Advances of Momentum in Optimization Algorithm and Neural
Architecture Design

Bao Wang
Department of Mathematics
Scientific Computing and Imaging Institute
University of Utah

Partially supported by DoE, NSF, and Univ of Utah

Deep Learning (DL)

C1 S1 C2 SZ ny ny
input feature maps feature mapsfeature mapsfeature maps output
32x32 28x 28 14 x 14 10x 10 5x5

5x5 \

convolution

\ 2x2 fully \
subsampling convolution

L]
d
S _sulﬂ\plin_g _\\connecte \

feature extraction classification

DL = Big Data + Deep Nets + SGD + HPC

Deep Learning: Revolution in Technology

Face ID &utonon;oui Cars

Alpha Go Machine Translation

ALL SYS f.éﬁkis Go

Deep Learning: Revolution in Science

Protein Structure Prediction

Drug Discovery
i dakE-
~ Big dala™—_
C

= 2 i
2= N s

P

== ") [Ty
T,
.,
Lt il e O

Material Design

Deep Learning is Expensive!

1. Neural architecture design is mostly art instead of science!

2. Training deep neural networks is expensive:

2.1 No principled approach in selecting optimization algorithm!

2.2 Slow convergence!

Deep Learning is Very Expensive

-
s

AlphaGO Lee Se-dol
1202 CPUs, 176 GPUs, 1 Human Brain,
100+ Scientists. 1 Coffee.

Our Principle

Simple and principled approaches converge with working
machine learning algorithms!

A few examples:
Nesterov Accelerated SGD with Restart |

Integrate Momentum into Recurrent Neural Network Il

|. Scheduled Restart Momentum for Accelerated Stochastic Gradient
Descent

B. Wang, T. Nguyen, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, Scheduled Restart Momentum for Stochastic Gradient
Descent, arXiv:2002.10583, 2020.
Code: https://github.com/minhtannguyen/SRSGD

Blog: http://almostconvergent.blogs.rice.edu/2020/02/21/srsgd/

https://github.com/minhtannguyen/SRSGD
http://almostconvergent.blogs.rice.edu/2020/02/21/srsgd/

Empirical Risk Minimization (ERM)
Consider training a machine learning model

y =g(x,w), weR".
Empirical Risk Minimization (ERM)

w

min f(w) := % Z fi(w) := % ZE(g(Xi,W),yi),

where L is the loss between the predicted label y; and the ground-truth label y;.

Classification: cross-entropy loss L(¥i,yi) = — 327, y! log(p!). where p/ is the predicted probability
that y; is belong to j-th class.

Regression: mean squared error L(9, yi) = (vi — 7i)°.

Challenges: d ~ 10'°, N ~ 10'°, and f(w) is nonconvex.

Gradient Descent

Suppose f(w) is L-smooth, i.e., |[Vf(w) — Vf(v)|l2 < L||w — v]|2.

Start from wo, gradient descent performs the following iteration
Wi = Wg_1 — SVf(kal).

1. f(w) is p-strongly convex (bounded below by a quadratic function), let s =2/(x + L), we have

L/pw—1
L/jpw+1

K
[[wi — w2 < () |[wo — w.||2, ws is the minimum.

2. f(w) is convex, let s = 1/L, we have

2L|lwo — w*Hg

f(wg) — f(wy) < p

3. f(w) is nonconvex, let s = 1/L, we have

9wl < f 2 w) = Fle))

A. Cauchy, 1847

Gradient Descent

Consider)
min f(w) = EWTLW —w'ey,
where
2 -1 0 0 -1
-1 2 -1 0 0
L=1.-.. . 7
0 - 0 -1 2 -1
-1 0 - o -1 2

1000x 1000

and e is a 1000-dim vector whose first entry is 1 and all the other entries are 0.

A. Nemirovski et al, 1985

Gradient Descent

100+ —GD||
=
[t
x/-\ 10-5 L
=
[r=t
-10 ‘ . ‘ ‘
10
1 2 3 4 5

Iteration (k) x10*

O (1/k) convergence rate! Very slow!

