}

300|q JeuLojsuel}

390]q JoWlojsues}
v

HEE

For instance, let d be the dimension of the word embedding, then one particular
position embedding scheme is

. pos _ B pos
PE(pos’z,-) = sin (W>y PE(pos,2i+1) = Cos (100002i/d>



Transformer: last trick

e Since the Transformer sees all inputs at once, to predict next vector in sequence (e.g.
generate text), we need to mask the future.

input word, pos output character target
sequence embedding sequence probabilities  sequence

(O D e
__Sigennn B
= uls snnll
EY R o
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Transformer: last trick

e Since the Transformer sees all inputs at once, to predict next vector in sequence (e.g.
generate text), we need to mask the future.

=4
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yi cannot see x; for j > i.



Transformers-based Al Models



Transformers: Recap

Output
Probabilities

Add & Norm
Feed
Forward
Add & Norm

Muiti-Head
Attention

Add & Norm

Nx
N Add & Norm
Add & Norm VR
Multi-Head Multi-Head
Attention Attention
A ’ A B
\ )
Positional A Positional
Encoding Encoding
Input Output
Embedding Embedding

!

Inputs Outputs

e Encoder-decoder for translation.



Transformers: Recap

e 1 1 o target .
e Encoder-decoder for translation.
[ merge | l

oo B e Later models made it mostly just the
seq-to-seq .
encoder or just the decoder.

to-seq
latent
vector o ... but then the latest models are back to
h 11 h 11

. nput encoder-decoder.

encoder



GPT/GPT-2

e Generative Pre-trained Transformer
e GPT learns to predict the next word in the sequence

e Since it conditions only on preceding words, it uses masked self-attention

Self-Attention Masked Self-Attention

C 1) I




GPT/GPT-2

t

"6 [ DECODER BLOCK ]

%Transformer—Decoder

I
<s> robot must obey
1 2 3 4 4000

Trained on 8M web pages

2 [ DECODER BLOCK ]

DECODER BLOCK

My GPT2
H : EXTRA

ot

GPT-2

@ GPT.2 MEDIUM

Model Di 768 Model Di 1024

117M params 345M params

Model Dimensionality: 1280

762M params

Model Dimensionality: 1600
1.5B params



BERT

e Bidirectional Encoder Representations from Transformers
e Encoder blocks only (no masking)

e BERT involves pre-training on a lot of text with 15% of all words masked out. Also,
sometimes predicting whether one sentence follows another.

e 340M parameters: 24 transformer blocks, embedding dim of 1024, 16 attention heads.



BERT

ﬁ: Mask LM
®

Mask LM \
*

BERT

@

Masked Sentence A

*
Unlabeled Sentence A and B Pair

/@ MAD Start/End SpaN

Masked Sentence B

Pre-training

k&& Question P Paragraph /
Question Answer Pair

Fine-Tuning



More transformer-based Al models
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Linearized Self-Attention

Katharopoulos et al. Transformers are RNNs: Fast Autoregressive Transformers with
Linear Attention, ICML 2020.



Self-attention mechanism: Recap

Self-attention mechanism: Transforms sequences X := [xi,--- ,xy]" € RN*Dx a5
follows:

Step 1. Project X into @, K, and V:
Q=XWJ; K=XW; V=XW,,

where Wg, Wx € RP*Px and W, € RP"*Dx are learnable. Q :=[q1,--- ,qn] ",
similar for K and V.

Step 2. Output sequence V := [Vn,- -, Un], where

- q k;
v, = Zsoftmax( /D )vj.

j=1




Self-attention mechanism: Bottlenecks

T

N a; k; K
v, = Jz:;softmax( /D /D )V = AV.

Bottleneck: Store A takes O(N?) memory and compute AV costs O(N?) time.

>vj, —= V= softmax<



Relaxation

Note that
N

v, = Z softmax(ti"—rfg) v,

Jj=1

can be written as N
A Zj:l Slm(qi) k_])v_l

i — )

Zszl sim(q;, k;)

where sim(q;, k;) = exp (%).



Relaxation

Note that

v, = softmax( ! ) vj,
- 5y

can be written as N

I Y

Z‘jl'\l::[ Sim(qiv k./)

where sim(q;, k;) = exp (%).

