
Lecture 4. Kernel Methods

Bao Wang
Department of Mathematics

Scientific Computing and Imaging Institute
University of Utah

Math 5750/6880, Fall 2023

Support Vector Machine

Assume the training data set is linearly separable in feature space, i.e. there exists at
least one set of w and b s.t. a function of the form y(x) = w>x + b satisfies
y(xn) > 0(< 0) for points having tn = +1(−1), i.e., tny(xn) > 0 for all training data
points.

Which classifier is better? [Theoretical motivation: VC-dimension.]

Support Vector Machine

The maximum margin solution is found by solving

arg max
w ,b

{
1
‖w‖

min
n

[
tn(w>φ(xn) + b)

]}
. (1)

Direct solution of this optimization problem would be very complex, and so we shall
convert it into an equivalent problem that is much easier to solve.

For any κ, we have

arg max
w ,b

{
1
‖w‖

min
n

[
tn(w>φ(xn) + b)

]}
= arg max

w ,b

{
1
‖κw‖

min
n

[
tn(κw>φ(xn) + κb)

]}

Support Vector Machine

We can choose κ s.t. minn
[
tn(κw>φ(xn) + κb)

]
= 1, and the problem becomes

arg max
w ,b

{ 1
‖κw‖

}
,

s.t.
tn(κw>φ(xn) + κb) ≥ 1, ∀ n = 1, · · · ,N.

The problem is equivalent to

arg max
w ,b

{ 1
‖w‖

}
,

s.t.
tn(w>φ(xn) + b) ≥ 1, ∀ n = 1, · · · ,N.

Support Vector Machine: Dual Form

We introduce Lagrange multipliers an ≥ 0, with one multiplier an for each of the
constraints, giving the Lagrangian function1

L(w , b, a) =
1
2
‖w‖2 −

N∑
n=1

an{tn(w>φ(xn) + b)− 1}, a = (a1, · · · , aN)>. (2)

Setting the derivatives of L(w , b, a) w.r.t. w and b equal to zero, we have

w =
N∑

n=1

antnφ(xn); 0 =
N∑

n=1

antn. (3)

1KKT condition: If we wish to minimize the function f (x) s.t. g(x) ≥ 0, then we minimize the
Lagrangian function L(x , λ) = f (x)− λg(x) w.r.t. x , subject to λ ≥ 0, g(x) ≥ 0, and λg(x) = 0.

Support Vector Machine: Dual Form

Eliminating w and b from L(w , b, a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an−
1
2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm), k(xn, xm) = φ(xn)>φ(xm) is the kernel.

(4)
with respect to a subject to the constraints

an ≥ 0;
N∑

n=1

antn = 0. (5)

The linear classifier becomes

y(x) =
N∑

n=1

antnk(x , xn) + b. (6)

Support Vector Machine (Soft Margin)

min
w ,ξn

C
N∑

n=1

ξn +
1
2
‖w‖2, C > 0, (7)

s.t.
tn(w>φ(xn) + b) ≥ 1− ξn, ξn ≥ 0.

Support Vector Machine (Soft Margin): Dual Form

The corresponding Lagrangian is given by

L(w , b, a) =
1
2
‖w‖2 + C

N∑
n=1

ξn −
N∑

n=1

an
{
tny(xn)− 1 + ξn

}
−

N∑
n=1

µnξn, (8)

where {an ≥ 0} and {µn ≥ 0} are Lagrange multipliers. The corresponding KKT
conditions are

an ≥ 0
tny(xn)− 1 + ξn ≥ 0

an(tny(xn)− 1 + ξn) = 0
µn ≥ 0
ξn ≥ 0

µnξn = 0

(9)

where n = 1, · · · ,N.

Support Vector Machine (Soft Margin): Dual Form

The dual Lagrangian in the form

L̃(a) =
N∑

n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm), (10)

Kernel and kernel trick

The dual form of SVM involves a kernel function k(x , x ′).

Many linear parametric models can be re-cast into an equivalent ‘dual representation’ in
which the prediction are based on linear combinations of a kernel function evaluated at
the training data points. As we shall see, for models which are based on a fixed
nonlinear feature space mapping φ(x), the kernel function is given by the relation

k(x , x ′) = φ(x)>φ(x ′). (11)

Kernel trick: a.k.a. kernel substitution. If we have an algorithm formulated in such a
way that the input vector x enters only in the form of scalar products, then we can
replace that scalar product with some other choice of kernels.

