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Abstract

An adaptive finite element method is developed for acoustic wave propagation in unbounded media. The efficiency

and high accuracy of the method are achieved by combining an exact nonreflecting boundary condition [SIAM J. Appl.

Math. 55 (1995) 280; J. Comput. Phys. 127 (1996) 52] with space–time adaptivity [East–West J. Numer. Math. 7(4)

(1999) 263]. Hence the computational effort is concentrated where needed, while the artificial boundary can be brought

as close as desired to the scatterer. Both features combined yield high accuracy and keep the number of unknowns to a

minimum. An energy inequality is derived for the initial-boundary value problem at the continuous level. Together with

an implicit second order time discretization it guarantees unconditional stability of the semi-discrete system. The

resulting fully discrete linear system that needs to be solved every time step is unsymmetric but can be transformed into

an equivalent sequence of small nonsymmetric and large symmetric positive definite systems, which are efficiently solved

by conjugate gradient methods. Numerical examples illustrate the high accuracy of the method, in particular in the

presence of complex geometry.
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1. Introduction

We seek an efficient numerical method for the accurate simulation of time-dependent acoustic wave

phenomena in unbounded three-dimensional space. Typical applications in acoustic scattering include

underwater acoustics, ultra-sound imaging, and remote sensing. As usual we surround the region of interest
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by an artificial boundary, B, and restrict the computation to the finite spatial domain, X, bounded by B.
Inside X there may be one or more obstacles and source terms, and the acoustic medium may contain

inhomogeneities and nonlinearity. To complete the formulation of the problem in X, a boundary condition

is necessary on B. This boundary condition must absorb outgoing waves at all angles of incidence and

frequencies to avoid any spurious reflection from B.

When the continuous formulation is discretized for computation, two independent sources of error

appear: the discretization error, due to the numerical scheme inside X, and the error at B, due to the

artificial boundary condition, or any discrete version of it. To achieve high accuracy at a reasonable cost,

any computational method must therefore be able to efficiently control both error components to arbi-
trarily high accuracy. Thus, it must combine two essential features. First, it must provide space–time

adaptivity to resolve geometric singularities, localized source terms, and small scale disturbances propa-

gating through X. Second, it must reduce spurious reflection from B below any desired error tolerance,

without incurring prohibitely high computational cost, say, by moving B farther away from the scatterer.

Unless both error components are reduced systematically, the numerical solution will not converge to the

solution of the original problem in the unbounded region.

Usually, various approximate boundary conditions are used, which are local differential operators on B.

Examples are the conditions by Engquist and Majda [11] and those by Bayliss and Turkel [8]. Although
most approximate boundary conditions perform well at nearly normal incidence, their performance de-

grades rapidly as grazing incidence is approached. In complex situations the scattered waves arrive at the

artificial boundary from all interior angles and at all frequencies, so these methods then yield some spurious

reflection. Moreover, these errors tend to accumulate with time and prevent accurate long-time integration.

To achieve higher accuracy local boundary conditions typically involve increasingly higher derivatives of

the solution, which are difficult to implement in a numerical scheme. Hagstrom and Hariharan [20] recently

derived an equivalent recursive formulation without high order derivatives.

A different approach to eliminating reflection has been to append an artificial transition layer outside B,
which is supposed to absorb outgoing waves. In particular, the popular perfectly matched layer (PML)

approach, initially devised by B�erenger for electromagnetic waves [10], was recently adapted to compu-

tational acoustics by Qi and Geers [26]. They concluded that ‘‘while the PML constitutes an excellent

absorbing boundary for plane waves incident upon a planar interface, . . . the PML cannot work well in

nonplanar geometries for h < 1 and f < 1 because the radiated field/scattered field at intermediate and low

frequencies is not purely radiative.’’ ([26, p. 179], italics present in original)––here f denotes the incident

wave frequency and h the distance between the scatter (at r ¼ 1) and the PML (at r ¼ 1þ h). It then be-

comes necessary to move B farther from the region of interest, or to use a thick absorbing layer, to achieve
high accuracy.

To avoid the various difficulties mentioned above, we opt for the nonreflecting boundary conditions

derived by Grote and Keller [14] for the three-dimensional acoustic wave equation, in the special case when

B is a sphere. It is local in time, nonlocal over B, and exact at all angles of incidence across the entire

frequency spectrum. Because it involves only first derivatives of the solution onB, it is easily combined with

finite difference [15] or finite element methods [29]. Moreover, far-field evaluation of the solution anywhere

outside X is straightforward and inexpensive both in computer effort and storage requirement [18]. Non-

reflecting boundary conditions were also recently derived for electromagnetic and elastic waves [13,16,17].
As mentioned above, space–time adaptivity is crucial for the efficient numerical simulation of time-

dependent acoustic wave phenomena. Indeed, due to the absence of any inherent smoothing mechanism,

small scale features in solutions of the wave equation propagate locally through space and time. Adaptive

meshes offer the sole practical means for concentrating the computational effort where needed, that is for

resolving these small scale features without paying too high a price in CPU time and memory usage. For the

wave equation adaptivity and error estimation have been studied extensively, for example by Hughes and

Hulbert [21], Johnson [23], Wiberg et al. [25,31], Belytschko and Tabbara [9], Safjan and Oden [27], Issa
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et al. [22], and S€uli and Wilkins [28]. In contrast to parallel developments in adaptive methods for elliptic
problems, however, the significantly more difficult implementation of space–time adaptive methods appears

to have prevented their more widespread use for time-dependent applications.

In the implementation of space–time adaptive methods a major difficulty results from the use of local,

spatially varying time steps. To avoid this additional complication, we shall base our adaptive numerical

scheme on an implicit time discretization of the wave equation, coupled to the nonreflecting boundary

condition. By using an implicit, unconditionally stable time discretization we avoid any restrictions due to

the CFL condition, which constrains the (global) time step by the (local) smaller mesh size; hence, we apply

the same time step across the entire computational domain. The resulting semi-discrete system of equations
is then approximated in space by an adaptive finite element strategy. This particular approach is based on a

previous implementation described in [6,7], which uses the freely available deal.II finite element library [4,5].

