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Deep Learning (DL)

DL = Big Data + Deep Nets + SGD + HPC



Deep Learning: Revolution in Technology



Deep Learning: Revolution in Science



However, Deep Learning is Not Trustworthy!

Trustworthy deep learning:
1. Robust deep learning

2. Accurate deep learning

3. Efficient deep learning

4. Private deep learning

...

with theoretical guarantees!



Adversarial Vulnerability of Deep Neural Nets

Evtimov et al., CVPR, 2018



Deep Learning is Very Expensive



Break Privacy of the Face Recognition System

Figure: Recovered (Left), Original (Right)

Membership Attack: determine if a record is in the training set.

Model Inversion Attack: recover the photo of a person given his name in face recognition task.

Other Data Abuse: Netflix Recommendation Competition, Privacy of the Genome Data, ...

Fredrikson et al., Proc. CCS, 2016
R. Shokri et al., Proc. SSP, 2017



Federated Learning is Not Private

Federated Learning Gradient Leakage

Federated Learning: train a centralized model, w , while training data is distributed over many clients.
In each communication-round, clients update their local models with their own private data. The
center server then aggregates these local models, and sends the updated model to clients.

Gradient Leakage: update of the local model encodes private data. Gradient is not an encryption of
private data.

L. Zhu, Z. Liu, and S. Han, NeurIPS, 2019.



Our Efforts Towards the Trustworthy Deep Learning

1. Robust deep learning
Adversarial defense & Verification

2. Accurate deep learning
Optimization & Neural Architecture Design

3. Efficient deep learning
Acceleration & Compression

4. Private deep learning
Federated Learning & Differential Privacy

...

with theoretical guarantees!



Our Principle

Simple and principled approaches converge with working
machine learning algorithms!

A few examples:
Accelerate Deep Learning I

Adversarial Robust Deep Learning II.1

Deep Nets Compression II.2

Privacy-Preserving Machine Learning III.1 & III.2



I. Scheduled Restart Momentum for Accelerated Stochastic Gradient
Descent

B. Wang*, T. Nguyen*, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, Scheduled Restart Momentum for Stochastic Gradient
Descent, arXiv:2002.10583, 2020.
Code: https://github.com/minhtannguyen/SRSGD

Blog: http://almostconvergent.blogs.rice.edu/2020/02/21/srsgd/

https://github.com/minhtannguyen/SRSGD
http://almostconvergent.blogs.rice.edu/2020/02/21/srsgd/


Empirical Risk Minimization (ERM)

Consider training a machine learning model

y = g(x,w), w ∈ Rd .

Empirical Risk Minimization (ERM)

min
w

f (w) :=
1
N

N∑
i=1

fi (w) :=
1
N

N∑
i=1

L(g(xi ,w), yi ),

where L is the loss between the predicted label ŷi and the ground-truth label yi .

Classification: cross-entropy loss L(ŷi , yi ) = −
∑c

j=1 y
j
i log(pj

i ). where pj
i is the predicted probability

that yi is belong to j-th class.

Regression: mean squared error L(ŷi , yi ) = (yi − ŷi )
2.

Challenges: d ∼ 1010, N ∼ 1010, and f (w) is nonconvex.



Gradient Descent
Suppose f (w) is L-smooth, i.e., ‖∇f (w)−∇f (v)‖2 ≤ L‖w − v‖2.

Start from w0, gradient descent performs the following iteration

wk = wk−1 − s∇f(wk−1).

1. f (w) is µ-strongly convex (bounded below by a quadratic function), let s = 2/(µ+ L), we have

‖wk − w∗‖2 ≤
(
L/µ− 1
L/µ+ 1

)k

‖w0 − w∗‖2, w∗ is the minimum.

2. f (w) is convex, let s = 1/L, we have

f (wk)− f (w∗) ≤
2L‖w0 − w∗‖22

k
.

3. f (w) is nonconvex, let s = 1/L, we have

‖∇f (wk)‖2 ≤
√

2L(f (w0)− f (w∗))

k
.

A. Cauchy, 1847



Gradient Descent

Consider
min
w

f (w) =
1
2
wTLw −wTe1,

where

L =


2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 −1 2 −1
−1 0 · · · 0 −1 2


1000×1000

,

and e1 is a 1000-dim vector whose first entry is 1 and all the other entries are 0.