Dual representation of linear regression

Linear regression model: y(x) = w>φ(x).

Consider the following regularized sum-of-squares error function for linear regression

J(w) =
1
2

N∑
n=1

{w>φ(xn)− tn}2 +
λ

2
w>w , λ ≥ 0. (12)

What is the dual representation of the linear regression model above?

Dual representation of linear regression

∇wJ(w) = 0⇒ w = − 1
λ

N∑
n=1

{w>φ(xn)− tn}φ(xn) =
N∑

n=1

anφ(xn) = Φ>a,

where Φ is the design matrix, whose nth row is given by φ(xn)>. The vector
a = (a1, · · · , aN)> with

an = − 1
λ
{w>φ(xn)− tn}. (13)

Dual representation of linear regression

We can reformulate the least squares algorithm in terms of the parameter vector a
instead of w , resulting in a dual representation. Substitute w = Φ>a into J(w) gives

J(a) =
1
2
a>ΦΦ>ΦΦ>a − a>ΦΦ>t +

1
2
t>t +

λ

2
a>ΦΦ>a, (14)

where t = (t1, · · · , tN)>.

Dual representation of linear regression

Define the Gram matrix K = ΦΦ> ∈ RN×N with Knm = φ(xn)>φ(xm) = k(xn, xm). In
terms of the Gram matrix, the sum-of-squares error function can be written as

J(a) =
1
2
a>KKa − a>Kt +

1
2
t>t +

λ

2
a>Ka. (15)

∇aJ(a) = 0⇒ a = (K + λIN)−1t.

Dual representation of linear regression

Substitute this back into the linear regression model, we obtain the following prediction
for a new input x

y(x) = w>φ(x) = a>Φφ(x) = k(x)>(K + λIN)−1t, Dual formulation! (16)

where we have defined the vector k(x) with elements kn(x) = k(xn, x).

The dual formulation allows the solution to the least-squares problem to be expressed
entirely in terms of the kernel function k(x , x ′).

Note that the prediction at x is given by a linear combination of the target values from
the training set.

Dual representation of linear regression

Remark. In the dual formulation, a is determined by inverting an N × N matrix,
whereas in the original parameter space formulation we had to invert an M ×M matrix
to determine w (How?). Note that typically N � M, the dual formulation seems
inferior to the original formulation.

However, the advantage of the dual formulation is that it is expressed entirely in terms
of the kernel function k(x , x ′). We can therefore work in terms of kernels and avoid the
explicit introducing the feature vector φ(x), allowing us to implicitly use feature spaces
of high, even infinite, dimensionality.

Constructing kernels

Approach I. Choose a feature map φ(x) ∈ RM and then use this to find the
corresponding kernel:

k(x , x ′) = φ(x)>φ(x ′) =
M∑
i=1

φi (x)φi (x ′) (17)

where φi (x) are the basis functions.

Constructing kernels

Approach II. Direct construction: in this case, we must ensure that the function we
choose is a valid kernel, i.e. it corresponds to a scalar product in some (perhaps infinite
dimensional) feature space. As a simple example, consider a kernel function given by

k(x , z) = (x>z)2. (18)

If we take the particular case of a 2D input space x = (x1, x2) we can expand out the
terms and thereby identify the corresponding nonlinear feature mapping

k(x , z) = (x>z)2 = (x1z1 + x2z2)2 = (x2
1 ,
√
2x1x2, x

2
2)(z2

1 ,
√
2z1z2, z2

2)> = φ(x)>φ(z).
(19)

We see that the feature mapping takes the form φ(x) = (x2
1 ,
√
2x1x2, x

2
2)> and

therefore comprises all possible second order terms, with a specific weighting between
them.

Constructing kernels

When k(x , x ′) represents a kernel function?

Lemma. A symmetric function k : X × X → R implements an inner product in some
Hilbert space if and only if it is positive semidefinite; namely, for all x1, · · · , xm, the
Gram matrix, Gi ,j = k(xi , xj), is a positive semidefinite matrix.