Gradient Descent + (Lookahead/Nesterov) Momentum
Vi = Wy_1 — sVF(wy_1),

Wy = Vi + ,u(vk — Vk—l)-

10° —¢b
—GD + Momentum

10-1°
1 2 3 4 5
Iteration (k) x10*

O (1/k) convergence rate!

Heavy Ball

Wy = Wy 1 — SVf(kal) + M(kal — kaz).

O (1/k) convergence rate!

B. Polyak, 1964

Why momentum works

High dimensional problem is usually ill-conditioned!

optimum

Optimum.

Solution

Figure: Top: no momentum; Bottom: with momentum.

Momentum smooths the trajectory and significantly speeds up gradient descent.

G. Goh, Why momentum really works. Distill, 2017

Nesterov Accelerated Gradient (NAG)
Vi = Wi—1 — sVF(wi_1),
-1

B)
Wy, =V Vi —Vg_1).
k k k+2 k k—1
0 —GD
10 —GD + Momentum

10710 (‘ ‘ ‘
1 2 3 4 5
Iteration (k) «10*

O(1/k?) convergence rate! NAG oscillates.

Nesterov Accelerated Gradient (NAG)

One of the most beautiful and mysterious results in optimization!
Not a descent method! (ripples/bumps in the traces of cost values)

Continuous dynamics

X(1) + 2X(1) + VFX(2) =0,

which satisfies £(X(t)) — f(X*) < O ().
We can prove the above result by considering the following Lyapunov function
E(t) = £ (F(X(1)) = F(X)) + 2 X(1) + 5 X() = X7z

Can we further accelerate NAG? NAG is not monotonically converge!

Y. Nesterov, 1983.
Su, Boyd, and Candes, 2014.

Adaptive Restart NAG (ARNAG)
Ve = Wg—1 — sV F(wk_1),
B mk-1) -1,
Wi = Vi + W(Vk Vk—1),

where
— i < _
m(k) = mk—1)+1, if f(wf) < f(wk-1),
1, otherwise.

10° e
—GD + Momentum

O(a¥), geometric convergence with convex and sharpness

= .
= assumption!
= 107

Sharpness: Zd(w,w.)" < f(w) — f(w.), p>0,r>1

10710

Iteration (k) «10*

V. Roulet et al. NIPS 2017

Scheduled Restart NAG (SRNAG)
Let (0, T] = U2, i = U (Ti=1, Ti]. In each [;, we restart the momentum after F; iterations as

follows:
Vi = Wi_1 — sV (wk_1),
w Vi + (k mod F,‘) (V v)
k=Vkt+ 5 (Vk — vk-1).
(k mod Fi) +3
—GD L
100 :ﬁz(; Momentum
—ARNAG
= O(B"), geometric convergence with convex and sharpness
— -5 1 |0 .
<, 10 | assumption!
£
10—10 i ' L
1 2 3 4 5

Iteration (k) x10*

V. Roulet et al. NIPS 2017

What If We Do Not Have Exact Gradient?

In ERM,
m|nf : NZf w) = Zﬁ(g Xi, W), yi),

when N > 1, compute Vf(w) will be very expensive.
Stochastic Gradient:

Vi(w) ~ Zf (w), with [n] C [N] and n < N.

j 1

Can NAG still accelerate convergence with Stochastic Gradient?

A Motivating Example — Gaussian Noise Corrupted Gradient — Case |: Decaying Variance

Consider
mvjn f(w) = leLw —w'es,
where
2 -1 0 0 -1
-1 2 -1 0 0
L= ,
0 0o -1 2 -1
-1 0 0 -1 2

1000x 1000
and e; is a 1000-dim vector whose first entry is 1 and all the other entries are 0.

Gaussian Noise Corrupted Gradient:

0.1

Vf(w)=Lw—e;+n, n NN(Q(W)z)

A Motivating Example — Gaussian Noise Corrupted Gradient — Case |: Decaying Variance

—GD
—GD + Momentum
0 —NAG
107 ¢ —ARNAG
SRNAG
S
10
X
X
—
10"

Iteration (k) «10%
NAG accumulates error when an inexact gradient is used. ARNAG restarts too often
and almost degenerates into GD. SRNAG performs the best.