It is similar to the schemes described and analyzed by Aziz and Monk [1], French [12], and Bales and

Lasiecka [2]; however, neither adaptivity nor nonreflecting boundary conditions were considered in these

references.

To our knowledge, the present work reports on the first attempt to combine space–time adaptivity with a

nonreflecting boundary condition. Previous finite difference and finite element implementations of the

Grote–Keller boundary condition [14,15,29,30], for instance, always used relatively coarse, equidistant
meshes in spherical coordinates, with a few thousand spatial unknowns. In contrast, we shall use here an

adaptive discretization with more than 100,000 spatial unknowns, which may change between time steps.

Therefore we must use a fully implicit scheme to avoid the implications of small cells on the global time step

through the CFL condition. On the other hand, the resulting linear system of equations that needs to be

solved every time step now becomes a major challenge. By deriving a nontrivial reformulation of that huge

nonsymmetric linear system into small nonsymmetric and large symmetric positive definite systems, we are

able to retain the usual efficiency granted by standard conjugate gradient methods. Moreover, by avoiding a

discretization in spherical coordinates, we can compute scattering problems from more complicated and
realistic geometries. Although we shall base our automatic refinement criterion on a simple smoothness

indicator only, more refined techniques based on a posteriori error estimates are possible and envisaged for

future work [3].

The layout of the rest of this paper is as follows. In Section 2, we formulate the coupled problem of the

wave equation and the nonreflecting boundary condition. In Section 3, the discretization in space and time

using adaptive finite elements is presented. The resulting discrete linear system of equations, which needs to

be solved at every time step, is nonsymmetric because of the nonreflecting boundary condition. In Section 4,

we transform this system into a sequence of symmetric positive definite linear systems, which can be solved
efficiently by standard conjugate gradient methods. Energy decay of the solution to the full initial-boundary

value problem is shown in Section 5, with some of the more technical proofs postponed to Appendix A.

Together with our choice of implicit time discretization, this new result guarantees uniqueness and stability

of the semi-discrete problem. Finally in Section 6, we demonstrate the accuracy of our scheme via numerical

experiments, even in the presence of complex geometry. These test problems are more challenging than

those used in previous studies (see, e.g., [14,15,29,30]), because of their higher frequency content, and

therefore more representative of realistic applications.
2. Formulation

We begin with the formulation of the wave equation coupled to the nonreflecting boundary condition.

Thus we consider time-dependent acoustic scattering from a bounded scatterer in three-dimensional space.

We surround this scattering region by a sphere B of radius R. Outside B we assume that the acoustic

medium is homogenous and source-free, with constant speed of propagation c > 0. In addition, we assume
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that the scattered field is confined to the interior of B at t ¼ 0. Outside B, the scattered field u thus satisfies
the homogenous acoustic wave equation:

o2t u� c2Du ¼ 0; uð�; 0Þ ¼ 0; otuð�; 0Þ ¼ 0: ð1Þ

We suppose that the computational domain X within B is bounded internally by a surface C. Furthermore

we let I ¼ ð0; T Þ denote the time interval, for which we wish to compute u, and we let QT ¼ X� I . In X we

then consider the following problem:

qo2t u�ra � ru ¼ 0 in QT ; ð2Þ

u ¼ 0 on C� I ; ð3Þ

or

�
þ 1

c
ot þ

1

R

�
u ¼ � 1

R2

X1
n¼1

Xn
m¼�n

ðdn � wnmÞYnm on B; ð4Þ

d

dt
wnm ¼ c

R
Anwnm þ c

R2
enðYnm; uÞB in I ; ð5Þ

uð�; 0Þ ¼ u0 in X; ð6Þ

otuð�; 0Þ ¼ v0 in X; ð7Þ

wnmð0Þ ¼ 0: ð8Þ

Here q > 0 and a > 0 denote the density and the stiffness of the acoustic medium; both can vary with

location inside X, but must approach constant values in the vicinity of B, with c ¼
ffiffiffiffiffiffiffiffi
a=q

p
in the exterior

region.

On B we introduce the spherical coordinates h;u, where h 2 ½0; p� corresponds to the angle from the z-
axis while u 2 ½0; 2pÞ corresponds to the polar angle in the ðx; yÞ-plane. Furthermore, let Ynm denote the

nmth real spherical harmonic normalized over the unit sphere,

Ynmðh;uÞ ¼
bnm cosmuP

jmj
n ðcos hÞ if m6 0;

bnm sinmuP
jmj
n ðcos hÞ if m > 0;

�
ð9Þ

with the normalization constants

bnm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þðn� jmjÞ!

2pðnþ jmjÞ!

s
; m 6¼ 0; bn0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

4p

r
; m ¼ 0:

Hence, every index pair ðn;mÞ, with 06 n and �n6m6 n corresponds to a distinct spherical harmonic.

In (5) the boundary integral over B corresponds to the L2-inner product,

ðYnm; uÞB ¼ R2

Z 2p

0

Z p

0

Ynmðh;uÞuðR; h;u; tÞ sin hdhdu: ð10Þ

Eq. (4) is the exact nonreflecting boundary condition, which was derived in [14] and combined with finite

differences in [15]; here we have used the improved scaling in inverse powers of R proposed by Thompson

and Huan [29]. The boundary condition (4) involves the vector functions wnmðtÞ, which are the solutions of

the linear first-order ordinary differential equation (5). The constant vectors dn; en 2 Rn and matrices

An 2 Rn�n are defined by
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ðenÞj ¼ dj1; ðdnÞj ¼
nðnþ 1Þj

2
; j ¼ 1; . . . ; n;

An ¼
1

2

�nðnþ 1Þ �nðnþ 1Þ � � � �nðnþ 1Þ �nðnþ 1Þ
ðnþ 2Þðn� 1Þ

2
0 � � � 0 0

0
ðnþ 3Þðn� 2Þ

3
� � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � 2 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼
�
� 1

2
nðnþ 1Þdi1 þ

ðnþ iÞðn� iþ 1Þ
2i

di;j�1

�n
i;j¼1

: ð11Þ
3. Discretization

To discretize the system of equations (2)–(8), we proceed in three steps:

(1) eliminate second derivatives with respect to time by introducing the additional velocity variable v ¼ otu;
(2) semi-discretize the resulting first-order system in time using the (second-order, implicit) Crank–Nicol-

son scheme, which guarantees unconditional stability;

(3) discretize in space with finite elements.