A. Nemirovski et al, 1985



Gradient Descent

O (1/k) convergence rate! Very slow!



Gradient Descent + (Lookahead/Nesterov) Momentum

vk = wk−1 − s∇f (wk−1),

wk = vk + µ(vk − vk−1).

O (1/k) convergence rate!



Heavy Ball

wk = wk−1 − s∇f (wk−1) + µ(wk−1 −wk−2).

B. Polyak, 1964



Why momentum works

High dimensional problem is usually ill-conditioned!

Figure: Top: no momentum; Bottom: with momentum.

G. Goh, Why momentum really works. Distill, 2017



Nesterov Accelerated Gradient (NAG)

vk = wk−1 − s∇f (wk−1),

wk = vk +
k − 1
k + 2

(vk − vk−1).

O(1/k2) convergence rate!



Nesterov Accelerated Gradient (NAG)

One of the most beautiful and mysterious results in optimization!

Not a descent method! (ripples/bumps in the traces of cost values)

Continuous dynamics

Ẍ (t) +
3
t
Ẋ (t) +∇f (X (t)) = 0,

which satisfies f (X (t))− f (X ∗) ≤ O
( 1
t2

)
.

We can prove the above result by considering the following Lyapunov function

E(t) := t2(f (X (t))− f (X ∗)) + 2‖X (t) +
t

2
Ẋ (t)− X ∗‖22.

Can we further accelerate NAG? NAG is not monotonically converge!

Y. Nesterov, 1983.
Su, Boyd, and Candes, 2014.



Adaptive Restart NAG (ARNAG)

vk = wk−1 − s∇f (wk−1),

wk = vk +
m(k − 1)− 1
m(k − 1) + 2

(vk − vk−1),

where

m(k) =

{
m(k − 1) + 1, if f (wk) ≤ f (wk−1),

1, otherwise.

O(e−αk) convergence with sharpness assumption!

Sharpness: µ
r
d(w,w∗)r ≤ f (w)− f (w∗), µ > 0, r > 1.

V. Roulet et al. NIPS 2017



Scheduled Restart NAG (SRNAG)
Let (0,T ] =

⋃m
i=1 Ii =

⋃m
i=1(Ti−1,Ti ]. In each Ii , we restart the momentum after Fi iterations as

follows:

vk = wk−1 − s∇f (wk−1),

wk = vk +
(k mod Fi )

(k mod Fi ) + 3
(vk − vk−1).

O(e−βk) convergence with sharpness assumption!

V. Roulet et al. NIPS 2017



What If We Do Not Have Exact Gradient?

In ERM,

min
w

f (w) :=
1
N

N∑
i=1

fi (w) :=
1
N

N∑
i=1

L(g(xi ,w), yi ),

when N � 1, compute ∇f (w) will be very expensive.

Stochastic Gradient:

∇f (w) ≈ 1
n

n∑
j=1

fij (w), with [n] ⊂ [N] and n� N.

Can NAG still accelerate convergence with Stochastic Gradient?



A Motivating Example – Gaussian Noise Corrupted Gradient – Case I

Consider
min

w
f (w) =

1
2
wTLw − wTe1,

where

L =


2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 −1 2 −1
−1 0 · · · 0 −1 2


1000×1000

,

and e1 is a 1000-dim vector whose first entry is 1 and all the other entries are 0.

Gaussian Noise Corrupted Gradient:

∇f (w) = Lw − e1 + n, n ∼ N (0, (
0.1

bk/100c+ 1
)2).



A Motivating Example – Gaussian Noise Corrupted Gradient – Case I
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Iteration (k) #104
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A Motivating Example – Gaussian Noise Corrupted Gradient – Case II

Consider
min

w
f (w) =

1
2
wTLw − wTe1,

where

L =


2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 −1 2 −1
−1 0 · · · 0 −1 2


1000×1000

,

and e1 is a 1000-dim vector whose first entry is 1 and all the other entries are 0.

Gaussian Noise Corrupted Gradient:

∇f (w) = Lw − e1 + n, n ∼ N (0, 0.0012).