A Motivating Example — Gaussian Noise Corrupted Gradient — Case Il: Constant Variance

Consider
mvjn f(w) = %WTLW —w'es,
where
2 -1 0 0 -1
-1 2 -1 0 0
L= .. ,
0 0 -1 2 -1
-1 0 0 -1 2

1000x 1000
and e; is a 1000-dim vector whose first entry is 1 and all the other entries are 0.

Gaussian Noise Corrupted Gradient:

Vf(w) =Lw —e; +n, n~ AN(0,0.001%).

A Motivating Example — Gaussian Noise Corrupted Gradient — Case Il: Constant Variance

_|—GD
—GD + Momentum
—NAG
100 H —ARNAG
SRNAG
=

f(x<
'—\
o
N

10 ‘ : : ‘
1 2 3 4 5
Iteration (k) «10%
NAG accumulates error when an inexact gradient is used. ARNAG restarts too often
and almost degenerates into GD. SRNAG performs the best.

A Motivating Example — Logistic Regression — Case ll|

102
101 | —SGD |
—SGD + Momentum
@ —NASGD
3 —ARSGD
SRSGD
10°

200 400 600 800 1000
Iteration (x 10)
Figure: Training loss of logistic regression for MNIST classification.

NAG still accumulates error, and SRNAG performs the best.

Error Accumulation of NAG with Stochastic Gradient

Theorem Let f(w) be a convex and L-smooth function. The sequence {w*}4>¢ generated by NAG
with mini-batch stochastic gradient using any constant step size s < 1/L, satisfies

E (f(w") — F(w")) = O(K),

where w™* is the minimum of f, and the expectation is taken over the random mini-batch samples.

Nesterov Accelerated SGD accumulates error, which diverges!

B. Wang, T. Nguyen, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, 2020.

NAG with Restart (Inexact Oracle)

Adaptive Restart NAG with Inexact Oracle: restart too often, degenerates to GD
without momentum.

Scheduled Restart NAG with Inexact Oracle: appropriate restart scheduling can lead to
an optimal trade-off between convergence and error accumulation.

Scheduled Restart SGD (SRSGD)

1 m
K k—1 k—1
vi=w—s '§1Vf,-j(w),
j=

k mod F;
Wk:Vk_l’_w(vk_v

k—l)
(k mod F;) +3

where m is the batch size.

SRSGD resets the Nesterov momentum according to a fixed schedule when stochastic
gradients are used.

B. Wang, T. Nguyen, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, 2020.

Convergence of SRSGD

Theorem Suppose f(w) is L-smooth. Consider the sequence {w*},>o generated by SRSGD with
mini-batch stochastic gradient and any restart frequency F using any constant step size s < 1/L.
Assume that the set A := {k € ZT|Ef(w*™) > Ef(w*)} is finite, then we have

1
in {E|Vf(w)|3} =0(s+ —).
min{EIVF(wH)[Z} = O(s +)
Therefore for Ve > 0, to get € error, we just need to set s = O(e) and K = O(1/¢?).

SRSGD converges even when stochastic gradients are used.

B. Wang, T. Nguyen, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, 2020.

SRSGD for Deep Learning — CIFAR10/CIFAR100 Classification

T T
—— SRSGD

e NI MEEZE
q =—— SGD
s EREREHERS <
R e
[J)] ———
bird - = k
Q
cat M
P D N
deer ! E
u oz
frog = 1072 \\M‘
M
e | ST
WA
ship ‘
1 50 175 200
truck R.]: 0 25 50 75 100 125 1

Epochs

SRSGD converges faster than SGD.

SRSGD for Deep Learning — ImageNet Classification

4% 10°
—— SRSGD
— SGD
]
w 3x 10
©
o
(%]
QD 2 x10°
o
£
(%]
[%]
(@]
]
10°
0 20 40 60 80

Epochs

SRSGD converges faster than SGD.

Improving Testing Error

SGD SRSGD
CIFAR10 CIFAR100 ImageNet
24,0
24,0
o \\s\‘“’ 23.0
o 23,0
5 22.0
o 4.5
é 21.0 22.0
40 20.0 21.0
110 290 470 650 1001 110 290 470 650 1001 50 101 152

Number of Layers

Figure: Error vs. depth of ResNet.