By discretizing the wave equation first in time, and then in space, we obtain a discrete formulation that

naturally accomodates changing meshes and problem sizes from one time step to another. In contrast, the

more common approach of discretizing the equations first in space, and then in time (the method of lines),

yields a scheme with a fixed grid and constant number of spatial unknowns. Hence it is ill-suited for

adaptive meshes that change as the computation proceeds in time. If the mesh is kept fixed throughout the

entire computation, the order of discretization is usually irrelevant.

The resulting discrete algorithm permits to accurately track small disturbances or traveling wave fronts
via local refinement, because it allows for meshes that may vary from one time level to another. However,

for the sake of efficiency and speed of our method, we do not consider the most general form of space–time

adaptivity, which involves local time stepping. Instead we use the same (global) time step across the entire

mesh and avoid the usual restrictions, imposed by the CFL condition, by using an implicit method in time.

Further details on the choice of the local time step and the adaptive strategy are described in Section 6.1.

We now describe in detail the three steps outlined above that lead to the fully discrete set of equations.

First, we introduce the new velocity variable v ¼ otu and rewrite (2) in the following equivalent form:

qðotu� vÞ ¼ 0 in X; ð12Þ

qotv�r � aru ¼ 0 in X: ð13Þ
Next, we use the Crank–Nicolson scheme to discretize (12), (13) and (3)–(8) in time. This yields the

following semi-discrete system of equations at time tl (superscripts denote time levels) in X,

qðul � ul�1Þ � kl
2
qðvl þ vl�1Þ ¼ 0; ð14Þ
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qðvl � vl�1Þ � kl
2
r � arðul þ ul�1Þ ¼ 0; ð15Þ

together with boundary conditions on B and a difference equation for the auxiliary variables:

kl
2

or

�
þ 1

r

�
ðul þ ul�1Þ þ 1

c
ðul � ul�1Þ ¼ � kl

2

1

R2

X1
n¼1

Xn
m¼�n

Ynmðdn � ðwl
nm þ wl�1

nm ÞÞ; ð16Þ

wl
nm � wl�1

nm ¼ kl
2

c
R
Anðwl

nm þ wl�1
nm Þ þ kl

2

c
R2

enðYnm; ðul þ ul�1ÞÞB: ð17Þ

In addition, we have initial conditions u0 ¼ u0, v0 ¼ v0, w
0
nm ¼ 0. kl ¼ tl � tl�1 denotes the lth time step,

which can vary from one time level to the next.

As mentioned above we opt for the implicit Crank–Nicolson method to discretize the wave equation

(12), (13) in order to avoid any CFL-restriction on the time step. Yet we also need to discretize the ordinary

differential equation (5) for the auxiliary variables wnmðtÞ with the (unconditionally (A-)stable, implicit)

Crank–Nicolson method, because the eigenvalues of the matrices An strictly lie in the left half of the

complex plane [15]; with increasing n they move farther away from the imaginary axis. Failure to do so
would shift the issue from the discretization in the interior to that at the artificial boundary by imposing an

additional––and undesirable––restriction on the time step.

To derive a weak form of (14)–(17) we first choose appropriate trial and test function spaces. Thus, we let

H 1
C ¼ fv 2 H 1 : vjC ¼ 0g, R1 ¼ fRng06 n;�n6m6 n, W ¼ H 1

CðXÞ � L2ðXÞ �R1, and T ¼ L2ðXÞ � H 1
CðXÞ�

R1. Next, we multiply (14)–(17) by test functions sl ¼ ful; vl; fflnmg06 n;�n6m6 ng 2 T, integrate over X, and
integrate by parts. We add up the resulting equations, which leads to the weak form of the coupled problem

at the lth time step:

Find wl ¼ ful; vl; fwl
nmg06 n;�n6m6 ng 2 W such that

bðwl; slÞ ¼ f ðslÞ ð18Þ
for all test functions sl 2 T, with the bilinear form

bðwl; slÞ ¼ ðqul;ulÞX � kl
2
ðqvl;ulÞX þ ðqvl; vlÞX þ kl

2
ðarul;rvlÞX

þ ð ffiffiffiffiffiffi
aq

p
ul; vlÞB þ kl

2

1

R
ðaul; vlÞB þ kl

2

1

R2

X1
n¼1

Xn
m¼�n

hdn;wl
nmiðaYnm; vlÞB

þ
X1
n¼1

Xn
m¼�n

wl
nm

�
� kl

2

c
R
Anw

l
nm � kl

2

c
R2

enðYnm; ulÞB; f
l
nm

�
;

and right-hand side

f ðslÞ ¼ ðqul�1;ulÞX þ kl
2
ðqvl�1;ulÞX þ ðqvl�1; vlÞX � kl

2
ðarul�1;rvlÞX

þ ð ffiffiffiffiffiffi
aq

p
ul�1; vlÞB � kl

2

1

R
aul�1; vl
	 


B
� kl

2

1

R2

X1
n¼1

Xn
m¼�n

hdn;wl�1
nm iðaYnm; vlÞB

þ
X1
n¼1

Xn
m¼�n

wl�1
nm

�
þ kl

2

c
R
Anw

l�1
nm þ kl

2

c
R2

enðYnm; ul�1ÞB; f
l
nm

�
:

We discretize Eq. (18) via Galerkin projection onto finite-dimensional subspaces. For the discretized

variables, ulh and vlh, typical choices for Wl
h � W and Tl

h � T include standard finite element spaces,

possibly with local h and/or p refinement. For simplicity, we choose Wl
h ¼ Tl

h. For the auxiliary boundary
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variables wl
nm;h we choose the finite-dimensional subspace RN � R1, where RN ¼ fRng06 n6N ;�n6m6 n �

f0gn>N ;�n6m6 n. With this particular choice for RN , Galerkin projection effectively truncates the infinite

sums over n at some cut-off value N . Therefore, both the discrete finite element approximation in the interior

and the truncation of the infinite sums in the boundary condition correspond to Galerkin projections. This

unifying principle allows for the straightforward derivation of residual-based a posteriori error estimates

[3]. The resulting discrete Galerkin formulation reads:

Find wl
h ¼ fulh; vlh; fw

l
nm;hgg 2 W l

h such that

bðwl
h; s

l
hÞ ¼ f ðslhÞ 8slh 2 Wl

h: ð19Þ
If we expand the variational formulation (19) with respect to a basis of Wl

h, we obtain the following

linear system of equations, which determines the solution at time level tl:

M � kl
2
M 0 � � � 0

kl
2
S þ cþ kl

2

c2

R

� �
MB M

kl
2

a
R2

D00 � � � kl
2

a
R2

DNN

� kl
2

c
R2

E00 0 1� kl
2

c
R
A0 � � � 0

..

. ..
. ..

. . .
. ..

.

� kl
2

c
R2

ENN 0 0 � � � 1� kl
2

c
R
AN

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

Ul

Vl

Wl
00

..

.

Wl
NN

0
BBBBBBB@

1
CCCCCCCA

¼

~M
kl
2

~M 0 � � � 0

� kl
2
~S þ c� kl

2

c2

R

� �
~MB

~M � kl
2

a
R2

D00 � � � � kl
2

a
R2

DNN

kl
2

c
R2

~E00 0 1þ kl
2

c
R
A00 � � � 0

..

. ..
. ..

. . .
. ..

.

kl
2

c
R2

~ENN 0 0 � � � 1þ kl
2

c
R
ANN

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

Ul�1

Vl�1

Wl�1
00

..

.

Wl�1
NN

0
BBBBBBB@

1
CCCCCCCA
: ð20Þ

Here Ul and Vl represent the vectors of nodal values of ulh, v
l
h, whereas W

l
nm ¼ wl

nm;h. Dots indicate all indices

06 n6N , �n6m6 n. The matrices An are given in (11), and the remaining sub-matrices are defined below

(ul
i and ul�1

i denote shape functions at time step l and l� 1, respectively):

Mij ¼ ðqul
i ;u

l
jÞX; ðMBÞij ¼ ðqul

i ;u
l
jÞB; Sij ¼ ðarul

i ;rul
jÞX;

~Mij ¼ ðqul
i ;u

l�1
j ÞX; ð ~MBÞij ¼ ðqul

i ;u
l�1
j ÞB; ~Sij ¼ ðarul

i ;rul�1
j ÞX;

ðEnmÞij ¼ ðenYT
nmÞij; ðDnmÞij ¼ ðYnmd

T
n Þij; ðYnmÞi ¼ ðYnm;ul

iÞB;

ð~EnmÞij ¼ ðdn ~YT
nmÞij; ð~YnmÞi ¼ ðYnm;ul�1

i ÞB:

If the underlying computational grid does not change between time levels tl�1 and tl, all quantities with
and without tilde coincide. Since the grid changes rather infrequently, say every fifty time steps on a highly
refined grid, this is typically the case.
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4. Efficient implementation

Lack of efficiency in terms of computational effort and memory requirements is usually perceived as the

main drawback of nonreflecting boundary conditions [19]. To address this issue, we shall first show how to

decouple the linear system in (20), and thereby devise an efficient solution procedure. Next, we shall

compare the run-time and memory complexities of three different strategies for matrix storage.

4.1. Decoupling of the linear system (20)

In previous finite difference or finite element implementations of the Grote–Keller boundary condition

[15,29,30], the coupled system of grid variables in the interior domain and auxiliary variables at the

artificial boundary was discretized in time first by advancing either type of variables with an explicit

method, and then by advancing the other with explicit, implicit, or predictor–corrector methods. While

this approach avoids the coupled nature of system (20), the different treatment of the two types of

variables appears somewhat arbitrary. It leads to theoretical difficulties for the derivation of a posteriori

error estimates, and above all introduces stability conditions on the time step that become more
restrictive the finer the mesh or the higher the truncation order N in the nonreflecting boundary con-

dition––see also Section 3. To avoid this undesirable CFL-condition on the time step we use a fully

implicit time discretization, while retaining efficiency by deriving an exact transformation of the coupled

system (20) into an equivalent sequence of decoupled linear systems. By solving first for the interior grid

variables and then for the auxiliary boundary variables, we thus obtain the exact solution of the coupled

system, yet without sacrificing the unconditional stability of the scheme. Moreover the decoupled linear

systems of equations turn out to be either large, sparse, and symmetric positive definite, which enables

the use of standard CG-type iterative methods, or very small, and hence readily invertible by Gaussian
elimination. Therefore, the computational effort becomes essentially independent of the truncation order,

N , in the nonreflecting boundary condition; our approach yields almost arbitrarily high accuracy on the

boundary at a negligible price.