A Motivating Example – Gaussian Noise Corrupted Gradient – Case II
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A Motivating Example – Logistic Regression – Case III

200 400 600 800 1000
Iteration (x 10)

10-1

100

101

102

Lo
ss

SGD
SGD + Momentum
NASGD
ARSGD
SRSGD

Figure: Training loss of logistic regression for MNIST classification.



Error Accumulation of NAG with Stochastic Gradient

Theorem Let f (w) be a convex and L-smooth function. The sequence {wk}k≥0 generated by NAG
with mini-batch stochastic gradient using any constant step size s ≤ 1/L, satisfies

E
(
f (wk)− f (w∗)

)
= O(k),

where w∗ is the minimum of f , and the expectation is taken over the random mini-batch samples.

B. Wang*, T. Nguyen*, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, 2020.



NAG with Restart (Inexact Oracle)

Adaptive Restart NAG with Inexact Oracle: restart too often, degenerates to GD
without momentum.

Scheduled Restart NAG with Inexact Oracle: appropriate restart scheduling can lead to
an optimal trade-off between convergence and error accumulation.



Scheduled Restart SGD (SRSGD)

vk = wk−1 − s
1
m

m∑
j=1

∇fij (wk−1),

wk = vk +
(k mod Fi )

(k mod Fi ) + 3
(vk − vk−1).

where m is the batch size.

B. Wang*, T. Nguyen*, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, 2020.



Convergence of SRSGD

Theorem Suppose f (w) is L-smooth. Consider the sequence {wk}k≥0 generated by SRSGD with
mini-batch stochastic gradient and any restart frequency F using any constant step size s ≤ 1/L.
Assume that the set A := {k ∈ Z+|Ef (wk+1) ≥ Ef (wk)} is finite, then we have

min
1≤k≤K

{
E‖∇f (wk)‖22

}
= O(s +

1
sK

).

Therefore for ∀ε > 0, to get ε error, we just need to set s = O(ε) and K = O(1/ε2).

B. Wang*, T. Nguyen*, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, 2020.



SRSGD for Deep Learning – CIFAR10/CIFAR100 Classification



SRSGD for Deep Learning – ImageNet Classification



Improving Testing Accuracy

Figure: Error vs. depth of ResNet.



Reduce the Training Epochs



Is NAG-style Momentum Optimal?
Theoretically, yes! Due to Nemirovski & Nesterov!

Empirically, not!



II. Transport Equation vs. Residual Learning



ResNet vs. Transport Equation

Plain Net: xl+1 = G(xl)
ResNet: xl+1 = xl + F(xl)

Forward propagation (FP) of ResNet for any data-label pair (x̂, y)
x(0) = x̂,
x(tk+1) = x(tk) + ∆t · F (x(tk),w(tk)), k = 1, 2, · · · , L− 1 with F

.
= 1

∆t
F

ŷ
.

= f (x(1)) = softmax(wFC · x).

Continuum limit: dx(t)
dt

= F (x(t),w(t)).

Transport equation (TE): ∂u
∂t

(x, t) + F (x,w(t)) · ∇u(x, t) = 0, x ∈ Rd .

He et al., CVPR, 2016.

Many related works ...



ResNet vs. Transport Equation

Forward and backward propagation

1. Let u(x, 1) = f (x), note u(x̂, 0) = u(x(1), 1) = f (x(1)). Therefore, we model FP as computing
u(x̂, 0) along the characteristics of the following TE{

∂u
∂t

(x, t) + F (x,w(t)) · ∇u(x, t) = 0, x ∈ Rd ,

u(x, 1) = f (x).

2. Backpropagation (BP): find w(t) for the following control problem
∂u
∂t

(x, t) + F (x,w(t)) · ∇u(x, t) = 0, x ∈ Rd ,

u(x, 1) = f (x),

u(xi , 0) = yi , xi ∈ T , with T being the training data.

x(1) is the transport of x̂ along the characteristics.



II.1 Feynman-Kac Formalism Principled Adversarial Defense

B. Wang, B. Yuan, Z. Shi, and S. Osher, ResNets Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust
Accuracies, NeurIPS, 2019.

Code: https://github.com/BaoWangMath/EnResNet

https://github.com/BaoWangMath/EnResNet


Why Adversarial Example Arise? – A PDE Interpretation

In the TE model, u(x, 0) serves as the decision function for classification.

