
Lecture 14. Self-attention Mechanism and
Transformers

Bao Wang
Department of Mathematics

Scientific Computing and Imaging Institute
University of Utah

Math 5750/6880, Fall 2023

Embeddings and Language Models

Converting words to vectors

• In natural language processing (NLP), our inputs are sequences of words, but deep
learning needs vectors.

• How to convert words to vectors?

Converting words to vectors

• In natural language processing (NLP), our inputs are sequences of words, but deep
learning needs vectors.

• How to convert words to vectors?

• Simplest idea: one-hot encoding.

One-hot encoding

Problems with one-hot encoding

• Scales poorly with vocabulary size.

• Very high-dimensional sparse vectors: neural network operations work poorly.

• Violates what we know about word similarity (e.g. “run” is as far away from “running”
as from “poetry”).

Map one-hot to dense vectors

Problem: how do we find the values of the embedding matrix?

Solution: Learn as part of the task

• A simple lookup table that stores embeddings of a fixed dictionary and size.

• This module is often used to store word embeddings and retrieve them using indices.
The input to the module is a list of indices, and the output is the corresponding word
embeddings.

Word2Vec – 1

Word2Vec – 2

Word2Vec – 3

Word2Vec – 4

Some NLP Applications

Q&A: SQuAD

Natural Language Inference: SNLI

GLUE – 1

GLUE – 2

• 9 tasks, model score is averaged across them.

Large Language Models

• ChatGPT

• Bard

· · ·

Transformers

Attention is all you need

• Encoder-decoder with only attention and fully
connected layers (no recurrent or convolutions).

• Set new SOTA on translation datasets and many
more.

Vaswani et al., Attention is all you need, NeurIPS 2017.

Attention is all you need

• For simplicity, we can focus just on the encoder. For
instance, BERT is just the encoder.

• The components:
• (Masked) Self-attention

• Positional encoding

• Layer normalization

Basic self-attention

• Input: sequence of tensors x1, x2, · · · , xt .

• Output: sequence of tensors, each one a weighted sum of the input sequence:

y1, y2, · · · , yt , where yi =
∑
j

wijxj .

– wij is a function of xi and xj

wij =
exp(w ′ij)∑
j exp(w ′ij)

, where w ′ij = x>i xj .

Basic self-attention

Basic self-attention – Problems

• No learned weights → Let us learn some weights!

• Order of the sequence does not affect the result of computations. (Permutation
invariance)

Query, key, value

• Every input vector xi is used in 3 ways:
• Compared to every other vector to compute
attention weights for its own output yi (query).

• Compared to every other vector to compute
attention weight wij for output yj (key).

• Summed with other vectors to form the result
of the attention-weighted sum (value).

Query, key, value

• We can process each input vector to fulfill
the three roles with matrix multiplication.

• Learning the matrices, i.e., learning
attention Each vector is mapped to three
vectors: query, key, and value.

qi = Wqxi , ki = Wkxi , vi = Wvxi

w ′ij = q>i kj ,

wij = softmax(w ′ij)

yi =
∑
j

wijvj .

Multi-head attention

• Multiple “heads” of attention just means learning
different sets of Wq,Wk , and Wv matrices
simultaneously.

• Implemented as just a single matrix anyway ...

Transformer

• Self-attention layer → Layer normalization → Dense layer

Layer normalization

• Neural net layers work best when
input vectors have uniform mean
and std in each dimension.

• As inputs flow through the
network, means and std’s get
blown out.

• Layer normalization is a hack to
reset things to when we want them
in between layers.

Transformer

So far:

• Learned query, key, value weights.

• Multiple heads.

• Order of the sequence does not affect result of computations: Let us encode
each vector with position.

Transformer

• Position embedding: just what it sounds!

For instance, let d be the dimension of the word embedding, then one particular
position embedding scheme is

PE(pos,2i) = sin
(pos

100002i/d

)
; PE(pos,2i+1) = cos

(pos

100002i/d

)

Transformer: last trick

• Since the Transformer sees all inputs at once, to predict next vector in sequence (e.g.
generate text), we need to mask the future.

Transformer: last trick

• Since the Transformer sees all inputs at once, to predict next vector in sequence (e.g.
generate text), we need to mask the future.

yi cannot see xj for j > i .

Transformers-based AI Models

Transformers: Recap

• Encoder-decoder for translation.

