PDEs Principled Trustworthy Deep Learning

Bao Wang Department of Mathematics Scientific Computing and Imaging Institute University of Utah Deep Learning (DL)

DL = **Big Data** + **Deep Nets** + **SGD** + **HPC**

Deep Learning: Revolution in Technology

Face ID

Alpha Go

Autonomous Cars

Machine Translation

Deep Learning: Revolution in Science

Protein Structure Prediction

Molecular Generation

However, Deep Learning is Not Trustworthy!

Trustworthy deep learning:

- 1. Robust deep learning
- 2. Accurate deep learning
- 3. Efficient deep learning
- 4. Private deep learning

with theoretical guarantees!

. . .

Adversarial Vulnerability of Deep Neural Nets

Original Inputs Modified Inputs Wrong ML Detection STOP STOP LIMIT 45

Evtimov et al., CVPR, 2018

Deep Learning is Very Expensive

AlphaGO Lee Se-dol 1202 CPUs, 176 GPUs, 1 Human Brain, 100+ Scientists. 1 Coffee.

Break Privacy of the Face Recognition System

Figure: Recovered (Left), Original (Right)

Membership Attack: determine if a record is in the training set.

Model Inversion Attack: recover the photo of a person given his name in face recognition task.

Other Data Abuse: Netflix Recommendation Competition, Privacy of the Genome Data, ...

Fredrikson et al., Proc. CCS, 2016 R. Shokri et al., Proc. SSP, 2017

Federated Learning is Not Private

Federated Learning: train a centralized model, *w*, while training data is distributed over many clients. In each communication-round, clients update their local models with their own private data. The center server then aggregates these local models, and sends the updated model to clients.

Gradient Leakage: update of the local model encodes private data. Gradient is not an encryption of private data.

L. Zhu, Z. Liu, and S. Han, NeurIPS, 2019.

Our Efforts Towards the Trustworthy Deep Learning

1. Robust deep learning Adversarial defense & Verification

2. Accurate deep learning Optimization & Neural Architecture Design

3. Efficient deep learning Acceleration & Compression

4. Private deep learning Federated Learning & Differential Privacy

with theoretical guarantees!

Our Principle

Simple and principled approaches converge with working machine learning algorithms!

A few examples:

Accelerate Deep Learning |

Adversarial Robust Deep Learning II.1

Deep Nets Compression II.2

Privacy-Preserving Machine Learning III.1 & III.2

I. Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent

Code: https://github.com/minhtannguyen/SRSGD

Blog: http://almostconvergent.blogs.rice.edu/2020/02/21/srsgd/

B. Wang*, T. Nguyen*, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, Scheduled Restart Momentum for Stochastic Gradient Descent, arXiv:2002.10583, 2020.

Empirical Risk Minimization (ERM)

Consider training a machine learning model

$$y = g(\mathbf{x}, \mathbf{w}), \ \mathbf{w} \in \mathbb{R}^d.$$

Empirical Risk Minimization (ERM)

$$\min_{\mathbf{w}} f(\mathbf{w}) := \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{w}) := \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(g(\mathbf{x}_i, \mathbf{w}), y_i),$$

where \mathcal{L} is the loss between the predicted label \hat{y}_i and the ground-truth label y_i .

Classification: cross-entropy loss $\mathcal{L}(\hat{y}_i, y_i) = -\sum_{j=1}^{c} y_i^j \log(p_i^j)$. where p_i^j is the predicted probability that y_i is belong to *j*-th class.

Regression: mean squared error $\mathcal{L}(\hat{y}_i, y_i) = (y_i - \hat{y}_i)^2$.

Challenges: $d \sim 10^{10}$, $N \sim 10^{10}$, and $f(\mathbf{w})$ is nonconvex.

Gradient Descent

Suppose $f(\mathbf{w})$ is L-smooth, i.e., $\|\nabla f(\mathbf{w}) - \nabla f(\mathbf{v})\|_2 \le L \|\mathbf{w} - \mathbf{v}\|_2$.

Start from \mathbf{w}_0 , gradient descent performs the following iteration

 $\mathbf{w}_{k} = \mathbf{w}_{k-1} - \mathbf{s} \nabla \mathbf{f}(\mathbf{w}_{k-1}).$

1. $f(\mathbf{w})$ is μ -strongly convex (bounded below by a quadratic function), let $s = 2/(\mu + L)$, we have

$$\|\mathbf{w}_k - \mathbf{w}_*\|_2 \leq \left(\frac{L/\mu - 1}{L/\mu + 1}\right)^k \|\mathbf{w}_0 - \mathbf{w}_*\|_2, \ \mathbf{w}_* \text{ is the minimum}$$

2. $f(\mathbf{w})$ is convex, let s = 1/L, we have

$$f(\mathbf{w}_k) - f(\mathbf{w}_*) \leq \frac{2L \|\mathbf{w}_0 - \mathbf{w}_*\|_2^2}{k}.$$

3. $f(\mathbf{w})$ is nonconvex, let s = 1/L, we have

$$\|\nabla f(\mathbf{w}_k)\|_2 \leq \sqrt{\frac{2L(f(\mathbf{w}_0)-f(\mathbf{w}_*))}{k}}.$$

A. Cauchy, 1847

Gradient Descent

Consider

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{T} \mathbf{L} \mathbf{w} - \mathbf{w}^{T} \mathbf{e}_{1},$$

where

$$\mathbf{L} = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 & -1 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & -1 & 2 & -1 \\ -1 & 0 & \cdots & 0 & -1 & 2 \end{pmatrix}_{1000 \times 1000},$$

and \mathbf{e}_1 is a 1000-dim vector whose first entry is 1 and all the other entries are 0.