The improvement of SRSGD over SGD continues to grow with depth. Since SRSGD
oscillates, it can escape bad minima and avoid overfitting in very deep networks.

Reducing the Training Epochs

SRSGD Training in 100 epochs SRSGD Training with Fewer Epochs
vs. SGD Training in 200 epochs vs. SGD Training in 90 epochs
CIFARI0 ImageNet
Network SRSGD Improvement over Network SRSGD Epoch Improvement
SGD baseline Reduction | over SGD

Pre-ResNet-110 5.4340.18 —0.18 ResNet-50 | 24.30 £ 0.21 10 —0.19
Pre-ResNet-290 4.83+0.11 0.22 ResNet-101 | 22.32 + 0.06 10 0.1
Pre-ResNet-470 4644017 0.28 ResNet-152 | 21.79£0.07 | 15 0.24
Pre-ResNet-650 4434014 0.44 ResNet-200 | 21.92+0.17 | 30 0.21
Pre-ResNet-1001 4.17+0.20 0.67

Pre-ResNet-110 | 5.25 4 0.10 (110 epochs) 0.00

CIFAR100
Network SRSGD Improvement over
SGD baseline

Pre-ResNet-110 23.85 +0.19 —0.10

Pre-ResNet-290 21.77 +0.43 0.01

Pre-ResNet-470 21.42 +0.19 0.01

Pre-ResNet-650 21.04 + 0.20 0.23
Pre-ResNet-1001 20.27 +0.11 0.60

Pre-ResNet-110 | 23.73 £ 0.23 (140 epochs) 0.02

SRSGD training with fewer epochs achieves comparable results to the SGD baseline.

II. MomentumRNN: Integrating Momentum into Recurrent Neural
Networks

T. Nguyen, A. Bertozzi, R. Baraniuk, S. Osher, and B. Wang, MomentumRNN: Integrating Momentum into Recurrent Neural
Networks, arXiv:2006.06919, 2020.

Code: https://github.com/minhtannguyen/MomentumRNN

https://github.com/minhtannguyen/MomentumRNN

Recurrent Neural Networks

ht — g U X htfl + w X Xt

hidden state e.g., sigmoid \ weight matrix pidden state Weight matrix input data

Universal Approximation Theorem of RNN (Informal). A
RNN with enough capacity and sigmoid activation can
approximate with arbitrary accuracy to the following nonlinear

hy 1 / U & O h, dynamical system

Recurrent Cell

he = g(he—1, %),

where h; is the hidden state at time t and x; is the external
input. g(-) is a measurable function. ?

?S. Haykin, Neural networks and learning machines, 2009.

Recurrent Neural Networks — Application |

Sequence to label: Input a sequence, output a label.

o ke e I R o B G B
t 1 f t t
NN N L= | s [= | -

Applications: text classification (left — the label is inferred from the last hidden state), image
captioning (right — the label is inferred from all hidden states),...

Recurrent Neural Networks — Application Il

Sequence to sequence (synchronized): Input a sequence, output a sequence.

Applications: sequence labeling, part-of-speech tagging,...

Recurrent Neural Networks — Application Ill

Sequence to sequence (asynchronized): Input a sequence, output a sequence.

1 h : . 1
B S T
‘ hl ‘_>‘ hz ‘+ ' +‘ hT ‘_>‘ hTH T hT+2 H’ + hT+M
A 1 A A
T ! T I S
N | xr | | (BOS) |*mm--F N

Applications: text summarization, machine translation,...

Recurrent Neural Networks — Training Algorithm

Back-propagation through time (BPTT)!

Given any training sample (x,y) with x = (x1,x2,--- ,x7) being an input sequence of length T and
y = (y1,¥2, -+, y7) being the sequence of labels. Let L, be the loss at the time step t and the total

loss on the whole sequence is
T
;C == E l:t.
=1

For any 1 < t < T, we can compute the gradient of the loss L with respect to the parameter U as

az:t ohe L. Oh, ohe 9L: ot Ohgr
Zau oh: oh, Zau oh, g ohy

where %52 = DU with Dy = diag (o (Uhk + Wxy1)).

H 6'”:1 affects learning long-term dependency.