Transformers: Recap

• Encoder-decoder for translation.

• Later models made it mostly just the
encoder or just the decoder.

• ... but then the latest models are back to
encoder-decoder.

GPT/GPT-2

• Generative Pre-trained Transformer

• GPT learns to predict the next word in the sequence

• Since it conditions only on preceding words, it uses masked self-attention

GPT/GPT-2

BERT

• Bidirectional Encoder Representations from Transformers

• Encoder blocks only (no masking)

• BERT involves pre-training on a lot of text with 15% of all words masked out. Also,
sometimes predicting whether one sentence follows another.

• 340M parameters: 24 transformer blocks, embedding dim of 1024, 16 attention heads.

BERT

More transformer-based AI models

Linearized Self-Attention

Katharopoulos et al. Transformers are RNNs: Fast Autoregressive Transformers with
Linear Attention, ICML 2020.

Self-attention mechanism: Recap

Self-attention mechanism: Transforms sequences X := [x1, · · · , xN]> ∈ RN×Dx as
follows:

Step 1. Project X into Q, K , and V :

Q = XW>
Q ; K = XW>

K ; V = XW>
V ,

where WQ ,WK ∈ RD×Dx , and WV ∈ RDv×Dx are learnable. Q := [q1, · · · ,qN]>,
similar for K and V .

Step 2. Output sequence V̂ := [v̂1, · · · , v̂N], where

v̂i =
N∑
j=1

softmax
(q>i kj√

D

)
vj .

Self-attention mechanism: Bottlenecks

v̂i =
N∑
j=1

softmax
(q>i kj√

D

)
vj , ⇐⇒ V̂ = softmax

(QK>√
D

)
V := AV .

Bottleneck: Store A takes O(N2) memory and compute AV costs O(N2) time.

Relaxation

Note that

v̂i =
N∑
j=1

softmax
(q>i kj√

D

)
vj ,

can be written as

v̂i =

∑N
j=1 sim(qi , kj)vj∑N
j=1 sim(qi , kj)

,

where sim(qi , kj) = exp
(

q>k√
D

)
.

Relaxation

Note that

v̂i =
N∑
j=1

softmax
(q>i kj√

D

)
vj ,

can be written as

v̂i =

∑N
j=1 sim(qi , kj)vj∑N
j=1 sim(qi , kj)

,

where sim(qi , kj) = exp
(

q>k√
D

)
.

Key idea: Replace sim(qi , kj) with a kernel k(qi , kj) that can be represented as the
inner product of a feature map on qi and kj , i.e., k(qi , kj) = φ(qi)

>φ(kj).

Linearized self-attention

v̂i =

∑N
j=1 sim(qi , kj)vj∑N
j=1 sim(qi , kj)

≈
∑N

j=1 k(qi , kj)vj∑N
j=1 k(qi , kj)

=
φ(qi)

>∑N
j=1 φ(kj)v>j

φ(qi)>
∑N

j=1 φ(kj)
.

Advantages of linearized self-attention

V̂ = AV ≈ (ab>)V = a(b>V),

– ab> is the rank-one approximation of the matrix A.

Remark. Computing AV requires O(N2) complexity in computational time and
memory footage. However, compute a(b>V) only requires O(N) complexity in
computational time and memory footage.

Remark. Rank-one approximation of A is a quite poor approximation.

FMMformer: Efficient and Flexible Transformers with Decomposed
Near-field and Far-field Attention

T. Nguyen, V. Suliafu, S. Osher, L. Chen, and B. Wang, FMMformer: Efficient and
Flexible Transformers with Decomposed Near-field and Far-field Attention, NeurIPS
2021.

Gravitational force calculation

Physics analogue

v̂i =
N∑
j=1

softmax
(q>i kj√

D

)
vj , ⇐⇒ v̂i =

N∑
j=1

k(qi , kj)vj .︸ ︷︷ ︸
Force calculation?

Simplest idea: cutoff ⇒ sparse (local) attention. Problematic if k(qi , kj) & 1
‖qi−kj‖ .

Physics analogue: gravitational and electrostatics force calculation. Long-range force
where the potential decays at the rate 1/‖qi − kj‖.

Computational math toolbox: particle mesh Ewald (PME) (Ewald, Ann. Phys. 1921.);
fast multipole method (FMM) (Greengard and Rokhlin, JCP, 1987.)