Key idea: Replace sim(q;, k;) with a kernel k(qg;, k;) that can be represented as the
inner product of a feature map on g; and k;, i.e., k(q;, kj) = ¢(q;)T¢(kj).



Linearized self-attention

o ZJ,V:]_ sim(q;, kj)v; ~ Zszl k(qi, kj)v; _ o(qi)" Zszl ¢(kj)VjT.
LN sim(gn k) SN k(ai k) é(a)T SN o(k)



Advantages of linearized self-attention

V=AV~x(ab")V=a(b'V),

—ab' is the rank-one approximation of the matrix A.

Remark. Computing AV requires O(N?) complexity in computational time and
memory footage. However, compute a(b' V) only requires O(N) complexity in
computational time and memory footage.

Remark. Rank-one approximation of A is a quite poor approximation.



FMMformer: Efficient and Flexible Transformers with Decomposed
Near-field and Far-field Attention

T. Nguyen, V. Suliafu, S. Osher, L. Chen, and B. Wang, FMMformer: Efficient and
Flexible Transformers with Decomposed Near-field and Far-field Attention, NeurlPS
2021.



Gravitational force calculation




Physics analogue

N qu N
v = softmax ( =L Jvj, <= ¥; = k(qi, k) v;.
> stns () > kaky

Jj=1
——
Force calculation?

Simplest idea: cutoff = sparse (local) attention. Problematic if k(q;, k;) = Hqiikn
i —Kj

Physics analogue: gravitational and electrostatics force calculation. Long-range force
where the potential decays at the rate 1/|/q; — k;||.

Computational math toolbox: particle mesh Ewald (PME) (Ewald, Ann. Phys. 1921.);
fast multipole method (FMM) (Greengard and Rokhlin, JCP, 1987.)

PME: calculate near-field interaction in real-space and calculate far-field interaction in the k-space.
FMM: direct calculation of near-field interaction and coarse-grain far-field interaction.



Fast multipole method & its algebraic interpretation

Key idea of FMM: far-field interaction can be well-approximated by separable low-rank
matrices while the near-field interaction can be calculated directly.

Let A € RVXN encodes interaction among all particles, where A(i,j) = g(|lqi — k;|)
with g be smooth except at 0 and g(st) = g(s)g(t). E.g., g(|lgi — kj||) = 1/||qi — ki||.

Def. [Well-separation] Let us partition {1,---, N} into two groups {T1, T»}, then Ty
is called well-separated from T, if 3k* and a number § s.t.

|\kj — k*|| < 0|lqi — k™| Vie Ti,j€ To, eg., k™ isthe center of vectors in T».

In this case, |q; — kj| ~ |q; — k*| for any j € T,. The it row of A will be a constant
after excluding a banded matrix D from A, i.e., A — D is low-rank.



Fast multipole method & H-matrix

Proposition. [Informal] Let {77, T2} be two well-separated index sets. If g satisfies
certain conditions, for any € > 0, the sub-matrix A(T1, T2) can be approximated by a
rank p matrix to a relative tolerance £ > 0 in the sense that: there exists rank p
matrices U € RIT11%P Vv ¢ RIT2IxP with p > C|loge| for some constant C, such that

A(i,j) — (UVT)(i,j)| <€ VieTi,je T



Taking above well-separated set partitioning recursively, we get the following H-matrix.




Low-rank approximation via kernel tricks

Benefits of low-rank approximation: LV requires O(N?) computational time and
memory costs if L € RV*N. However, if L is rank r with r < N, then

LV = (ab] +ayb, +---+a,b] )V = ay(b] V) + ax(b, V) +---+ a,(b] V),

O(N?) O(N)

Practical low-rank attention:

o Stk k)y S o(a)Totk)y  ola)” S ék)v
SN kank) XM e(a)Telk)  ola)T XN ok

$(Q)(6(K)"V)
A(Q)e(K)T

Select a set of linearly independent feature maps {¢;(-)}/_; = rank-r attention.

V=




Banded matrix modeling of near-field attention

We model the near-field attention with the following banded matrix

-
D = softmax (bandk ( C\,/KE )) ,

with k < N.