Recurrent Neural Networks — Learning Long-Term Dependency?

t—1 t—1
8hk+1 T
= D
Ohy H kU
k=1 k=1

If IDUT]2 > 1, TTiZ) Zett — 0o as t — k — o0,

Solution: gradient clipping, regularize UT,...

If IDLUT]2 < 1, TTiZ) Ztt — 0 as t — k — oo,

Major obstacle to learning long-term dependency!

Recurrent Neural Networks — Long Short-Term Memory (LSTM)

ir = o(Uinht—1 + Wix:), (it : input gate)
¢: = tanh (Uzhe—1 + Weexe), (€ : cell input)
Ct=Ct1+i: OC, (ct : cell state)
0: = o(Uorhi—1 + Weix:), (o¢ : output gate)
h: = o; ® tanhc,, (h¢ : hidden state)

where U, € R"™" and W, € R"*9 are learnable parameters, and @ denotes the Hadamard product.

After quite complicated computations, we can find that

Ohyi1

Zx 1 _p
Ohy ,

Instead of D, U™

Learning long-term dependency in LSTMs can be derived
using the similar approach as in RNNs.

S. Hochreiter, J. Schmidhuber, Long short-term memory, 1997.

State-of-the-Art Solution for Learning Long-Term Dependency — Unitary RNN

Enforce the matrix U to be unitary!

Efficient numerical algorithm: exponential parameterization.

M. Arjovsky, A. Shah, and Y. Bengio, Unitary Evolution Recurrent Neural Networks, ICML, 2016.
L. Mario, Trivializations for Gradient-Based Optimization on Manifolds, NIPS, 2019.

Our solution

Integrating momentum into RNNs!

Background: Momentum Accelerated Dynamical System for Optimization

Consider
min f(x), x € RY.

Start from xo, gradient descent (GD) iterates as follows

X¢ = X¢—1 — sVF(x¢), s > 0 is the step size.

Momentum accelerated gradient descent

Po = Xo; Pt = pPe—1 + SVF(Xe); Xt = Xe—1 —pt, u > 0.

=102
= 17 T 500
i f(x)==x Lx —x e, x e R™".
<1075 - 2
g GD where L is the Laplacian of a cycle graph.
—— GD + Momentum
1078

0 2500 5000 7500 10000
Iterations

Momentum accelerates gradient descent.

Background: Momentum Accelerated Dynamical System for Sampling
Consider sampling the distribution
7 o exp(—f(x)), x € RY.
Langevin Monte Carlo (LMC)
Xe = X1 — sVF(x:) +V2s€, s >0, t > 1, € ~ N(0, lyxa).
Hamiltonian Monte Carlo (HMC)
Po = Xo; Pt = Pe—1 — YSPt—1 — SV F(xe—1) + \/%et; Xt = X¢—1 + spr, t>1.

= >
£ —— LMC £ 10° &\\
£ c
© — HMC ©
th’l = th’l — LMC —_—
o - —— HMC
S =
0 200 400 600 800 0 200 400 600 800
Epochs Epochs

Figure: LMC vs. HMC in training Bayesian neural network for MNIST classification.

Momentum accelerates MCMC sampling.

MomentumRNN: Integrating Momentum into RNN
Let ¢(-) := o(U(-)) and u; := U™ Wx,, we can rewrite the recurrent cell as
h: = ¢(ht,1 + u:)
regard —u; as “gradient”
Add momentum to the recurrent cell yields
Pt = UPt—1 — SUy¢; h, = ¢(ht—1 - Pt)~
Let v; := —Up;, we get the following momentum cell

Vi = UVi—1 =+ SWXt; ht = O'(Uht_]_ + Vt).

Recurrent Cell Momentum Cell

hy =a(Uxh |+ W xx,) Vi= K v+ s x W xx
|'\

eradient momentum

hy =c(Ux b | +vy)

X W

I
I
I
I
I
I
I
I
iy U [R>h, b U & by
I
I
I
i
I
I
1

MomentumRNN replaces the gradient update in RNN by a momentum-based update.