A. Nemirovski et al, 1985

Gradient Descent

 $O\left(1/k
ight)$ convergence rate! Very slow!

Gradient Descent + (Lookahead/Nesterov) Momentum

$$\mathbf{v}_k = \mathbf{w}_{k-1} - s \nabla f(\mathbf{w}_{k-1}),$$
$$\mathbf{w}_k = \mathbf{v}_k + \mu(\mathbf{v}_k - \mathbf{v}_{k-1}).$$

O(1/k) convergence rate!

$$\mathbf{w}_k = \mathbf{w}_{k-1} - s\nabla f(\mathbf{w}_{k-1}) + \mu(\mathbf{w}_{k-1} - \mathbf{w}_{k-2}).$$

Why momentum works

High dimensional problem is usually ill-conditioned!

Figure: Top: no momentum; Bottom: with momentum.

G. Goh, Why momentum really works. Distill, 2017

Nesterov Accelerated Gradient (NAG)

 $O(1/k^2)$ convergence rate!

Nesterov Accelerated Gradient (NAG)

One of the most beautiful and mysterious results in optimization!

Not a descent method! (ripples/bumps in the traces of cost values)

Continuous dynamics

$$\ddot{X}(t)+rac{3}{t}\dot{X}(t)+
abla f(X(t))=0,$$

which satisfies $f(X(t)) - f(X^*) \leq O\left(\frac{1}{t^2}\right)$.

We can prove the above result by considering the following Lyapunov function

$$\mathcal{E}(t) := t^2(f(X(t)) - f(X^*)) + 2\|X(t) + rac{t}{2}\dot{X}(t) - X^*\|_2^2.$$

Can we further accelerate NAG? NAG is not monotonically converge!

Y. Nesterov, 1983. Su, Boyd, and Candes, 2014.

Adaptive Restart NAG (ARNAG)

$$\begin{split} \mathbf{v}_k &= \mathbf{w}_{k-1} - s \nabla f(\mathbf{w}_{k-1}), \\ \mathbf{w}_k &= \mathbf{v}_k + \frac{m(k-1)-1}{m(k-1)+2} (\mathbf{v}_k - \mathbf{v}_{k-1}), \end{split}$$

where

$$m(k) = \begin{cases} m(k-1) + 1, & \text{if } f(\mathbf{w}_k) \leq f(\mathbf{w}_{k-1}), \\ 1, & \text{otherwise.} \end{cases}$$

 $O(e^{-\alpha k})$ convergence with sharpness assumption!

Sharpness: $\frac{\mu}{r}d(\mathbf{w},\mathbf{w}_*)^r \leq f(\mathbf{w}) - f(\mathbf{w}_*), \ \mu > 0, r > 1.$

V. Roulet et al. NIPS 2017

Scheduled Restart NAG (SRNAG)

Let $(0, T] = \bigcup_{i=1}^{m} I_i = \bigcup_{i=1}^{m} (T_{i-1}, T_i]$. In each I_i , we restart the momentum after F_i iterations as follows:

$$\mathbf{v}_k = \mathbf{w}_{k-1} - s \nabla f(\mathbf{w}_{k-1}),$$

$$\mathbf{w}_k = \mathbf{v}_k + \frac{(k \mod F_i)}{(k \mod F_i) + 3} (\mathbf{v}_k - \mathbf{v}_{k-1}).$$

 $O(e^{-\beta k})$ convergence with sharpness assumption!

What If We Do Not Have Exact Gradient?

In ERM,

$$\min_{\mathbf{w}} f(\mathbf{w}) := rac{1}{N} \sum_{i=1}^N f_i(\mathbf{w}) := rac{1}{N} \sum_{i=1}^N \mathcal{L}(g(\mathbf{x}_i, \mathbf{w}), y_i),$$

when $N \gg 1$, compute $\nabla f(\mathbf{w})$ will be very expensive.

Stochastic Gradient:

$$abla f(\mathbf{w}) pprox rac{1}{n} \sum_{j=1}^n f_{i_j}(\mathbf{w}), \text{ with } [n] \subset [N] \text{ and } n \ll N.$$

Can NAG still accelerate convergence with Stochastic Gradient?

A Motivating Example – Gaussian Noise Corrupted Gradient – Case I

Consider

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{L} \mathbf{w} - \mathbf{w}^T \mathbf{e}_1,$$

where

$$\mathbf{L} = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 & -1 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & -1 & 2 & -1 \\ -1 & 0 & \cdots & 0 & -1 & 2 \end{pmatrix}_{1000 \times 1000},$$

and e_1 is a 1000-dim vector whose first entry is 1 and all the other entries are 0.

Gaussian Noise Corrupted Gradient:

$$abla f(\mathbf{w}) = \mathbf{L}\mathbf{w} - \mathbf{e_1} + \mathbf{n}, \ \mathbf{n} \sim \mathcal{N}(\mathbf{0}, (\frac{\mathbf{0.1}}{\lfloor k/100 \rfloor + 1})^2).$$

A Motivating Example – Gaussian Noise Corrupted Gradient – Case I

A Motivating Example - Gaussian Noise Corrupted Gradient - Case II

Consider

$$\min_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{L} \mathbf{w} - \mathbf{w}^T \mathbf{e}_1,$$

where

$$\mathbf{L} = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 & -1 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & -1 & 2 & -1 \\ -1 & 0 & \cdots & 0 & -1 & 2 \end{pmatrix}_{1000 \times 1000},$$

and e_1 is a 1000-dim vector whose first entry is 1 and all the other entries are 0.