PME: calculate near-field interaction in real-space and calculate far-field interaction in the k-space.
FMM: direct calculation of near-field interaction and coarse-grain far-field interaction.

Fast multipole method & its algebraic interpretation

Key idea of FMM: far-field interaction can be well-approximated by separable low-rank
matrices while the near-field interaction can be calculated directly.

Let A ∈ RN×N encodes interaction among all particles, where A(i , j) = g(‖qi − kj‖)
with g be smooth except at 0 and g(st) = g(s)g(t). E.g., g(‖qi −kj‖) = 1/‖qi −kj‖.

Def. [Well-separation] Let us partition {1, · · · ,N} into two groups {T1,T2}, then T1
is called well-separated from T2 if ∃k∗ and a number δ s.t.

‖kj − k∗‖ ≤ δ‖qi − k∗‖ ∀i ∈ T1, j ∈ T2, e.g., k∗ is the center of vectors in T2.

In this case, |qi − kj | ≈ |qi − k∗| for any j ∈ T2. The i th row of A will be a constant
after excluding a banded matrix D from A, i.e., A−D is low-rank.

Fast multipole method & H-matrix

Proposition. [Informal] Let {T1,T2} be two well-separated index sets. If g satisfies
certain conditions, for any ε > 0, the sub-matrix A(T1,T2) can be approximated by a
rank p matrix to a relative tolerance ε > 0 in the sense that: there exists rank p
matrices U ∈ R|T1|×p,V ∈ R|T2|×p, with p ≥ C | log ε| for some constant C , such that

|A(i , j)− (UV>)(i , j)| ≤ ε, ∀i ∈ T1, j ∈ T2.

Taking above well-separated set partitioning recursively, we get the following H-matrix.

Low-rank approximation via kernel tricks

Benefits of low-rank approximation: LV requires O(N2) computational time and
memory costs if L ∈ RN×N . However, if L is rank r with r � N, then

LV = (a1b>1 + a2b>2 + · · ·+ arb>r)V︸ ︷︷ ︸
O(N2)

= a1(b>1 V) + a2(b>2 V) + · · ·+ ar (b>r V)︸ ︷︷ ︸
O(N)

,

Practical low-rank attention:

v̂i =

∑N
j=1 k(qi , kj)vj∑N
j=1 k(qi , kj)

=

∑N
j=1 φ(qi)

>φ(kj)vj∑N
j=1 φ(qi)>φ(kj)

=
φ(qi)

>∑N
j=1 φ(kj)v>j

φ(qi)>
∑N

j=1 φ(kj)
,

i.e.,

V̂ =
φ(Q)(φ(K)>V)

φ(Q)φ(K)>
.

Select a set of linearly independent feature maps {φl(·)}rl=1 ⇒ rank-r attention.

Banded matrix modeling of near-field attention

We model the near-field attention with the following banded matrix

D = softmax
(

bandk

(QK>√
D

))
, (1)

with k � N.

FMMformer

Original self-attention mechanism:

v̂i =
N∑
j=1

softmax
(q>i kj√

D

)
vj , ⇐⇒ V̂ = softmax

(QK>√
D

)
V := AV .

FMMformer:

V̂ = w1
(
DV

)︸ ︷︷ ︸
banded: near-field attention

+w2

(
r∑

l=1

φl(Q)(φl(K)>V)

φl(Q)φl(K)>

)
︸ ︷︷ ︸
rank r: far-field attention

,

where w1 and w2 are two learnable weights with positivity constraints.

Random Fourier Features

Rahimi and Recht, Random Features for Large-Scale Kernel Machines, NeurIPS, 2007.

Question

Given a kernel k(x , y) = φ(x)>φ(y), where φ(·) is a feature map which can be
infinite-dimensional. How to construct a finite-dimensional explicit feature map z(·)
such that k(x , y) ≈ z(x)>z(y). In particular, consider the following kernels:

exp(x>y),

and
exp(‖x − y‖22).

Random features

k(x , y) = 〈φ(x), φ(y)〉V ≈ z(x)>z(y).

• The idea was inspired by the following observation. Let w ∈ RD be a random vector
such that

w ∼ ND(0, I). (2)

Now define h as
h : x → exp(iw>x). (3)

Above, i is the imaginary unit.