As it stands, the (sparse) linear system of equations in (20) is not particularly amenable to iterative

solvers, lacking properties such as symmetry or positive definiteness. Moreover, it is rather large, more than

twice the size of the mass matrix M for the single variable Ul, for instance. We shall now show how to

decouple this unwieldy linear system and thereby solve for each variable in turn. To begin with the

reformulation we multiply the second line of (20) by kl
2
, and add the first line to it, which eliminates Vl. Next,

we multiply each set of equations for Wl
nm by � k2l

4
a
R2 DnmðI � kl

2
c
RAnÞ�1

, and add it to the previously obtained

equation, which eliminates Wl
nm. These transformations lead to the following equivalent hierarchy of

equations:

M

"
þ k2l

4
S þ ckl

2

�
þ k2l

4

c2

R

�
MB þ

XN
n¼0

Xn
m¼�n

k3l
8

a
R2

c
R2

Fnm

#
Ul

¼ ~M

"
� k2l

4
~S þ ckl

2

�
� k2l

4

c2

R

�
~MB �

XN
n¼0

Xn
m¼�n

k3l
8

a
R2

c
R2

~Fnm

#
Ul�1

þ ~MV l�1 �
XN
n¼0

Xn
m¼�n

k2l
4

a
R2

Dnm I

 
þ 1

�
� kl

2

c
R
An

��1

I
�

þ kl
2

c
R
An

�!
Wl�1

nm ; ð21Þ

MV l ¼ 2
MUl
�

� ~MUl�1
�
� ~MV l�1; ð22Þ
kl
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Wl
nm ¼ I

�
� klc

2R
An

��1 klc
2R2

EnmUl

�
þ klc
2R2

~EnmUl�1 þ I
�

þ klc
2R

An

�
Wl�1

nm

�
: ð23Þ

Here we have introduced the matrices Fnm and ~Fnm defined by

Fnm ¼ Dnm I
�

� kl
2

c
R
An

��1

Enm;

~Fnm ¼ Dnm I
�

� kl
2

c
R
An

��1

~Enm:

ð24Þ

The transformed system of equations (21)–(23) effectively decouples the variables Ul, V l, and Wl
nm, which

can now be determined sequentially and in that order. The computation of V l in (22) requires the inversion

of M , which is symmetric positive definite. The unknowns Wl
nm can be computed independently of one

another by solving (23). We remark that the inverse of ðI � kl
2

c
RAnÞ is well-defined, since the eigenvalues of

An strictly lie in the left half of the complex plane (see [15]). Because the n� n matrices I � kl
2

c
RAn are small,

typically n ¼ 1; . . . ; 100, and only change when the time step size changes, their inversion and storage is

negligible. Below, we shall show that the linear system of equations in (21) is also symmetric positive

definite. To do so, we prove the following result:

Proposition 1. Let Fnm ¼ DnmðI � kl
2

c
RAnÞ�1

Enm. Then Fnm ¼ anmYnmY
T
nm for some scalar anm > 0. The matrices

Fnm are thus symmetric and positive semi-definite.

Proof. We insert the definitions for Dnm and Enm into (24), which implies that Fnm ¼ anmYnmY
T
nm with

anm ¼ dTnB
�1
n en and Bn ¼ I � kl

2

c
R
Anm:

Hence the matrices Fnm are symmetric.

We still need to show that anm > 0. To do so, let zn 2 Rn denote the solution of

Bnzn ¼ en: ð25Þ
From the special nonzero patterns of An and en, both defined in (11), we observe that

zn;i ¼
klc
4iR

ðnþ iÞðn� iþ 1Þzn;i�1; 26 i6 n:

By induction we conclude that

zn;i ¼
Yi
j¼2

klc
4jR

ðn
"

þ jÞðn� jþ 1Þ
#
zn;1:

Thus all components zn;i, 26 i6 n, have the same sign, equal to that of zn;1. Next, the first equation in (11)
implies that

zn;1 ¼ 1

"
þ nðnþ 1Þklc

4R

Xn
i¼1

Yi
j¼2

klc
4jR

ðnþ jÞðn� jþ 1Þ
#�1

> 0:

Therefore the vector zn only has strictly positive components, and so does dn. Since

an ¼ dTnB
�1
n en ¼ dTn zn > 0;

an is positive, independently of kl, which completes the proof. h
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4.2. Solution procedure

The decoupling described in (21)–(23) shows that every time step involves the subsequent solution of

three linear systems:

(1) solve for Ul using (21),

(2) compute (or solve for) V l using (22),

(3) solve for every Wl
nm using (23).

We shall now discuss each individual step:

Eq. (21) for Ul. The matrix

H ¼ M þ k2l
4
S þ ckl

2

�
þ k2l

4

c2

R

�
MB þ

XN
n¼0

Xn
m¼�n

k3l
8

a
R2

c
R2

Fnm

on the left side of (21) is symmetric positive definite. Indeed, the matrices M , S, and MB are symmetric

by construction; moreover, S and MB are positive semi-definite, while M is positive definite.
The matrices Fnm were shown to be symmetric and positive definite in Proposition 1. Therefore the

linear system in (21) is symmetric positive definite and can be solved efficiently by a preconditioned

conjugate gradient (CG) method. We have found a simple diagonal (Jacobi) preconditioner to be

adequate for our purposes, as convergence is typically reached within 20 preconditioned CG itera-

tions.

In practice, the condition number of H does not deteriorate in the presence of the additional terms due to

the nonreflecting boundary condition and appears independent of N . In fact, the condition number is

usually quite small, even in the presence of strong local mesh refinement. This benign behavior of the
condition number is probably linked to the fact that condðMÞ ¼ Oð1Þ, while condðSÞ ¼ Oðh�2Þ yet

multiplied by k2l , where the time step kl is of the same order as the mesh size h; all remaining terms are

multiplied by higher powers of kl and thus hardly affect the condition number of H .

Eq. (22) for V l. In (22) the mass matrix M needs to be inverted. Since condðMÞ ¼ Oð1Þ, as mentioned

above, convergence is easily reached, typically within 25 preconditioned CG iterations, even on strongly

refined meshes. Moreover, (22) needs to be solved only when the spatial discretization between the previous

and the current time steps changes. Otherwise ~M ¼ M , and hence Vl is explicitly given by

V l ¼ 2

kl
Ul
	

� Ul�1


� V l�1:

Since we change the mesh rather infrequently, only about every fifty time steps on a highly refined mesh, we
seldom need to solve (22).