Gaussian Noise Corrupted Gradient:

$$abla f(\mathbf{w}) = \mathbf{L}\mathbf{w} - \mathbf{e_1} + \mathbf{n}, \ \mathbf{n} \sim \mathcal{N}(0, 0.001^2).$$

A Motivating Example - Gaussian Noise Corrupted Gradient - Case II

A Motivating Example – Logistic Regression – Case III

Theorem Let $f(\mathbf{w})$ be a convex and *L*-smooth function. The sequence $\{\mathbf{w}^k\}_{k\geq 0}$ generated by NAG with mini-batch stochastic gradient using any constant step size $s \leq 1/L$, satisfies

$$\mathbb{E}\left(f(\mathbf{w}^k) - f(\mathbf{w}^*)\right) = O(k)$$

where w^* is the minimum of f, and the expectation is taken over the random mini-batch samples.

B. Wang*, T. Nguyen*, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, 2020.

Adaptive Restart NAG with Inexact Oracle: restart too often, degenerates to GD without momentum.

Scheduled Restart NAG with Inexact Oracle: appropriate restart scheduling can lead to an optimal trade-off between convergence and error accumulation.

Scheduled Restart SGD (SRSGD)

$$\mathbf{v}^{k} = \mathbf{w}^{k-1} - s \frac{1}{m} \sum_{j=1}^{m} \nabla f_{ij}(\mathbf{w}^{k-1}),$$
$$\mathbf{w}^{k} = \mathbf{v}^{k} + \frac{(k \mod F_{i})}{(k \mod F_{i}) + 3} (\mathbf{v}^{k} - \mathbf{v}^{k-1}).$$

where m is the batch size.

B. Wang*, T. Nguyen*, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, 2020.

Theorem Suppose $f(\mathbf{w})$ is *L*-smooth. Consider the sequence $\{\mathbf{w}^k\}_{k\geq 0}$ generated by SRSGD with mini-batch stochastic gradient and any restart frequency *F* using any constant step size $s \leq 1/L$. Assume that the set $\mathcal{A} := \{k \in \mathbb{Z}^+ | \mathbb{E}f(\mathbf{w}^{k+1}) \geq \mathbb{E}f(\mathbf{w}^k)\}$ is finite, then we have

$$\min_{1\leq k\leq K} \left\{ \mathbb{E} \|\nabla f(\mathbf{w}^k)\|_2^2 \right\} = O(s+\frac{1}{sK}).$$

Therefore for $\forall \epsilon > 0$, to get ϵ error, we just need to set $s = O(\epsilon)$ and $K = O(1/\epsilon^2)$.

B. Wang*, T. Nguyen*, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, 2020.

SRSGD for Deep Learning - CIFAR10/CIFAR100 Classification

SRSGD for Deep Learning – ImageNet Classification

Improving Testing Accuracy

Figure: Error vs. depth of ResNet.

Reduce the Training Epochs

Number of Epoch Reduction

Is NAG-style Momentum Optimal?

Theoretically, yes! Due to Nemirovski & Nesterov!

Empirically, not!

II. Transport Equation vs. Residual Learning

ResNet vs. Transport Equation

Plain Net: $\mathbf{x}_{l+1} = \mathcal{G}(\mathbf{x}_l)$ ResNet: $\mathbf{x}_{l+1} = \mathbf{x}_l + \mathcal{F}(\mathbf{x}_l)$

Forward propagation (FP) of ResNet for any data-label pair $(\hat{\mathbf{x}}, y)$

$$\begin{cases} \mathsf{x}(0) = \hat{\mathsf{x}}, \\ \mathsf{x}(t_{k+1}) = \mathsf{x}(t_k) + \Delta t \cdot \overline{F}(\mathsf{x}(t_k), \mathsf{w}(t_k)), k = 1, 2, \cdots, L-1 \text{ with } \overline{F} \doteq \frac{1}{\Delta t} \mathcal{F} \\ \hat{y} \doteq f(\mathsf{x}(1)) = \operatorname{softmax}(\mathsf{w}_{\mathrm{FC}} \cdot \mathsf{x}). \end{cases}$$

Continuum limit: $\frac{d\mathbf{x}(t)}{dt} = \overline{F}(\mathbf{x}(t), \mathbf{w}(t)).$

Transport equation (TE): $\frac{\partial u}{\partial t}(\mathbf{x},t) + \overline{F}(\mathbf{x},\mathbf{w}(t)) \cdot \nabla u(\mathbf{x},t) = 0, \ \mathbf{x} \in \mathbb{R}^{d}.$

He et al., CVPR, 2016.

Many related works ...

ResNet vs. Transport Equation

Forward and backward propagation

<

1. Let $u(\mathbf{x}, 1) = f(\mathbf{x})$, note $u(\hat{\mathbf{x}}, 0) = u(\mathbf{x}(1), 1) = f(\mathbf{x}(1))$. Therefore, we model FP as computing $u(\hat{\mathbf{x}}, 0)$ along the characteristics of the following TE

$$egin{aligned} & \left\{ rac{\partial u}{\partial t}(\mathbf{x},t)+\overline{F}(\mathbf{x},\mathbf{w}(t))\cdot
abla u(\mathbf{x},t)=0, & \mathbf{x}\in \mathbb{R}^d, \ u(\mathbf{x},1)=f(\mathbf{x}). \end{aligned}
ight.$$

2. Backpropagation (BP): find w(t) for the following control problem

$$\begin{cases} \frac{\partial u}{\partial t}(\mathbf{x},t) + \overline{F}(\mathbf{x},\mathbf{w}(t)) \cdot \nabla u(\mathbf{x},t) = 0, & \mathbf{x} \in \mathbb{R}^d, \\ u(\mathbf{x},1) = f(\mathbf{x}), \\ u(\mathbf{x}_i,0) = y_i, & \mathbf{x}_i \in T, \text{ with } T \text{ being the training data} \end{cases}$$

x(1) is the transport of \hat{x} along the characteristics.