MomentumRNN: Alleviating the Vanishing Gradient Issue

BPTT for RNN
oL oL ohr F o ac oo
dh, ~ Ohr oh, ahT H hy E(Dku)

BPTT for MomentumRNN
T-1

oL oL oOhr 8hk+1 35
T A A = = D« X
oh, Ohr Oh, ahT U ohy H [UT + uX],

where D = diag(o’(U(hk + phe_1) + po=(hg) + sWxy. 1)) and £ = diag((c 1)/ (hy)). For
mostly used o, e.g., sigmoid and tanh, (¢~ *(-)) > 1 and uXy dominants UT.

Y, is the dominating term, and choose a proper momentum constant ;. in
MomentumRNN helps alleviate the vanishing gradient problem.

MomentumRNN: Alleviating the Vanishing Gradient Issue — Illustration

RNN MomentumRNN

0 0
)
Q 200 200 0.04
% 400 400
iy 0.02
£ 600 600
— 783 783 (LRI Mt nlJu..m.\ml-mumminmm 0.00

10K 30K 50K 70K 10K 30K 50K 70K

Training lteration

Figure: £2 norm of the gradients of the loss £ w.r.t. the state vector h; at each time step t for RNN
(left) and MomentumRNN (right). Experiment: training RNN for pixel-by-pixel MNIST classification.

/> norm of the gradients in MomentumRNN is more significant than in RNN and,
therefore, helps alleviating the vanishing gradient issue.

Other MomentumRNNs — From Different Parameterizations

Let Vi = —P¢ in
Pt = UPt—1 — SUy; h, = ¢(ht—1 - Pt),
we get

Vi = UVi—1 — wat; h, = f,b(Uht—l + UVt),

where W := U~'W is the trainable weight matrix.

Different parameterizations can result in different momentum RNN architectures.

Other MomentumRNNs — From Different Optimization Algorithms

Nesterov Accelerated Gradient (NAG): Replace p with %

with F being the restart frequency.
Adam:

Ve = i1 + sWx; me = fme_g + (1 - B)(Wx; ©Wx,); h, =0 <Uht_1 + Vme+e /n‘:l:—&-e> '

Momentum Cell Adam Cell
|
Vi =X Vg +5x Wxx, Il vi=pxvi_1+5sx W xx
v :mf: xmy_q+ (1 —9) x (W xx;)?
momentum | Vt
hy =0(U x h;_ hy=0c(Uxh_; +
¢ =0o(Uxh;y+vy) : t (-1 \/ﬁ+€>
| Va N\
n U & 0 F>h, | b U & 0 > h,
| - - v
Vi1 AN, Vi | Vi1 1 @ ® vt
[*
] | s Jor
|
Xt W | Xt Wi)2 e 4 my
Im;
o 4
k-1 |
NAG Cell: set /1 = | RMSProp Cell: set /1 = 0

k+2 I
Our momentum-based framework can take advantage of advanced optimizers to
further improve RNN.

Wang, et al. Scheduled restart momentum for accelerated SGD, arXiv:2002.10583.

MomentumLSTMs

The momentum can also be integrated into LSTM and other RNN models easily!

Experimental Results: MomentumRNN
Improves the Performance of RNN on
Various Data Modalities

MomentumRNNs — Converge Faster (MNIST)

We flatten the MNIST image and feed it into the model as sequence of length 784. The original one
denoted as MNIST, and we also permute the sequence and get the PMNIST dataset.

MomentumLSTM —— AdamLSTM RMSPropLSTM = SRLSTM ——— LSTM
» 2.0 MNIST o 2.0 MNIST
8 \ wn
= S
c 1.0 +~ 1.0
: 3
~ 0.0 n 0.0 S
104 10° 10! 102
Iteration Epoch

AdamLSTM and RMSPropLSTM converge fastest on MNIST tasks.

MomentumRNNs — Converge Faster (TIMIT)

TIMIT speech dataset is a collection of real-world speech recordings. The recording are downsampled
to 8kHz and then transformed into log-magnitudes via a short-time Fourier transform (STFT). The
task accounts for predicting the next log-magnitude given the previous ones.