• Importantly, recall that the complex conjugate of e ix is e−ix . Then note

Ew [h(x)h(y)∗] = Ew [exp(iw>(x − y))] =

∫
RD

p(w) exp(iw>(x − y))dw

= exp
(
− 1

2
(x − y)>(x − y)

)
,

(4)

where the superscript ∗ denote the complex conjugate. In other words, the expected
value of h(x)h(y∗) is the Gaussian kernel.

Gaussian kernel derivation, i.e., Equation (4)
Let δ = x − y :

Ew [h(x)h(y)∗] = Ew [exp(iw>x) exp(−iw>y)]

= Ew [exp(iw>δ)] =

∫
RD

p(w) exp(iw>δ)dw

= (2π)−D/2
∫
RD

exp
(
− 1

2
w>w

)
exp(iw>δ)dw

= (2π)−D/2
∫
RD

exp
(
− (

1
2
w>w − iw>δ)

)
dw

= (2π)−D/2
∫
RD

exp
(
− 1

2
(
w>w − 2iw>δ − δ>δ

)
− 1

2
δ>δ

)
dw

= (2π)−D/2 exp
(
− 1

2
δ>δ

) ∫
RD

exp
(
− 1

2
(w − iδ)>(w − iδ)

)
dw︸ ︷︷ ︸

(2π)D/2

= exp(−1
2
δ>δ) = k(δ).

(5)

In other words, k(·) is the Gaussian kernel with p(w) be a spherical Gaussian.

Bochner’s theorem

The above result is a specific instance of Bochner’s theorem.

Bochner’s theorem. A continuous kernel k(x , y) = k(x − y) on RD is positive
definite if and only if k(∆) is the Fourier transform of a non-negative measure.

The Fourier transform of a non-negative measure, call it p(w), is

k(∆) =

∫
p(w) exp(iw∆)dw . (6)

Remark. Bochner’s theorem gives us a general framework to approximate any shift
invariant kernel (Gaussian, Laplace, and Cauchy kernels) by re-defining h(·) in (3) to
depend on w from any non-negative measure p(w), not just the spherical Gaussian in
(2). Furthermore, is we sample R i.i.d. realizations {wr}Rr=1, we can lower the variance
of this approximation:

k(x , y) = k(x − y) =

∫
p(w) exp(iw>(x − y))dw

= Ew
[

exp(iw>(x − y))
]

≈︸︷︷︸
1

1
R

R∑
r=1

exp(iw>r (x − y))

=


1√
R

exp(iw>1 x)
1√
R

exp(iw>2 x)
...

1√
R

exp(iw>R >x)


>

1√
R

exp(−iw>1 x)
1√
R

exp(−iw>2 x)
...

1√
R

exp(−iw>R >x)


=︸︷︷︸
2

h(x)h(y)∗.

(7)

• Step 1 is a Monte Carlo approximation of the expectation (wr s are sampled from the
distribution p(w)).

• Step 2 is the definition of a random map h : RD → RR , so an R-vector of normalized h(·)
transformations.

k(x , y) = k(x − y)

=


1√
R

exp(iw>1 x)
1√
R

exp(iw>2 x)
...

1√
R

exp(iw>R >x)


>

1√
R

exp(−iw>1 x)
1√
R

exp(−iw>2 x)
...

1√
R

exp(−iw>R >x)


=︸︷︷︸
2

h(x)h(y)∗.

Remark. Note that we’ve talked about the dot product z(x)>z(y), but above we have
h(x)h(y)∗. As we will see next, the imaginary part of our random map will disappear, and the
new transform is what we used in machine learning.

Fine tuning

We have discussed the big idea of a low-dimensional, randomized map and why it might
work, let us get into the weeds.

• First, note that since both our distribution ND(0, I) and the kernel k(∆) are
real-valued, we can write

exp(iw>(x − y)) =︸︷︷︸
Euler’s formula

cos(w>(x − y))−(((((
(((

i sin(w>(x − y)) = cos(w>(x − y)) (8)

• We can then define zw (x)–note that this is still not yet the bolded z–without the
imaginary unit as

w ∼ p(w)

b ∼ Uniform(0, 2π)

zw (x) =
√
2 cos(w>x + b).