II.1 Feynman-Kac Formalism Principled Adversarial Defense

Code: https://github.com/BaoWangMath/EnResNet

B. Wang, B. Yuan, Z. Shi, and S. Osher, ResNets Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust Accuracies, NeurIPS, 2019.

Why Adversarial Example Arise? - A PDE Interpretation

In the TE model, u(x, 0) serves as the decision function for classification.

The decision boundary is highly erratic, exposed to adversarial attacks!

Given input data distribution $\{x\}$, (a): softmax landscape; (b): deep learning classifier's landscape.

Goodfellow et al., ICLR, 2015.

Improving Robustness via Diffusion

We use diffusion to regularize the decision function u(x, 0), which resulting in

$$\begin{cases} \frac{\partial u}{\partial t} + \overline{F}(\mathbf{x}, \mathbf{w}(t)) \cdot \nabla u + \frac{1}{2}\sigma^2 \Delta u = 0, \quad \mathbf{x} \in \mathbb{R}^d, \ t \in [0, 1), \\ u(\mathbf{x}, 1) = f(\mathbf{x}). \end{cases}$$

Theorem (Stability) Let $\overline{F}(\mathbf{x}, t)$ be Lipschitz in both x and t, and $f(\mathbf{x})$ is bounded. For the above terminal value problem of convection-diffusion equation, $\sigma \neq 0$, we have

$$|u(\mathbf{x}+\delta,0)-u(\mathbf{x},0)| \leq C\left(\frac{\|\delta\|_2}{\sigma}
ight)^{lpha}$$

for some constant $\alpha > 0$ if $\sigma \leq 1$. $C := C(d, \|f\|_{\infty}, \|\overline{F}\|_{L^{\infty}_{x,t}})$ is a constant.

O. Ladyzhenskaja and et al., Linear and Quasilinear Equations of Parabolic Type

Feynman-Kac Formula and Deep Nets Design

By Feynman-Kac formula, we have

$$u(\hat{\mathsf{x}},0) = \mathbb{E}\left[f(\mathsf{x}(1))|\mathsf{x}(0) = \hat{\mathsf{x}}
ight],$$

where $\mathbf{x}(t)$ is an Itô process,

$$d\mathbf{x}(t) = \overline{F}(\mathbf{x}(t), \mathbf{w}(t))dt + \sigma dB_t$$

Deep Nets Design!

Residual mapping + Gaussian noise

Average multiple jointly trained ResNets

Empirical Adversarial Risk Minimization (Robust Training)

Adversarial training: $\min_{\mathbf{w}} \mathbb{E}_{(\mathbf{x}, y) \sim D} \left[\max_{\delta \in S} \mathcal{L}(f(\mathbf{w}, \mathbf{x} + \delta), y) \right]$

Adversarial attacks:

FGSM

$$\mathbf{x}' = \mathbf{x} + \epsilon \operatorname{sign} (\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \mathbf{y}))$$

IFGSM

$$\mathbf{x}^{(m)} = \mathbf{x}^{(m-1)} + \alpha \cdot \operatorname{sign}\left(\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^{(m-1)}, \mathbf{y})\right), \quad m = 1, 2, \cdots, M.$$

C&W

$$\min_{\delta} ||\delta||_2^2, \;\; ext{subject to} \;\; f(\mathbf{x}+\delta,\mathbf{w})=t, \; \mathbf{x}+\delta \in [0,1]^n.$$

N. Carlini and D. Wagner, arXiv:1608.04644

C. Szegedy and et al., arXiv:1312.6199

Performance on CIFAR10 Classification

Table: Natural and robust acc of EnResNets on the CIFAR10. Unit: %.

Model	$\mathcal{A}_{\mathrm{nat}}$	$\mathcal{A}_{ m rob}$ (FGSM)	$\mathcal{A}_{ m rob}$ (IFGSM ²⁰)	$\mathcal{A}_{ m rob}$ (C&W)
ResNet20	75.11	50.89	46.03	58.73
En ₁ ResNet20	77.21	55.35	49.06	65.69
En ₅ ResNet20	82.52	58.92	51.48	67.73

II.2 Deep Neural Nets Compression Channel-Pruning for Adversarial Robust Deep Nets

T. Dinh*, B. Wang*, A. Bertozzi, S. Osher and J. Xin, Sparsity Meets Robustness: Channel pruning for the Feynman-Kac Formalism Principled Robust Neural Nets, Preprint, 2019.

Deep Nets Compression

Common approaches to improve inference efficiency of deep learning:

Sparse weights Quantized weights

We focus on sparsifying deep nets (structured & unstructured)! Neural architecture redesign! + Structured & Unstructured weights pruning!

 $n_f \times n_c \times n_w \times n_h$

Remark. Structured sparsity can remarkably speed up inference.