Eq. (23) for Wl
nm. We solve every n� n nonsymmetric linear system via the LU decomposition of

I � kl
2

c
RAn. Since 16 n6N , with N 6 100, both the size and the number of matrices to be stored remains

small and the computational effort involved negligible; moreover, the LU decompositions needs to be

recomputed only when the time step, kl, changes. As a consequence, the numerical effort spent on this part

typically is so much smaller than that spent on the solution of (21), that the number of boundary variables

Wl
nm hardly affects the total numerical cost.
4.3. Storage and matrix–vector products

At each time step most of the computational effort is spent on the solution of (21), that is on the

‘‘inversion’’ of H ¼ HPDE þ HNBC, where
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HPDE ¼ M þ k2l
4
S þ ckl

2

�
þ k2l

4

c2

R

�
MB; HNBC ¼

XN
n¼0

Xn
m¼�n

k3l
8

a
R2

c
R2

Fnm:

Here the NX � NX sparse matrices S and M have the same sparsity pattern, which contains the nonzero

entries ofMB (NX denotes the number of degrees of freedom in X). In the matrixMB, however, only NB rows

and columns are nonzero, with NB being the number of degrees of freedom located on B. The matrices Fnm

each consist of a (small) full block along B and hence induce a coupling of all boundary variables there, but
are zero elsewhere. Taking into account the nonzero patterns of the various matrices involved, we have

identified three different strategies for the storage of H :

(1) Augment the sparsity pattern of HPDE by that of HNBC, and store their sum as one single matrix; then,

matrix–vector products with H are standard.

(2) Store HPDE as a sparse matrix of size NX, and HNBC as a dense matrix of size NB. Here multiplication

with HPDE is standard, while multiplication with HNBC first requires extraction of the degrees of freedom

on B, then a dense matrix–vector multiplication, and finally redistribution to the global vector.
(3) Store HPDE as in (2), but instead of HNBC store only the vectors Ynm and the scalars anm. By using the

representation Fnm ¼ anmYnmY
T
nm (Proposition 1), multiplication by HNBC reduces to a sequence of scalar

products with all Ynm.

What is the best storage strategy for H , which yields the most efficient matrix–vector product needed for

the preconditioned CG iteration? In answering this question we shall distinguish two cases: the fully three-

dimensional (3-D) case and the axisymmetric (2.5-D) case. In the 2.5-D case, NB ¼ OðN 1=2
X Þ, while the

number of auxiliary functions wl
nm;h, 16 n6N , is only N , since m ¼ 0 because of symmetry. In the 3-D case,

NB ¼ OðN 2=3
X Þ, and the number of auxiliary functions is N 2. However, in the special case that the shape

functions on the boundary B are tensor products of functions in u and h, say if a mesh equidistant in u and

h is used on B, the N 2 vectors Ynm can be stored as the componentwise product of only 3N þ 1 vectors (one

per 16 n6N and �N 6m6N ), each of length NB; for the third strategy the cost evaluation in the 3-D case

will be based on this assumption.

Memory and run-time complexities for the three alternatives are listed in Table 1. Although the com-

plexities of the first two strategies are equal, the second strategy is usually more efficient because the data

structures better fit the disparate sparsity patterns of HPDE and HNBC. We remark that both matrix–vector
products can be performed independently and in parallel.

As the mesh size h decreases in the interior, the accuracy of the nonreflecting boundary condition

simultaneously needs to increase by augmenting N . Since the ‘‘wave length’’ of Ynm is proportional to 1
n, the

value of N should grow at most like 1
h, that is like N

1=2
X in 2.5-D or N 1=3

X in 3-D. Therefore the third strategy

yields the same overall complexity as the first two, either in 2.5-D, or in 3-D for the case of arbitrary surface

meshes; it yields an even smaller complexity of only OðNXÞ, if a tensor-product surface mesh is used on B.

Moreover for the third strategy, the inner products with Ynm can be performed in parallel. Nevertheless, in

our 2.5-D single processor implementation we found that the increase in run-time, due to the N additional
Table 1

Memory and run-time complexities for the three matrix storage strategies: N denotes the point of truncation, NX the number of degrees

of freedom, and q the average number of nonzero entries per row in the mass or stiffness matrix

2.5-D 3-D

Strategies 1 and 2 OðqNX þ NXÞ OðqNX þ N 4=3
X Þ

Strategy 3 OðqNX þ NN 1=2
X Þ OðqNX þ NN 2=3

X Þ
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inner products of length NB ¼ N 1=2
X each, was unacceptably high even for moderate values of N P 15. Hence

in our computations, the second strategy was found to yield the best overall performance.
5. Energy decay

The unconditional stability of the implicit time stepping scheme we introduced above hinges on the

stability of the underlying initial-boundary value problem (2)–(8). In [15] stability of the continuous

problem was proved in the special situation, when the solution admits a decomposition in spherical har-
monics not only outside, but also inside X, that is in all of R3. In contrast the result we shall prove in this

section uses the decomposition in spherical harmonics only outside X. Thus it also applies to situations with

a varying velocity field or an arbitrarily shaped obstacle inside X. Moreover, we shall determine an explicit

energy equality when the sums in the nonreflecting boundary condition extend up to infinity. When the

sums are truncated at a finite N , we conclude that the energy remains bounded, and eventually decays,

which implies both stability and uniqueness of the solution.

For ease of notation, we assume throughout this section that a ¼ q ¼ 1 in (2), and hence that c ¼ 1, in

the exterior domain––this normalization can always be achieved by rescaling space and time; hence, it does
not affect the generality of our results.

In the absence of external forces, the energy in the interior of the domain is

EðtÞ ¼ 1
2

�
k ffiffiffi

q
p

otuð�; tÞk2X þ k
ffiffiffi
a

p
ruð�; tÞk2X

�
: ð26Þ

Using integration by parts and the wave equation (2), we get

d

dt
EðtÞ ¼ ðotuð�; tÞjr¼R; oruð�; tÞjr¼RÞB: ð27Þ

The right side of (27) corresponds to the energy flux across B due to the nonreflecting boundary condition.