—— MomentumLSTM —— AdamLSTM RMSPropLSTM = SRLSTM ——— LSTM

» 107 TIMIT| , 10
& A
S S
= +
Z 10! Sy (@ 101
20K 40K 60K 250 500 750
lteration Epoch

Vanilla MomentumLSTM and Scheduled Restart LSTM (SRLSTM)
converge fastest on TIMIT tasks.

MomentumRNNs — Converge Faster (Word-Level Penn TreeBank)

We perform language modeling over a preprocessed PTB dataset (predict the next word). We use a
three-layer LSTM model, which contains three concatenated LSTM cells.

MomentumLSTM —— SRLSTM —— LSTM

" 7.0 , 8.0
(%)
Q6.0 § ;-8
£5° 2 5.0
= 4.0 —
4.0
104 10° 101 102
Iteration Epoch

Both MomentumLSTM and SRLSTM converges faster
than the baseline LSTM on PTB tasks.

MomentumRNNs — Improve Accuracy (MNIST)

All momentum-based models achieve better accuracy than the baseline LSTM.

MomentumRNNs — Improve Accuracy (MNIST)

Table 1: Best test accuracy at the MNIST and PMNIST tasks (%). We use the baseline results reported
in [21], [58], [56]. All of our proposed models outperform the baseline LSTM. Among the models
using N = 256 hidden units, RMSPropLSTM yields the best results in both tasks.

MODEL N # PARAMS MNIST PMNIST
LSTM 128 =~ 68K 98.70[21],97.30 [56] 92.00[21],92.62 [56]
LSTM 256 =~ 270K 98.90 [21], 98.50 [58] 92.29 [21], 92.10 [58]
MOMENTUMLSTM 128 =~ 68K 99.04 +0.04 93.40 + 0.25
MOMENTUMLSTM 256 = 270K 99.08 £ 0.05 94.72 +0.16
ADAMLSTM 256 =~ 270K 99.09 4+ 0.03 95.05 +£0.37
RMSPROPLSTM 256 =~ 270K 99.15 + 0.06 95.38 = 0.19
SRLSTM 256 =~ 270K 99.01 +£0.07 93.82 +1.85

RMSPropLSTM achieves the best accuracy on MNIST tasks.

MomentumRNNs — Improve Accuracy (TIMIT)

Table 2: Test and validation MSEs at the end of the epoch with the lowest validation MSE for the
TIMIT task. All of our proposed models outperform the baseline LSTM. Among models using
N = 158 hidden units, SRLSTM performs the best.

MODEL N # PARAMS VAL. MSE TEST MSE

LSTM 84 ~ 83K 14.87 £0.15 (15.42 [21, 32]) 14.94 +0.15 (14.30 [21, 32])
LSTM 120 =~ 135K 11.77 £0.14 (13.93 [21, 32]) 11.83 £0.12(12.95 [21, 32])
LSTM 158 =~ 200K 9.33 £0.14 (13.66 [21, 32]) 9.37 £0.14 (12.62 [21, 32])
MOMENTUMLSTM 84 =~ 83K 10.90 + 0.19 10.98 +0.18
MOMENTUMLSTM 120 =~ 135K 8.00 +0.30 8.04 +0.30
MOMENTUMLSTM 158 =~ 200K 5.86 £0.14 5.87 +0.15
ADAMLSTM 158 =~ 200K 8.66 £0.15 8.69 £0.14
RMSPROPLSTM 158 =~ 200K 9.13£0.33 9.17+0.33
SRLSTM 158 ~ 200K 5.81 +0.10 5.83 £ 0.10

SRLSTM achieves the best accuracy on TIMIT tasks.

MomentumRNNs — Improve Accuracy (Penn TreeBank)

Table 3: Model test perplexity at the end of the epoch with the lowest validation perplexity for the
Penn Treebank language modeling task (word level).

MODEL # PARAMS VAL. PPL TEST PPL

LSTM ~ 24M 61.96 4+ 0.83 59.71 £ 0.99 (58.80 [34])
MOMENTUMLSTM = 24M 60.71 +0.24 58.62 1+ 0.22
SRLSTM ~ 24M 61.12 £ 0.68 58.83 £+ 0.62

MomentumLSTM achieves the best accuracy on PTB tasks.