Sparsity meets Robustness: ResNet20 vs. En₅ResNet20

Table: Natural and robust acc of EnResNet on the CIFAR10. Unit: %.

Model	$\mathcal{A}_{\mathrm{nat}}$	$\mathcal{A}_{ m rob}$ (FGSM)	$\mathcal{A}_{ m rob}$ (IFGSM ²⁰)	$\mathcal{A}_{ m rob}$ (C&W)
ResNet20	75.11	50.89	46.03	58.73
En₅ResNet20	82.52	58.92	51.48	67.73

Maximize Sparsity: Structured & Unstructured Sparsity

Adversarial training:

$$\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) := \min_{\mathbf{w}} \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} \left[\max_{\delta \in S} \mathcal{L}(f(\mathbf{w}, \mathbf{x} + \delta), y) \right]$$

Augmented Lagrangian:

$$\mathcal{L}_{\beta}(\mathbf{w},\mathbf{u},\mathbf{z}) = \mathcal{L}(\mathbf{w}) + \lambda \|\mathbf{u}\|_{1} + \langle \mathbf{z},\mathbf{w}-\mathbf{u}\rangle + \frac{\beta}{2} \|\mathbf{w}-\mathbf{u}\|^{2}, \ \lambda,\beta \geq 0$$

Unstructured sparsity: ℓ_1 -penalty; Structured sparsity: group ℓ_1 -penalty. ADMM:

$$\begin{cases} \mathbf{w}^{t+1} \leftarrow \arg\min_{\mathbf{w}} \mathcal{L}_{\beta}(\mathbf{w}, \mathbf{u}^{t}, \mathbf{z}^{t}) \\ \mathbf{u}^{t+1} \leftarrow \arg\min_{\mathbf{u}} \mathcal{L}_{\beta}(\mathbf{w}^{t+1}, \mathbf{u}, \mathbf{z}^{t}) \\ \mathbf{z}^{t+1} \leftarrow \mathbf{z}^{t} + \beta(\mathbf{w}^{t+1} - \mathbf{u}^{t+1}) \end{cases}$$

Remark 1. One can improve the sparsity of the final learned weights by replacing $\|\mathbf{u}\|_1$ with $\|\mathbf{u}\|_0$; but $\|\cdot\|_0$ is not differentiable.

Remark 2. The Lagrange multiplier term, $\langle \mathbf{z}, \mathbf{w} - \mathbf{u} \rangle$, seeks to close the gap between \mathbf{w}^t and \mathbf{u}^t , and this in turn reduces sparsity of \mathbf{w}^t .

Group the weights into: $\{w_1, w_2, \cdots, w_G\}$, group Lasso: $\sum_{g=1}^G \|w_g\|_2$; group ℓ_0 : $\sum_{g=1}^G \mathbf{1}_{\|w_g\|_2 \neq 0}$.

Relaxed Augmented Lagrangian

Relaxed Augmented Lagrangian:

$$\mathcal{L}_{\beta}(\mathbf{w},\mathbf{u}) = \mathcal{L}(\mathbf{w}) + \lambda \|\mathbf{u}\|_{0} + \frac{\beta}{2} \|\mathbf{w} - \mathbf{u}\|^{2}.$$

Remark 1. For a fixed \mathbf{w}^t , we have

$$\mathbf{u}^{t} = H_{\sqrt{2\lambda/\beta}}(\mathbf{w}^{t}) = (\mathbf{w}_{1}^{t}\chi_{\{|\mathbf{w}_{1}| > \sqrt{2\lambda/\beta}\}}, ..., \mathbf{w}_{d}^{t}\chi_{\{|\mathbf{w}_{d}| > \sqrt{2\lambda/\beta}\}}),$$

where $H_{\alpha}(\cdot)$ is the hard-thresholding operator with parameter α .

Remark 2. Fixed \mathbf{u}^t , \mathbf{w}^t can be updated by gradient descent.

Remark 3. w here is sparser than that in the augmented Lagrangian.

Figure: Channel norms of the adversarially trained ResNet20.

Theorem. Assume \mathcal{L}_{β} is *L*-smooth in **w**, then the relaxed augmented Lagrangian $\mathcal{L}_{\beta}(\mathbf{w}^{t}, \mathbf{u}^{t})$ decreases monotonically and converges sub-sequentially to a limit point $(\bar{\mathbf{w}}, \bar{\mathbf{u}})$ provided the stepsize η such that $\eta < 2/(\beta + L)$

Sparsity vs. Accuracy & Robustness

Figure: En₂ResNet20 vs. ResNet38 under different λ_1 . (5 runs, $\beta = 1$).

III. Privacy-Preserving Machine Learning with Laplacian Smoothing

III.1 Privacy-Preserving Empirical Risk Minimization (ERM)

B. Wang, Q. Gu, M. Boedihardjo, F. Barekat, and S. Osher. DP-LSSGD: A Stochastic Optimization Method to Lift the Utility in Privacy-Preserving ERM, ArXiv:1906.12056, 2019

Code: https://github.com/BaoWangMath/DP-LSSGD

Differential Privacy

Figure: Recovered (Left), Original (Right)

Differential privacy (DP) is a successful countermeasure to adversaries that try to break the privacy of machine learning.

Add differential privacy constraint in training machine learning models!

F. McSherry and I. Mironov, Differentially Private Recommender Systems: Building Privacy into the Netflix Prize Contenders, KDD, 2009.