We now introduce the decomposition into spherical harmonics at B,

uðR; h;u; tÞ ¼
X1
n¼0

Xn
m¼�n

unmðR; tÞYnmðh;uÞ;

and use the orthonormality of the Ynm to obtain from (27),

d

dt
EðtÞ ¼ R2

X1
n¼0

Xn
m¼�n

½otunmðR; tÞ�½orunmðR; tÞ�: ð28Þ

Next, we integrate (28) from 0 to T , which yields the energy at t ¼ T :

EðT Þ ¼ Eð0Þ þ
X1
n¼0

Xn
m¼�n

I ½unm�ðT ;RÞ: ð29Þ

Here we have defined the integral Inm ¼ I ½unm�ðT ;RÞ as

I ½unm�ðT ;RÞ ¼ R2

Z T

0

½otunmðR; tÞ� ½orunmðR; tÞ�dt: ð30Þ

To show that the energy decays with time we shall show that I ½unm�ðT ;RÞ6 0 for all nP 0, jmj6 n, and
T > 0. We shall do so below by considering the distinct cases n ¼ 0, n ¼ 1, and n > 1.

n ¼ 0. Multiplication (4) by Y00 and integration over B yields the boundary condition for the zeroth

mode:
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or

�
þ ot þ

1

R

�
u00ðR; tÞ ¼ 0: ð31Þ

We use (31) to replace orunmðR; tÞ in I00 from (30), which leads to

I00 ¼ �R
Z T

0

½otu00ðR; tÞ�½u00ðR; tÞ�dt � R2

Z T

0

½otu00ðR; tÞ�2 dt

¼ �R
2
u00ðR; T Þ2 � R2

Z T

0

½otu00ðR; tÞ�2 dt: ð32Þ

Here we have used that u00ðR; 0Þ ¼ 0. Obviously, I00 6 0.

n ¼ 1. Similarly, the boundary condition (4) reduces to

or

�
þ ot þ

1

R

�
u1mðR; tÞ ¼ � 1

R2
w1mðtÞ:

In addition, the differential equation for w1m, and its once differentiated form, read

_w1mðtÞ ¼ � 1

R
w1mðtÞ þ u1mðR; tÞ; €w1mðtÞ ¼ � 1

R
_w1mðtÞ þ otu1mðR; tÞ:

By using these last two equations, while dropping the index 1m and the argument ðR; tÞ for simplicity, we

obtain

oru ¼ �otu�
1

R2
w� 1

R
u ¼ �€w� 1

R
_w� 1

R2
w� 2

R
uþ 1

R
u

¼ �€w� 1

R
_w� 1

R2
w� 2

R
uþ 1

R
_wþ 1

R2
w

¼ �€w� 2

R
u:

We insert this expression into the definition of I1m and then use the differentiated form above once more to

replace otu1m, which yields

I1m ¼ �2R
Z T

0

uotudt � R2

Z T

0

€w €w

�
þ 1

R
_w

�
dt ¼ �R½uðR; T Þ�2 � R

2
½ _wðT Þ�2 � R2

Z T

0

€w2 dt6 0: ð33Þ

n > 1. For higher values of n the argument parallels that with n ¼ 1, but the algebra becomes rather

complicated. The boundary condition applied at B to unm now reduces to

or

�
þ ot þ

1

R

�
unmðR; tÞ ¼ � 1

R2
dn � wnmðtÞ; ð34Þ

where wnmðtÞ 2 Rn satisfies

d

dt
wnm ¼ 1

R
Anwnm þ unmðR; tÞen; wnmð0Þ ¼ 0; ð35Þ

with dn, An, and en defined in (11). Next, we use (34) to replace orunmðR; tÞ in (30), which yields the alternate

expression,

Inm ¼ �R
2
unmðR; T Þ2 � R2

Z T

0

otunmðR; tÞ2 dt �
Z T

0

otunmðR; tÞdn � wnmðtÞdt: ð36Þ

The sign of the last term on the right of (36) still has to be determined. We now integrate that term by parts,

which yields
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Inm ¼ �R
2
unmðR; T Þ2 � R2

Z T

0

otunmðR; tÞ2 dt � unmðR; T Þdn � wnmðT Þ þ
Z T

0

unmðR; tÞdn � _wnmðtÞdt; ð37Þ

because wnmð0Þ ¼ 0. To proceed we shall now apply the following proposition, whose proof we postpone to

the end of this section.
Proposition 2. For nP 1, let wðtÞ 2 Rn satisfy

d

dt
w ¼ 1

R
Anwþ uðR; tÞen; wð0Þ ¼ 0; ð38Þ

with dn, An, and en defined in (4). Then the integral Inm ¼ I ½u�ðT ;RÞ defined in (30), or equivalently in (36),
satisfies

Inm ¼ � ðnþ 1Þ!
ð2n� 1Þ!

� �2 ð2RÞ2n

16

Z T

0

wðnþ1Þ
n ðtÞ2 dt

2
4 þ 1

2R

Xn�1

k¼0

ð2k þ 1ÞR�2k �
Xk
j¼0

wðn�jÞ
n ðT ÞckjRk�j

 !2

þ nþ 1

2R2nþ1

Xn
j¼0

wðn�jÞ
n ðT ÞcnjRn�j

 !2
3
5; ð39Þ

where wðn�jÞ
n ðtÞ denotes the ðn� jÞth derivative of the nth component of wðtÞ, w ¼ ½w1; . . . ;wn�

T, and

cnj ¼
ðnþ jÞ!

ðn� jÞ!j!2j : ð40Þ

For every unm, 16 n6N , Eq. (4) reduces to (34). Thus, we can directly apply Proposition 2 to unm in (36).