FMMformer

Original self-attention mechanism:

N T T
~ q; kj o QK
v, = softmax v;, <= V = softmax V.= AV.
RNLEL W (@)
FMMformer:
b _ ~ ¢1(Q)(¢/(K) V)
V- mov) e (,Z QKT )

banded: near-field attention

rank r: far-field attention

where wy and w» are two learnable weights with positivity constraints.



Random Fourier Features

Rahimi and Recht, Random Features for Large-Scale Kernel Machines, NeurlPS, 2007.



Question

Given a kernel k(x,y) = ¢(x) " ¢(y), where ¢(-) is a feature map which can be
infinite-dimensional. How to construct a finite-dimensional explicit feature map z(-)
such that k(x,y) ~ z(x)"z(y). In particular, consider the following kernels:

exp(x'y),

and
exp([|x — ylf3)-



Random features

k(x,y) = (¢(x), ¢(y))v =~ z(x) " z(y).

e The idea was inspired by the following observation. Let w € RP be a random vector

such that
WNND(O,I). (2)

Now define h as
h:x — exp(iw'x). (3)

Above, i is the imaginary unit.



e Importantly, recall that the complex conjugate of e is e=*. Then note

Eu[h(x)h(y)"] = Eulexp(iw (x — y))] = /R p(w)exp(iw” (x — y))dw

= exp ( - %(x —y) (x - y)),

(4)

where the superscript * denote the complex conjugate. In other words, the expected
value of h(x)h(y*) is the Gaussian kernel.



Gaussian kernel derivation, i.e., Equation (4)
Letd=x—y:

Ew[h(x)h(y)*] = Ewlexp(iw " x) exp(—iw " y)]

= Ey[exp(iw 5)]—/ p(w)exp(iw' 8)dw

= (2m) D/2/ xp(

) exp(iw " 8)dw

2"
= (2n) D/z/ xp( (% T —iné))dw
(5)
1 T T Lo
S (wTw —2iwT5—67) = 2675)dw

= (2n) D/Z/ exp(
= (2n) P exp (— %5 3) /RDexp( %(w—ié)T(w—ié))dw

(2m)P/2

= exp(—%éTd) = k(9).

In other words, k(-) is the Gaussian kernel with p(w) be a spherical Gaussian.



Bochner's theorem

The above result is a specific instance of Bochner's theorem.

Bochner's theorem. A continuous kernel k(x,y) = k(x — y) on RP is positive
definite if and only if k(A) is the Fourier transform of a non-negative measure.



The Fourier transform of a non-negative measure, call it p(w), is

k(A) :/p(w) exp(iwA)dw. (6)

Remark. Bochner's theorem gives us a general framework to approximate any shift
invariant kernel (Gaussian, Laplace, and Cauchy kernels) by re-defining h(-) in (3) to
depend on w from any non-negative measure p(w), not just the spherical Gaussian in
(2). Furthermore, is we sample R i.i.d. realizations {w,}_;, we can lower the variance
of this approximation:



1R

~ 2> (i, (x— y)

1 r=1

. T .
ﬁ exp(iwy' x) ﬁ exp(—iwy x) (7)
B ﬁ exp(iw, x) ﬁ exp(—iw, x)
ﬁ exp(iwg Tx) ﬁ exp(—iwg Tx)

Z_h(x)h(y)".

2

e Step 1 is a Monte Carlo approximation of the expectation (w,s are sampled from the
distribution p(w)).

e Step 2 is the definition of a random map h: RP? — RF, so an R-vector of normalized (")
transformations.



k(x,y) = k(x —y)

1 T

75 exp(iw x) # exp(—iw;' x)
B # exp(iw, x) # exp(—iw, x)
ﬁ exp(iwg Tx) ﬁ exp(—iwg Tx)
=_h(x)h(y)".
2

Remark. Note that we've talked about the dot product z(x) T z(y), but above we have

h(x)h(y)*. As we will see next, the imaginary part of our random map will disappear, and the
new transform is what we used in machine learning.



Fine tuning

We have discussed the big idea of a low-dimensional, randomized map and why it might
work, let us get into the weeds.

e First, note that since both our distribution NVp(0, 1) and the kernel k(A) are
real-valued, we can write

ep(iw'(x—y)) = cos(w'(x~y)) —isin(wHx=y)) = cos(w' (x - y)) (8)

Euler's formula

e We can then define z,(x)—-note that this is still not yet the bolded z—without the
imaginary unit as
w ~ p(w)
b ~ Uniform(0, 27) (9)
Zw(x) = V2 cos(w ' x + b).