(a) u(x, 1) (b) u(x, 0)

The decision boundary is highly erratic, exposed to adversarial attacks!

Goodfellow et al., ICLR, 2015.

Given input data distribution {x}, (a): softmax landscape; (b): deep learning classifier’s landscape.



Improving Robustness via Diffusion
We use diffusion to regularize the decision function u(x , 0), which resulting in{

∂u
∂t

+ F (x,w(t)) · ∇u + 1
2σ

2∆u = 0, x ∈ Rd , t ∈ [0, 1),

u(x, 1) = f (x).

(a) u(x, 0), σ = 0.01 (b) u(x, 0), σ = 0.1

Theorem (Stability) Let F (x, t) be Lipschitz in both x and t, and f (x) is bounded. For the above
terminal value problem of convection-diffusion equation, σ 6= 0, we have

|u(x + δ, 0)− u(x, 0)| ≤ C

(
‖δ‖2
σ

)α
for some constant α > 0 if σ ≤ 1. C := C(d , ‖f ‖∞, ‖F‖L∞x,t ) is a constant.

O. Ladyzhenskaja and et al., Linear and Quasilinear Equations of Parabolic Type



Feynman-Kac Formula and Deep Nets Design

By Feynman-Kac formula, we have

u(x̂, 0) = E [f (x(1))|x(0) = x̂] ,

where x(t) is an Itô process,
dx(t) = F (x(t),w(t))dt + σdBt .

Deep Nets Design!

Residual mapping + Gaussian noise
Average multiple jointly trained ResNets



Empirical Adversarial Risk Minimization (Robust Training)

Adversarial training: minw E(x,y)∼D [maxδ∈S L(f (w, x + δ), y)]

Adversarial attacks:

FGSM
x′ = x + ε sign (∇xL(x, y)) .

IFGSM
x(m) = x(m−1) + α · sign

(
∇xL(x(m−1), y)

)
, m = 1, 2, · · · ,M.

C&W
min
δ
||δ||22, subject to f (x + δ,w) = t, x + δ ∈ [0, 1]n.

N. Carlini and D. Wagner, arXiv:1608.04644

C. Szegedy and et al., arXiv:1312.6199



Performance on CIFAR10 Classification

Table: Natural and robust acc of EnResNets on the CIFAR10. Unit: %.

Model Anat Arob (FGSM) Arob (IFGSM20) Arob (C&W)

ResNet20 75.11 50.89 46.03 58.73
En1ResNet20 77.21 55.35 49.06 65.69
En5ResNet20 82.52 58.92 51.48 67.73



II.2 Deep Neural Nets Compression
Channel-Pruning for Adversarial Robust Deep Nets

T. Dinh*, B. Wang*, A. Bertozzi, S. Osher and J. Xin, Sparsity Meets Robustness: Channel pruning for the Feynman-Kac

Formalism Principled Robust Neural Nets, Preprint, 2019.



Deep Nets Compression
Common approaches to improve inference efficiency of deep learning:

Sparse weights
Quantized weights

We focus on sparsifying deep nets (structured & unstructured)!

Neural architecture redesign!
+

Structured & Unstructured weights pruning!

nf × nc × nw × nh
Remark. Structured sparsity can remarkably
speed up inference.



Neural Architecture Redesign

Sparsity meets Robustness: ResNet20 vs. En5ResNet20
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(a) ResNet20 (AT) (3.64% (≤ 10−3)) (b) En5ResNet20 (AT) (11.57% (≤ 10−3))

Table: Natural and robust acc of EnResNet on the CIFAR10. Unit: %.

Model Anat Arob (FGSM) Arob (IFGSM20) Arob (C&W)

ResNet20 75.11 50.89 46.03 58.73
En5ResNet20 82.52 58.92 51.48 67.73

Ensemble of the noise injected ResNets can improve weights sparsity, accuracy and robustness of the
adversarially trained models!