Constructing kernels

Proof. It is trivial to see that if k implements an inner product in some Hilbert space
then the Gram matrix is positive semidefinite.

For the other direction, define the space of functions over X as RX = {f : X → R}.
For each x ∈ X let ψ(x) be the function x → K (·, x). Define a vector space by taking
all linear combinations of elements of the form K (·, x). Define an inner product on this
vector space to be

〈
∑
i

αiK (·, xi),
∑
j

βjK (·, x ′j)〉 =
∑
i ,j

αiβjK (xi , x ′j).

This is a valid inner product since it is symmetric (because K is symmetric), it is linear
(immediate), and it is positive definite (it is easy to see that K (x , x) ≥ 0 with equality
only for ψ(x) being the zero function). Clearly,

〈ψ(x), ψ(x ′)〉 = 〈K (·, x),K (·, x ′)〉 = K (x , x ′),

which concludes our proof.

Constructing kernels

Build them out of simpler kernels as building blocks.
Proposition. Given valid kernels k1(x , x ′) and k2(x , x ′), the following new kernels will also be valid:

k(x , x ′) = ck1(x , x ′)
k(x , x ′) = f (x)k1(x , x ′)f (x ′)
k(x , x ′) = q(k1(x , x ′))
k(x , x ′) = exp(k1(x , x ′))
k(x , x ′) = k1(x , x ′) + k2(x , x ′)
k(x , x ′) = k1(x , x ′)k2(x , x ′)
k(x , x ′) = k3(φ(x), φ(x ′))

k(x , x ′) = x>Ax ′

k(x , x ′) = ka(xa, x ′a) + kb(xb, x ′b)
k(x , x ′) = ka(xa, x ′a)kb(xb, x

′
b)

where c > 0 is a constant, f (·) is any function, q(·) is a polynomial with nonnegative coefficients, φ(x)
is a function from x to RM , k3(·, ·) is a valid kernel in RM , A is p.s.d, xa and xb are variables with
x = (xa, xb), and ka and kb are valid kernel functions over their respective spaces.

Gaussian kernels

Let the original instance space be R and consider the mapping φ where for each
nonnegative integer n ≥ 0 there exists an element φ(x)n (n-th coordinate) that equals

1√
n!
e−

x2
2 xn. Then,

〈φ(x), φ(x ′)〉 =
∞∑
n=0

(1√
n!
e−

x2
2 xn

)(1√
n!
e−

(x′)2
2 (x ′)n

)
= e−

x2+(x′)2
2

∞∑
n=0

((xx ′)n

n!

)
= e−

‖x−x′‖2
2 .

Here the feature space is of infinite dimension while evaluating the kernel is very simple.
More generally, given a scalar σ > 0, the Gaussian kernel is defined to be

K (x , x ′) = e−
‖x−x′‖2

2σ .

Intuitively, the Gaussian kernel sets the inner product in the feature space between x , x ′

to be close to zero if the instances are far away from each other (in the original
domain) and close to 1 if they are close. σ is a parameter that controls the scale
determining what we mean by "close".

The Gaussian kernel is also called the RBF kernel.

Polynomial kernels

The k degree polynomial kernel is defined to be

K(x , x ′) = (1+ 〈x , x ′〉)k .

We will show that there exists a mapping φ from the original space to some higher dimensional space
for which K(x , x ′) = 〈φ(x), φ(x ′)〉. For simplicity, denote x0 = x ′0 = 1. Then, we have

K(x , x ′) = (1+ 〈x , x ′〉)k =
(n∑

j=0

xjx
′
j

)
· · ·
(n∑

j=0

xjx
′
j

)
=

∑
J∈{0,1,··· ,n}k

k∏
i=1

xJi x
′
Ji

=
∑

J∈{0,1··· ,n}k

k∏
i=1

xJi

k∏
i=1

x ′Ji .

Now, if we define φ : Rn → R(n+1)k such that for J ∈ {0, 1, · · · , n}k there is an element of φ(x) that
equals

∏k
i=1 xJi , we obtain that

K(x , x ′) = 〈φ(x), φ(x ′)〉.

Kernel trick

〈x , x ′〉 ⇒ 〈φ(x), φ(x ′)〉 ⇒ k(x , x ′).