M. Fredrikson, S. Jha, T. Ristenpart, Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures, CCS, 2015.

Differential Privacy

Definition. A randomized algorithm \mathcal{A} is (ϵ, δ) -differentially private if for any two neighboring datasets D, D' that differ in only one entry and for all events S in the output space of \mathcal{A} , we have

 $Pr(\mathcal{A}(D) \in S) \leq e^{\epsilon} Pr(\mathcal{A}(D') \in S) + \delta.$

DP promises to protect individuals from any additional harm that they might face due to their data being in the private database x that they would not have faced had their data not been part of x.

For all D, D' that differ in one person, if A is ($\epsilon,\delta)\text{-}\mathsf{DP},$ then:

$$\Pr\left[|\ln\left(\frac{\Pr[\mathcal{A}(D) \in S]}{\Pr[\mathcal{A}(D') \in S]}\right)| \ge \epsilon\right] \le \delta$$

Figures courtesy of K. Chaudhuri

C. Dwork and A. Roth, The Algorithmic Foundation of Differential Privacy, 2014.

Privacy-Preserving Empirical Risk Minimization

Empirical risk minimization (ERM):

$$\min F(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^n \mathcal{L}(\mathbf{w}, \mathbf{x}_i, y_i).$$

Differentially private SGD (DP-SGD)

$$\mathbf{w}^{k+1} = \mathbf{w}^k - \eta_k \left(\frac{1}{m} \sum_{k=1}^m \nabla f_{i_k}(\mathbf{w}^k) + \mathbf{n} \right), \ \mathbf{n} \sim \mathcal{N}(0, \nu^2 I_{d \times d}), \{i_k\}_{k=1}^m \subset [n]$$

How to quantify *n* to guarantee (ϵ, δ) -DP?

Major difficulty: quantifying privacy loss aggregation during SGD.

K. Chaudhuri, C. Monteleoni, and A. Sarwate, Differentially Private ERM, JMLR, 2011.

M. Abadi, and et al,, Deep Learning with Differential Privacy, arXiv:1607.00133, 2016.

Theorem (Privacy Budget) Suppose that each f_i is *L*-Lipschitz. Given the number of iterations T, for any $(\epsilon, \delta > 0)$, DP-SGD, with injected Gaussian noise $\mathcal{N}(0, \nu^2 I)$, satisfies (ϵ, δ) -DP with $\nu^2 = 20T\alpha G^2/(\mu n^2 \epsilon)$, where $\alpha = \log(1/\delta)/((1-\mu)\epsilon) + 1$, if $\exists \mu \in (0, 1)$ s.t. $\alpha \leq \log(\mu n^3 \epsilon/(5b^3T\alpha + \mu bn^2\epsilon))$ and $5b^2T\alpha/(\mu n^2\epsilon) \geq 1.5$.

B. Wang, et al., arXiv:1906.12056, 2019.

SGD vs. DP-SGD

Figure: Logistic regression on the MNIST trained by DP-SGD with $(\epsilon, 10^{-5})$ -DP guarantee (left & middle). LeNet on the MNIST trained by DP-SGD with $(\epsilon, 10^{-5})$ -DP guarantee (right).

DP-SGD reduces the utility of the trained model severely.

Question: Can we do better than DP-SGD with negligible extra computation and memory costs?

DP-SGD with Laplacian Smoothing (DP-LSSGD)

$$\mathbf{w}^{k+1} = \mathbf{w}^k - \eta_k \mathbf{A}_{\sigma}^{-1} \left(\frac{1}{m} \sum_{k=1}^m \nabla f_{i_k}(\mathbf{w}^k) + \mathbf{n} \right).$$

where

$$egin{aligned} \mathcal{A}_{\sigma} = (\mathbf{\mathit{I}} - \sigma \mathbf{\mathit{L}}) = egin{bmatrix} 1+2\sigma & -\sigma & 0 & \dots & 0 & -\sigma \ -\sigma & 1+2\sigma & -\sigma & \dots & 0 & 0 \ 0 & -\sigma & 1+2\sigma & \dots & 0 & 0 \ \dots & \dots & \dots & \dots & \dots & \dots \ -\sigma & 0 & 0 & \dots & -\sigma & 1+2\sigma \end{bmatrix}_{d imes d}_{d imes d} \end{aligned}$$

 A_{σ}^{-1} p.s.d with condition number $1 + 4\sigma$; FFT Implementation

DP-LSSGD has the same privacy budget as DP-SGD! Proposition (Post-processing) Let $\mathcal{M} : \mathbb{N}^{|\mathcal{X}|} \to R$ be a randomized algorithm that is (ϵ, δ) -DP. Let $f : R \to R'$ be an arbitrary mapping. Then $f \circ \mathcal{M} : \mathbb{N}^{|\mathcal{X}|} \to R'$ is (ϵ, δ) -DP.

For any pair of $||\mathbf{x} - \mathbf{y}||_{\mathbf{1}} \leq \mathbf{1}$, and any $S \subset R'$, let $T = \{r \in R : f(r) \in S\}$, we have

 $Pr[f(\mathcal{M}(\mathsf{x})) \in S] = Pr[\mathcal{M}(\mathsf{x}) \in T] \le \exp(\epsilon)Pr[\mathcal{M}(\mathsf{y}) \in T] + \delta = \exp(\epsilon)Pr[f(\mathcal{M}(\mathsf{x})) \in S] + \delta$