Maximize Sparsity: Structured & Unstructured Sparsity

Adversarial training:

min
w
L(w) := min

w
E(x,y)∼D

[
max
δ∈S
L(f (w, x + δ), y)

]
Augmented Lagrangian:

Lβ(w, u, z) = L(w) + λ ‖u‖1 + 〈z,w − u〉+
β

2
‖w − u‖2, λ, β ≥ 0

Unstructured sparsity: `1-penalty; Structured sparsity: group `1-penalty.
ADMM: 

wt+1 ← arg minw Lβ(w, ut , zt)
ut+1 ← arg minu Lβ(wt+1, u, zt)
zt+1 ← zt + β(wt+1 − ut+1)

Remark 1. One can improve the sparsity of the final learned weights by replacing ‖u‖1 with ‖u‖0; but
‖ · ‖0 is not differentiable.

Remark 2. The Lagrange multiplier term, 〈z,w − u〉, seeks to close the gap between wt and ut , and
this in turn reduces sparsity of wt .

Group the weights into: {w1,w2, · · · ,wG}, group Lasso:
∑G

g=1 ‖wg‖2; group `0:
∑G

g=1 1‖wg‖2 6=0.



Relaxed Augmented Lagrangian
Relaxed Augmented Lagrangian:

Lβ(w, u) = L(w) + λ ‖u‖0 +
β

2
‖w − u‖2.

Remark 1. For a fixed wt , we have

ut = H√2λ/β(wt) = (wt
1χ{|w1|>

√
2λ/β}, ...,w

t
dχ{|wd |>

√
2λ/β}),

where Hα(·) is the hard-thresholding operator with parameter α.

Remark 2. Fixed ut , wt can be updated by gradient descent.

Remark 3. w here is sparser than that in the augmented Lagrangian.
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(a) Relaxed (Zoom in) (b) Original (Zoom in)

Figure: Channel norms of the adversarially trained ResNet20.



Convergence of the Relaxed Augmented Lagrangian

Theorem. Assume Lβ is L-smooth in w, then the relaxed augmented Lagrangian Lβ(wt , ut) decreases
monotonically and converges sub-sequentially to a limit point (w̄, ū) provided the stepsize η such that
η < 2/(β + L)



Sparsity vs. Accuracy & Robustness

Figure: En2ResNet20 vs. ResNet38 under different λ1. (5 runs, β = 1).



III. Privacy-Preserving Machine Learning with Laplacian Smoothing



III.1 Privacy-Preserving Empirical Risk Minimization (ERM)

B. Wang, Q. Gu, M. Boedihardjo, F. Barekat, and S. Osher. DP-LSSGD: A Stochastic Optimization Method to Lift the Utility in
Privacy-Preserving ERM, ArXiv:1906.12056, 2019

Code: https://github.com/BaoWangMath/DP-LSSGD

https://github.com/BaoWangMath/DP-LSSGD


Differential Privacy

Figure: Recovered (Left), Original (Right)

Differential privacy (DP) is a successful countermeasure to adversaries that try to break the privacy
of machine learning.

Add differential privacy constraint in training machine learning models!

F. McSherry and I. Mironov, Differentially Private Recommender Systems: Building Privacy into the Netflix Prize Contenders,
KDD, 2009.

M. Fredrikson, S. Jha, T. Ristenpart, Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures,
CCS, 2015.



Differential Privacy
Definition. A randomized algorithm A is (ε, δ)-differentially private if for any two neighboring datasets
D, D ′ that differ in only one entry and for all events S in the output space of A, we have

Pr(A(D) ∈ S) ≤ eεPr(A(D ′) ∈ S) + δ.

DP promises to protect individuals from any additional harm that they might face due to their data
being in the private database x that they would not have faced had their data not been part of x.

For all D, D ′ that differ in one person, if A is (ε, δ)-DP,
then:

Pr
[
| ln
(

Pr[A(D) ∈ S ]

Pr[A(D ′) ∈ S ]

)
| ≥ ε

]
≤ δ

C. Dwork and A. Roth, The Algorithmic Foundation of Differential Privacy, 2014.

Figures courtesy of K. Chaudhuri



Privacy-Preserving Empirical Risk Minimization

Empirical risk minimization (ERM):

minF (w) :=
1
n

n∑
i=1

fi (w) :=
1
n

n∑
i=1

L(w, xi , yi ).

Differentially private SGD (DP-SGD)

wk+1 = wk − ηk

(
1
m

m∑
k=1

∇fik (wk) + n

)
, n ∼ N (0, ν2Id×d), {ik}mk=1 ⊂ [n]

How to quantify n to guarantee (ε, δ)-DP?
Major difficulty: quantifying privacy loss aggregation during SGD.