MomentumRNNs — Converge Faster and Achieve Better Loss (Copying Task)

L “blank” K-1 “blank”
—_—
Input: 142212 ™
Output: gy
L+K “blank”
“start”

MomentumLSTM —— AdamLSTM

Sequence of Length 1K

2.The

uniformly from A, e.g. , K=5
3. The input is the character sequence followed by L “blank”
characters, a “start” character, and then K-1 “blank” characters.
Task: output a sequence containing K + L “blank” characters
followed by the

RMSPropLSTM

1. Consider set A of N alphabets, e.g. A ={1,2,3,4}, N=4

of length K is sampled i.i.d.

,€e.8.

LSTM

SRLSTM

Sequence of Length 2K

107t 1071 : 107t
a w 14
S 3 19
3 I3 151072
F1072 F 1072 =
0 5000 5000 | 0 5000
Iteration Iteration Iteration

1071

,_.
o
I\

Test Loss

AdamLSTM significantly outperforms other models.

nL

0 5000
Iteration

MomentumDTRIV — Integrate Momentum into Orthogonal RNN

DTRIV

MomentumDTRIV

|
PMNIST PMNIST 100.0 TIMIT 100.0 TIMIT

o
»

e
)

50.0 50.0

Train Loss
Test Loss

Train Loss
o
2 g
w
Test Loss

0.0 0.0
103 104 10! 10? 103 104 101 107
Iteration Epoch Iteration Epoch

MomentumDTRIV converges faster than DTRIV.

MomentumDTRIV — Integrate Momentum into Orthogonal RNN

Table 4: Best test accuracy on the PMNIST tasks (%) for MomentumDTRIV and DTRIV. We provide both
our reproduced baseline results and those reported in [6]. MomentumDTRIV yields better results than the
baseline DTRIV in all settings.

N # PARAMS PMNIST (DTRIV) PMNIST (MoMENTUMDTRIV)

170 = 16K 95.21 4 0.10 (95.20 [6]) 95.37 + 0.09
360~ GOK 96.45 + 0.10 (96.50 [6]) 96.73 + 0.08
512~ 137K 96.62 + 0.12 (96.80 [6]) 96.89 + 0.08

Table 5: Test and validation MSE of MomentumDTRIV vs. DTRIV at the epoch with the lowest validation
MSE for the TIMIT task. MomentumDTRIV yields much better results than DTRIV.

MoDEL N # PARAMS Var. MSE TesT MSE
DTRIV 224 =~ 83K 4.74£0.06 (4.75 [6]) 4.70 £0.07 (4.71 [6])
DTRIV 322 = 135K 1.924+0.17 (3.39 [6]) 1.874+0.17 (3.76 [6])
MoMENTUMDTRIV 224 = 83K 3.10 £0.09 3.06 =0.09
MoMENTUMDTRIV 322 = 135K 1.21 £0.05 1.17 £0.05

MomentumDTRIV achieves better accuracy than DTRIV.

Computational Time Analysis

Computation Time per Sample when Evaluating on PMNIST

MODEL TRAINING TIME (us/SAMPLE) EVALUATION TIME (ps/SAMPLE)
LSTM 6.18 2.52
MOMENTUMLSTM 7.43 3.16
ADAMLSTM 10.34 4.07
RMSPROPLSTM 9.94 3.96
SRLSTM 8.34 3.16

Total computation time to reach the same 92.29% test accuracy of
LSTM when Evaluating on PMNIST

MODEL TIME (seconds)
LSTM 46015
MOMENTUMLSTM 33036
ADAMLSTM 13484
RMSPROPLSTM 24931
SRLSTM 20881

Taking the whole training into account, Momentum-based LSTMs are much more
efficient than the baseline LSTM.

Thank You

|. Scheduled Restart NAG Momentum

Accelerate convergence
Better generalization accuracy

II. MomentumRNN

Mitigating the vanishing gradient issue
Speed-up training of RNNs
Improve performance of the trained RNNs
1. B. Wang, T. Nguyen, T. Sun, A. Bertozzi, R. Baraniuk, and S. Osher, arXiv:2002.10583, 2020.

2. T. Nguyen, R. Baraniuk, A. Bertozzi, S. Osher, and B. Wang, arXiv:2006.06919, 2020.