S. Osher, B. Wang, P. Yin, X. Luo, F. Barekat, M. Pham, and A. Lin, arXiv:1806.06317, 2018

Code: https://github.com/BaoWangMath/LaplacianSmoothing-GradientDescent

Laplacian Smoothing as a Denoiser

Consider the following diffusion equation with the Neumann BC

$$egin{aligned} &\left\{rac{\partial u}{\partial t}=rac{\partial^2 u}{\partial x^2}, \ (x,t)\in[0,1] imes[0,+\infty), \ rac{\partial u(0,t)}{\partial x}=rac{\partial u(1,t)}{\partial x}=0, \ t\in[0,+\infty) \ u(x,0)=f(x), \ x\in[0,1] \end{aligned}
ight.$$

Backward Euler in time and central finite difference in space with v^0 being a discretization of f(x). Unconditionally stable!

$$\mathbf{v}^{\Delta t} - \mathbf{v}^{0} = \Delta t \mathbf{L} \mathbf{v}^{\Delta t} \Rightarrow \mathbf{v}^{\Delta t} = (I - \Delta t \mathbf{L})^{-1} \mathbf{v}^{0} \quad (\sigma = \Delta t)$$

Figure: Illustration of LS ($\sigma = 10$ for v_1 and $\sigma = 100$ for v_2). (a): 1D signal sampled uniformly from sin(x) for $x \in [0, 2\pi]$. (b), (c), (d): 2D original, noisy, and denoised signals sampled from sin(x)sin(y) for $(x, y) \in [0, 2\pi] \times [0, 2\pi]$.

DP-LSSGD Improves Utility of Logistic Regression over DP-SGD (MNIST)

$$\min_{\mathbf{w}} F(\mathbf{w}) = \min_{\mathbf{w}} \left\{ \frac{1}{n} \sum_{i=1}^{n} -\log\left(\frac{\exp < \mathbf{w}, \mathbf{x}_i >_{y_i}}{\sum_j \exp < \mathbf{w}, \mathbf{x}_i >_j}\right) + \lambda \|\mathbf{w}\|_2 \right\}, \quad \lambda = 1 \times 10^{-4}.$$

Figure: $(0.2, 10^{-5})$ -DP guarantee. Step size: 1/t.

Table: Acc of logistic regression with ($\epsilon, \delta = 10^{-5}$)-DP guarantee.

ϵ	0.25	0.20	0.15	0.10
$\sigma = 0$ $\sigma = 1$ $\sigma = 2$	$\begin{array}{c} 81.45\pm1.59\\ 83.27\pm0.35\\ \textbf{83.65}\pm\textbf{0.76} \end{array}$	$\begin{array}{c} 78.92\pm1.14\\ 81.56\pm0.79\\ \textbf{82.15}\pm\textbf{0.59} \end{array}$	$\begin{array}{c} 77.03\pm0.69\\ 79.46\pm1.33\\ \textbf{80.77}\pm\textbf{1.26} \end{array}$	$\begin{array}{c} 73.49 \pm 1.60 \\ 76.29 \pm 0.53 \\ \textbf{76.31} \pm \textbf{0.93} \end{array}$

Utility Guarantees

Algorithm	Privacy	Assumption	Utility	Measurement
DP-SGD	(ϵ, δ)	convex	$\tilde{\mathcal{O}}\left(\sqrt{(D_{0}+G^{2})d}/(\epsilon n) ight)$	optimality gap
DP-SGD	(ϵ, δ)	nonconvex	$\tilde{\mathcal{O}}\left(\sqrt{d}/(\epsilon n)\right)$	ℓ_2 -norm of gradient
DP-LSSGD	(ϵ, δ)	convex	$\tilde{\mathcal{O}}\left(\sqrt{\gamma(D_{\sigma}+G^2)d}/(\epsilon n)\right)$	optimality gap
DP-LSSGD	(ϵ, δ)	nonconvex	$\tilde{\mathcal{O}}\left(\sqrt{eta d}/(\epsilon n) ight)^{1}$	ℓ_2 -norm of gradient

¹ Measured in the norm induced by \mathbf{A}_{σ}^{-1} .

 $D_{\sigma} = \|\mathbf{w}^0 - \mathbf{w}^*\|_{\mathbf{A}_{\sigma}}^2$ and \mathbf{w}^* is the global minimizer.

$$\gamma = \frac{1}{d} \sum_{i=1}^{d} \frac{1}{1 + 2\sigma - 2\sigma \cos(\frac{2\pi}{d})} = \frac{1 + \alpha^d}{(1 - \alpha^d)\sqrt{4\sigma + 1}}, \quad \text{with} \quad \alpha = \frac{2\sigma + 1 - \sqrt{4\sigma + 1}}{2\sigma}.$$

$$\beta = \frac{2\alpha^{2d+1} - \xi \alpha^{2d} + 2\xi d\alpha^d - 2\alpha + \xi}{\sigma^2 \xi^3 (1 - \alpha^d)^2},$$

where

$$\alpha = \frac{2\sigma + 1 - \sqrt{4\sigma + 1}}{2\sigma}, \ \, \text{and} \ \, \xi = -\frac{\sqrt{1 + 4\sigma}}{\sigma}.$$

II.2 Differentially Private Federated Learning

Z. Liang, B. Wang, Q. Gu, S. Osher, and Y. Yao. Differentially Private Federated Learning with Laplacian Smoothing, Preprint.

Federated Learning (FL)

Train a centralized model (**w**) while training data is distributed over many clients. In communication-round *t*, the server distributes the current model \mathbf{w}_t to a subset M_t of *m* clients. These clients update the model based on their local data. Let the updated local models be \mathbf{w}_1^t , \mathbf{w}_2^t , \cdots , $\mathbf{w}_{n_t}^t$, so the update is

$$H_i^t \doteq \mathbf{w}_i^t - \mathbf{w}^t$$
, for $i \in M_t$.