(9)

This works because

Ew [zw (x)zw (y)] = Ew [
√
2 cos(w>x + b)

√
2 cos(w>y + b)]

=︸︷︷︸
(1)

Ew [cos(w>(x + y) + 2b)] + Ew [cos(w>(x − y))]

=︸︷︷︸
(2)

Ew [cos(w>(x − y))]

(10)

• (1) is because of the following trigonometry identity

cos(x + y) = cos(x) cos(y)− sin(x) sin(y).

• (2) uses the fact that since b ∼ Uniform(0, 2π), the expectation w.r.t. b is zero:
Lemma.

Ew [cos(w>(x + y) + 2b)] = Ew [Eb[cos(w>(x + y) + 2b)|w]] = 0. (11)

Proof of the Lemma. Note that

Ew [cos(w>(x + y) + 2b)] = Ew [Eb[cos(w>(x + y) + 2b)|w]]

holds by the law of total expectation. We claim the inner conditional expectation is
zero. To ease notation, let t = w>(x − y). Then

Eb[cos(t + 2b)|w] =

∫ 2π

0

cos(t + 2b)

2π
db

=
1
2π

∫ 2π

0
cos(t + 2b)db

=
1
2π

[
sin(t + 2b)|2π0

]
=

1
2π

[
sin(t)− sin(t + 4π)

]
= 0

The last step holds because sin(t) = sin(t ± 2πk) for any integer k .

Fine tuning

We are now ready to define the random map z : RD → RR such that (??) holds. Let

z(x) =


1√
R
zw1(x)

1√
R
zw2(x)
...

1√
R
zwR

(x)

 (12)

and therefore

z(x)>z(y) =
1
R

R∑
r=1

zwr (x)zwr (y) =
1
R

R∑
r=1

2 cos(w>r x + br) cos(w>r y + br)

=
1
R

R∑
r=1

cos(w>r (x − y)) ≈ Ew [cos(w>(x − y))] = k(x , y).

(13)

We now have a simple algorithm to estimate a shift invariant, positive definite kernel.
Draw R samples of w ∼ p(w) and b ∼ Uniform(0, 2π) and then compute z(x)>z(x).

Alternative random Fourier features

An alternative version of random Fourier feature is

zwr (x) =

(
cos(w>r x)
sin(w>r x)

)
(14)

.
Draw R ′ = R/2 samples

wr ∼ p(w). (15)

Then

1
R ′

R′∑
r=1

R′∑
r=1

zwr (x)>zwr (y) ≡ 2
R

R/2∑
r=1

((
cos(w>r x)
sin(w>r x)

)>(
cos(w>r y)
sin(w>r y)

))

=
2
R

R/2∑
r=1

cos(w>r x) cos(w>r y) + sin(w>r x) sin(w>r y)

=︸︷︷︸
∗

2
R

R/2∑
r=1

cos(w>r x −w>r y) ≈ Ew [cos(w>(x − y))] = k(x , y).

(16)

∗ in the last equation dues to the product identities from trigonometry:

2 sin(x) sin(y) = cos(x − y)−���
���cos(x + y); 2 cos(x) cos(y) = cos(x − y) +���

���cos(x + y).
(17)

The right-most terms above cancel in (16), and we get 2 cos(x − y).

Example: Gaussian kernel approximation

Let us first approximate a Gaussian kernel using random Fourier features. Sample R
i.i.d. w variables from a spherical Gaussian and then compute

z(x)>z(y) =
1
R

R∑
r=1

zwr (x)>zwr (y) =
1
R

R∑
r=1

cos(w>r (x − y)). (18)

for each (x , y) pair in the data. The result N × N matrix is the approximate covariance
matrix induced by the Gaussian kernel function. Concretely, let ZX denote z(·) applied
to all N samples xn. Thus, ZX is N × R and therefore

KX ≈

z(x1)
...

z(xN)

 [z(x1) · · · z(xN)
]

= ZXZ>X , (19)

becausek(x1, x1) · · · k(x1, xN)
...

. . .
...

k(xN , x1) · · · k(xN , xN)

 ≈
z(x1)>z(x1) · · · z(x1)>z(xN)

...
. . .

...
z(xN)>z(x1) · · · z(xN)>z(xN)

 (20)

Figure: As R increases, the covariance matrix approximation improves because each cell value
uses more Monte Carlo samples to estimate the basis function φ(·) associated with k(·, ·) for
the pair of samples associated with that cell.