K. Chaudhuri, C. Monteleoni, and A. Sarwate, Differentially Private ERM, JMLR, 2011.

M. Abadi, and et al„ Deep Learning with Differential Privacy, arXiv:1607.00133, 2016.



Theorem (Privacy Budget) Suppose that each fi is L-Lipschitz. Given the number of
iterations T , for any (ε, δ > 0), DP-SGD, with injected Gaussian noise N (0, ν2I ),
satisfies (ε, δ)-DP with ν2 = 20TαG 2/(µn2ε), where α = log(1/δ)/

(
(1− µ)ε

)
+ 1, if

∃µ ∈ (0, 1) s.t. α ≤ log
(
µn3ε/(5b3Tα+ µbn2ε)

)
and 5b2Tα/(µn2ε) ≥ 1.5.

B. Wang, et al., arXiv:1906.12056, 2019.



SGD vs. DP-SGD

Training Loss Validation Loss Validation Acc

Figure: Logistic regression on the MNIST trained by DP-SGD with (ε, 10−5) -DP guarantee (left &
middle). LeNet on the MNIST trained by DP-SGD with (ε, 10−5)-DP guarantee (right).

DP-SGD reduces the utility of the trained model severely.

Question: Can we do better than DP-SGD with negligible extra computation and
memory costs?



DP-SGD with Laplacian Smoothing (DP-LSSGD)

wk+1 = wk − ηkA−1σ

(
1
m

m∑
k=1

∇fik (wk) + n

)
.

where

Aσ = (I − σL) =


1 + 2σ −σ 0 . . . 0 −σ
−σ 1 + 2σ −σ . . . 0 0
0 −σ 1 + 2σ . . . 0 0
. . . . . . . . . . . . . . . . . .
−σ 0 0 . . . −σ 1 + 2σ


d×d

A−1σ p.s.d with condition number 1 + 4σ; FFT Implementation

DP-LSSGD has the same privacy budget as DP-SGD!
Proposition (Post-processing) LetM : N|X| → R be a randomized algorithm that is (ε, δ)-DP. Let
f : R → R ′ be an arbitrary mapping. Then f ◦M : N|X| → R ′ is (ε, δ)-DP.

S. Osher, B. Wang, P. Yin, X. Luo, F. Barekat, M. Pham, and A. Lin, arXiv:1806.06317, 2018

Code: https://github.com/BaoWangMath/LaplacianSmoothing-GradientDescent

For any pair of ‖x− y‖1 ≤ 1, and any S ⊂ R′, let T = {r ∈ R : f (r) ∈ S}, we have

Pr [f (M(x)) ∈ S] = Pr [M(x) ∈ T ] ≤ exp(ε)Pr [M(y) ∈ T ] + δ = exp(ε)Pr [f (M(x)) ∈ S] + δ

https://github.com/BaoWangMath/LaplacianSmoothing-GradientDescent


Laplacian Smoothing as a Denoiser
Consider the following diffusion equation with the Neumann BC

∂u
∂t

= ∂2u
∂x2 , (x , t) ∈ [0, 1]× [0,+∞),

∂u(0,t)
∂x

= ∂u(1,t)
∂x

= 0, t ∈ [0,+∞)

u(x , 0) = f (x), x ∈ [0, 1]

Backward Euler in time and central finite difference in space with v0 being a discretization of f (x).
Unconditionally stable!

v∆t − v0 = ∆tLv∆t ⇒ v∆t = (I −∆tL)−1v0 (σ = ∆t)

(a) (b) (c) (d)
Figure: Illustration of LS (σ = 10 for v1 and σ = 100 for v2). (a): 1D signal sampled uniformly from
sin(x) for x ∈ [0, 2π]. (b), (c), (d): 2D original, noisy, and denoised signals sampled from sin(x) sin(y)

for (x , y) ∈ [0, 2π]× [0, 2π].



DP-LSSGD Improves Utility of Logistic Regression over DP-SGD (MNIST)

min
w

F (w) = min
w

{
1
n

n∑
i=1

− log

(
exp< w, xi >yi∑
j exp< w, xi >j

)
+ λ‖w‖2

}
, λ = 1× 10−4.