These updates could be a single gradient computed on the client. Then the server collects these updates to update the global model

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \eta^t H^t, \quad H^t \doteq \frac{1}{m} \sum_{i \in M_t} H^t_i.$$

How to protect the privacy of clients' data?

Differentially Private Federated Learning with Laplacian Smoothing

Algorithm Differentially-Private Federated Learning with Laplacian Smoothing (DP-Fed-LS)

```
Server executes:
   initialize \mathbf{w}^0
    for each round t = 1, 2, \dots, T do
           m \leftarrow \max(\tau \cdot K, 1) where 0 < C < 1
           M_t \leftarrow (\text{random set of } m \text{ clients})
           for each client i \in M_t in parallel do
                  \mathbf{w}_{i}^{t} \leftarrow \mathbf{w}^{t-1}
                  \mathcal{B} \leftarrow (\text{split local data set into batches of size } B)
                  for each local epoch i = 1, 2, \dots, E do
                         for batch b \in \mathcal{B} do
                                \mathbf{w}_{i}^{t} \leftarrow \mathbf{w}_{i}^{t} - \eta_{t} \cdot \frac{1}{R} \sum_{i \in h} \nabla \ell(\mathbf{w}_{i}^{t}; b_{i})
                                \mathbf{w}_{i}^{t} \leftarrow \mathbf{w}^{t-1} + \operatorname{clip}(\mathbf{w}_{i}^{t} - \mathbf{w}^{t-1}), where \operatorname{clip}(\mathbf{v}) \leftarrow \mathbf{v}/\max(1, \|\mathbf{v}\|_{2}/G)
                  \Delta_i^t \leftarrow \mathbf{w}_i^t - \mathbf{w}^{t-1}
           \mathbf{w}^t \leftarrow \mathbf{w}^{t-1} + \frac{1}{m} \mathbf{A}_{\sigma}^{-1} \left( \sum_{i=1}^m \Delta_i^t + \mathbf{n} \right), where \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \nu^2 \mathbf{I})
Output \mathbf{w}^T
```

Theorem (Privacy Budget for DP-Fed-LS) For any $\delta \in (0, 1)$, and ϵ satisfying

$$(2\log(1/\delta) + (1+ au)\epsilon)^2 \leq rac{3(1- au)\epsilon^3}{8 au^2 T} ext{ and } \epsilon \leq au \sqrt{rac{8 au}{3}\log(rac{1}{\delta})^2}$$

the DP-Fed-LS algorithm (with or without Laplacian smoothing), satisfies (ϵ, δ) -DP if its injected Gaussian noise $\mathcal{N}(0, \nu^2 I)$ is chosen to be

 $\nu \geq (4 au G) / \epsilon$

where G is the ℓ_2 -bound of clipped gradient, $\tau := m/K$ is the subsampling ratio of active clients, T is the total number of communication rounds.

Table: Testing accuracy of logistic regression trained by DP-Fed ($\sigma = 0$) and DP-Fed-LS ($\sigma = 1, 2, 3$) on MNIST with ($\epsilon, 1/K^{1.1}$)-DP guarantee with K = 2000 be the number of clients.

ϵ	2	3	4	5
$\sigma = 0$ $\sigma = 1$ $\sigma = 2$ $\sigma = 3$	$\begin{array}{c} 60.23 \pm 2.7 \\ 66.11 \pm 2.7 \\ 67.84 \pm 2.1 \\ \textbf{68.52} \pm \textbf{1.1} \end{array}$	$\begin{array}{c} 73.50\pm1.0\\ 76.98\pm0.68\\ 79.57\pm1.1\\ \textbf{80.60}\pm\textbf{0.84} \end{array}$	$\begin{array}{c} 80.72 \pm 0.49 \\ 82.85 \pm 0.26 \\ \textbf{82.88} \pm \textbf{0.19} \\ 82.54 \pm 0.12 \end{array}$	$\begin{array}{c} 82.24 \pm 0.27 \\ 84.09 \pm 1.1 \\ \textbf{84.85} \pm \textbf{0.80} \\ 84.51 \pm 0.44 \end{array}$

Batch size: 128; local epoch: 20; sensitivity: 0.15; Communication round: 15.

Thank You

- I. Scheduled Restart NAG Momentum
 - I.1 Accelerate convergence
 - I.2 Better generalization accuracy
- I. TE modeling of DNN
 - I.1 Feynman-Kac formalism for robust and efficient DL
 - I.2 Channel-pruning for the Feynman-Kac formula principled deep nets
- II. Laplacian smoothing
 - II.1 Differentially-private ERM
 - II.2 Differentially-private federated learning
- 1. B. Wang, T. Ngyuen, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, 2020.
- 2. B. Wang, X. Luo, W. Zhu, Z. Li, Z. Shi, and S. Osher, NeurIPS, 2018.
- 3. B. Wang, B. Yuan, Z. Shi, and S. Osher, NeurIPS, 2019.
- 4. T Dinh*, B. Wang*, A. Bertozzi, S. Osher, and J. Xin, Preprint, 2019.
- 5. B. Wang, Q. Gu, M. Boedihardjo, and S. Osher, arXiv:1906.12056, 2019.
- 6. Z. Liang, B. Wang, Q. Gu, S. Osher. and Y. Yao, Preprint, 2019.

Website: https://www.math.ucla.edu/~wangbao/

Code: https://github.com/BaoWangMath