This works because



Ewlzw(X)zw(y)] = Ew[\@ COS(WTX + b)\@cos(wTy + b)]
= Eyfcos(w'(x +y)+2b)] + Ey[cos(w ' (x — y))]
W (10)
= Eufcos(w (x — y))
(2)

e (1) is because of the following trigonometry identity
cos(x + y) = cos(x) cos(y) — sin(x) sin(y).

e (2) uses the fact that since b ~ Uniform(0, 27), the expectation w.r.t. b is zero:
Lemma.

Ew[cos(w ' (x +y) + 2b)] = Ey[Ep[cos(w ' (x + y) + 2b)|w]] = 0. (11)



Proof of the Lemma. Note that

Ewlcos(w ' (x +y) + 2b)] = Ey[Ep[cos(w ' (x + y) + 2b)|w]]

holds by the law of total expectation. We claim the inner conditional expectation is
zero. To ease notation, let t = w' (x — y). Then

2m cos(t +2b)

Ep[cos(t + 2b)|w] = / db

1 27
/ cos(t + 2b)db
27 Jo

1

—[sm t +2b)3 }
77
! (t+4
27T[sm —sin(t + 7T)]
=0

The last step holds because sin(t) = sin(t & 2mk) for any integer k.



Fine tuning
We are now ready to define the random map z : RP? — RF such that (?7?) holds. Let

#Zm(x)
L z,,(x)
2(x)= | VE " (12)
Tz 2we(X)
and therefore
1R
z(x ZZW, X)zw, (y =5 Z 2cos(w,Tx + by) cos(w,Ty + b,)

r=1

(13)
Zcos (x = y)) = Ew[cos(w (x — y))] = k(x,y).

We now have a simple algorithm to estimate a shift invariant, positive definite kernel.
Draw R samples of w ~ p(w) and b ~ Uniform(0, 27) and then compute z(x) ' z(x).



Alternative random Fourier features

An alternative version of random Fourier feature is
_ (cos(w," x)
2w, () = (sin(erx)) (14)
Draw R’ = R/2 samples
w, ~ p(w). (15)
Then
/ / R T
2 cos(w, x) cos(w," y)
R/ lelzwr(x) ZWr(y = ﬁ Z < <s|n rT ) (sin(w,Ty)
(16)

5 RI2
—Zcos w," x) cos(w,’ y) + sin(w, x)sin(w,’ y)

R/2
— 2 Ty T ~ T . o
\;R;COS(M wy) ~ Ewlcos(w (x — y))] = k(x,¥).

*



* in the last equation dues to the product identities from trigonometry:

2sin(x)sin(y) = cos(x — y) — cos(x=+7y); 2cos(x)cos(y) = cos(x — y) + coslx+7y).
(17)
The right-most terms above cancel in (16), and we get 2 cos(x — y).



Example: Gaussian kernel approximation

Let us first approximate a Gaussian kernel using random Fourier features. Sample R
i.i.d. w variables from a spherical Gaussian and then compute

T 1L T 1 T
z(x) z(y) = 7 E Zw, (X)) zw, (y) = B E cos(w, (x —y)). (18)
r=1 r=1

for each (x,y) pair in the data. The result N x N matrix is the approximate covariance
matrix induced by the Gaussian kernel function. Concretely, let Zx denote z(-) applied
to all N samples x,. Thus, Zx is N x R and therefore

z(x1)
Kx =~ : [z(x1) -+ z(xn)] = ZxZy, (19)

z(xn)



because

T T

k(x1,x1) -+ k(x1,xn) z(x1)'z(x1) - z(x1)' z(xn)
: : ~ : : (20)

k(x,\;,xl) k(xN.,xN) z(xN)Tz(xl) z(xN)+z(xN)

Exact RBF kernel ZZ",R=1 ZZ",R=10 ZZ",R=100 ZZ",R=1000

Figure: As R increases, the covariance matrix approximation improves because each cell value
uses more Monte Carlo samples to estimate the basis function ¢(-) associated with k(-,-) for
the pair of samples associated with that cell.