Figure: (0.2, 10−5)-DP guarantee. Step size: 1/t.

Table: Acc of logistic regression with (ε, δ = 10−5)-DP guarantee.

ε 0.25 0.20 0.15 0.10

σ = 0 81.45 ± 1.59 78.92 ± 1.14 77.03 ± 0.69 73.49 ± 1.60
σ = 1 83.27 ± 0.35 81.56 ± 0.79 79.46 ± 1.33 76.29 ± 0.53
σ = 2 83.65 ± 0.76 82.15 ± 0.59 80.77 ± 1.26 76.31 ± 0.93



Utility Guarantees
Algorithm Privacy Assumption Utility Measurement

DP-SGD (ε, δ) convex Õ
(√

(D0 + G2)d/(εn)
)

optimality gap

DP-SGD (ε, δ) nonconvex Õ
(√

d/(εn)
)

`2-norm of gradient

DP-LSSGD (ε, δ) convex Õ
(√

γ(Dσ + G2)d/(εn)
)

optimality gap

DP-LSSGD (ε, δ) nonconvex Õ
(√

βd/(εn)
)

1 `2-norm of gradient

1 Measured in the norm induced by A−1
σ .

Dσ = ‖w0 − w∗‖2Aσ and w∗ is the global minimizer.

γ =
1
d

d∑
i=1

1
1 + 2σ − 2σ cos( 2π

d
)

=
1 + αd

(1− αd)
√
4σ + 1

, with α =
2σ + 1−

√
4σ + 1

2σ
.

β =
2α2d+1 − ξα2d + 2ξdαd − 2α + ξ

σ2ξ3(1− αd)2
,

where

α =
2σ + 1−

√
4σ + 1

2σ
, and ξ = −

√
1 + 4σ
σ

.



II.2 Differentially Private Federated Learning

Z. Liang, B. Wang, Q. Gu, S. Osher, and Y. Yao. Differentially Private Federated Learning with Laplacian Smoothing, Preprint.



Federated Learning (FL)

Train a centralized model (w) while training data is distributed over many clients. In
communication-round t, the server distributes the current model wt to a subset Mt of m clients. These
clients update the model based on their local data. Let the updated local models be wt

1, wt
2, · · · , wt

nt ,
so the update is

H t
i
.

= wt
i − wt , for i ∈ Mt .

These updates could be a single gradient computed on the client. Then the server collects these
updates to update the global model

wt+1 = wt + ηtH t , H t .=
1
m

∑
i∈Mt

H t
i .

How to protect the privacy of clients’ data?



Differentially Private Federated Learning with Laplacian Smoothing



Privacy Budget for DP-Fed-LS

Theorem (Privacy Budget for DP-Fed-LS) For any δ ∈ (0, 1), and ε satisfying

(2 log(1/δ) + (1 + τ)ε)2 ≤ 3(1− τ)ε3

8τ2T
and ε ≤ τ

√
8T
3

log(
1
δ

)

the DP-Fed-LS algorithm (with or without Laplacian smoothing), satisfies (ε, δ)-DP if its injected
Gaussian noise N (0, ν2I ) is chosen to be

ν ≥ (4τG)/ε

where G is the `2-bound of clipped gradient, τ := m/K is the subsampling ratio of active clients, T is
the total number of communication rounds.



DP-Fed-LS Improves Utility of Logistic Regression over DP-Fed (MNIST)

Table: Testing accuracy of logistic regression trained by DP-Fed
(σ = 0) and DP-Fed-LS (σ = 1, 2, 3) on MNIST with (ε, 1/K 1.1)-DP
guarantee with K = 2000 be the number of clients.

ε 2 3 4 5

σ = 0 60.23 ± 2.7 73.50 ± 1.0 80.72 ± 0.49 82.24 ± 0.27
σ = 1 66.11 ± 2.7 76.98 ± 0.68 82.85 ± 0.26 84.09 ± 1.1
σ = 2 67.84 ± 2.1 79.57 ± 1.1 82.88 ± 0.19 84.85 ± 0.80
σ = 3 68.52 ± 1.1 80.60 ± 0.84 82.54 ± 0.12 84.51 ± 0.44

Batch size: 128; local epoch: 20; sensitivity: 0.15; Communication round: 15.
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