Since all the terms on the right of (39) involve squared quantities, we immediately conclude that

Inm 6 0; n6N :

For all higher Fourier modes, n > N , the boundary condition applied at B to unm reduces to the
(approximate) first-order Bayliss–Turkel [8] condition,

or

�
þ ot þ

1

R

�
unmðR; tÞ ¼ 0; n > N ; ð41Þ

which coincides with (31), with u00 replaced by unm. As a consequence, the derivation in (32) applies equally

well to Inm, for n > N . Thus we have shown that Inm 6 0 for all nP 0, jmj6 n, which implies via (29) that the

energy remains bounded in time. We summarize this result as a theorem.

Theorem 1. Let u solve (2) with (4) truncated at n ¼ N . Then the energy EðtÞ, defined in (26), satisfies

EðT Þ6Eð0Þ; T P 0;

for arbitrary N .

Remark. The energy estimate in Theorem 1 implies the uniqueness of (sufficiently regular) solutions of (2)–

(4). Furthermore it establishes the stability of the fully coupled problem, regardless of the shape of the

scatterer C or the point of truncation N . In fact the energy strictly decreases, that is EðtÞ < Eð0Þ, as soon as

any Fourier coefficient ðYnm; uð�; tÞÞB becomes nonzero, that is upon first arrival at B.
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If the sums in (4) are not truncated at N , but instead extend up to infinity, the exact boundary condition
is applied to every unm. Then Proposition 2 actually provides the following energy equality:

Corollary 1. Let u solve (2) with a, q, and c equal to one outside X. Then the energy EðtÞ, defined in (26),
satisfies

EðT Þ ¼ Eð0Þ � R
2
u00ðR; T Þ2 � R2

Z T

0

otu00ðR; tÞ2 dt þ
X1
n¼1

Xn
m¼�n

I ½unm�ðT ;RÞ; ð42Þ

with I ½unm�ðT ;RÞ ¼ Inm given by (39).

We conclude this section with the proof of Proposition 2.

Proof (Proposition 2). The case n ¼ 1 was proved above. Indeed, direct verification shows that (32) is

identical to (39) for n ¼ 1.

For n ¼ 2; 3 we shall prove that (36) coincides with (39) by direct computation, whereas for nP 4 we

shall proceed by induction over n.
n ¼ 2. Since d2 ¼ ½3; 6�T, Eq. (37) now reduces to
I2m ¼ �R
2
uðR; T Þ2 � R2

Z T

0

utðR; tÞ2 dt � uðR; T Þð3w1ðT Þ þ 6w2ðT ÞÞ

þ
Z T

0

uðR; tÞð3 _w1ðtÞ þ 6 _w2ðtÞÞdt; ð43Þ
where we have dropped indices for simplicity. For n ¼ 2, the 2 · 2 system of ordinary differential equation

(38) becomes

_w1ðtÞ
_w2ðtÞ

 !
¼ 1

R

�3 �3

1 0

� �
w1ðtÞ
w2ðtÞ

� �
þ uðR; tÞ

1

0

� �
: ð44Þ

Again, we now replace in (43) all instances of uðR; tÞ and utðR; tÞ by using (44), and thus rewrite (43) as

I2m ¼ �R
2
_w1ðT Þ

2 � 27

2R
w1ðT Þ

2 � 45

2R
w2ðT Þ

2 � 6 _w1ðT Þw1ðT Þ � 9 _w1ðT Þw2ðT Þ

� 36

R
w1ðT Þw2ðT Þ � 6

Z T

0

_w1ðtÞ
2
dt þ 6

Z T

0

_w1ðtÞ _w2ðtÞdt

þ 18

R

Z T

0

w1ðtÞ _w2ðtÞdt þ
9

R

Z T

0

w2ðtÞ _w1ðtÞdt þ
9

R

Z T

0

_w1ðtÞw1ðtÞdt

þ 18

R

Z T

0

w2ðtÞ _w2ðtÞdt � R2

Z T

0

€w1ðtÞ
2
dt � 9

Z T

0

_w2ðtÞ
2
dt

� 6R
Z T

0

€w1ðtÞ _w1ðtÞdt � 6R
Z T

0

€w1ðtÞ _w2ðtÞdt � 18

Z T

0

_w1ðtÞ _w2ðtÞdt: ð45Þ
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We integrate the second, third, and fourth term in (45) by parts, and explicitly evaluate the fifth, sixth, and

ninth integral. Then, we use the second equation in (44) to express w1ðtÞ, _w1ðtÞ, and €w1ðtÞ in terms of w2ðtÞ
and its higher derivatives. These calculations lead to
I2m ¼ � 7R3

2
€w2ðT Þ

2 � 6R2€w2ðT Þ _w2ðT Þ � 18R _w2ðT Þ
2 � 3R€w2ðT Þw2ðT Þ

� 27

2R
w2ðT Þ

2 � 9 _w2ðT Þw2ðT Þ � 6R2

Z T

0

€w2ðtÞ
2
dt � 9

Z T

0

_w2ðtÞ
2
dt

� R4

Z T

0

wv2ðtÞ
2
dt � 6R

Z T

0

wv2ðtÞdt � 18

Z T

0

€w2ðtÞw2ðtÞdt

� 9

Z T

0

_w2ðtÞ
2
dt � 6R2

Z T

0

wv2ðtÞ _w2ðtÞdt: ð46Þ
We now integrate by parts all remaining integrals in (46) to obtain
I2m ¼ �R4

Z T

0

wv2ðtÞ
2
dt � 7

2
R3€w2ðT Þ

2 � 15R _w2ðT Þ
2 � 27

2R
w2ðT Þ

2

� 12R2€w2ðT Þ _w2ðT Þ � 9R€w2ðT ÞwðT Þ � 27 _w2ðT Þw2ðT Þ: ð47Þ
Finally, we combine terms to form squares in (47) and rewrite (48) as

I2m ¼ �R4

Z T

0

wv2ðtÞ
2
dt � 3

2R
ð3w2ðT Þ þ 3R _w2ðT Þ þ R2€w2ðT ÞÞ

2

� 3R
2
ð _w2ðT Þ þ R€w2ðT ÞÞ

2 � R3

2
€w2ðT Þ

2
: ð48Þ

Direct verification again shows that (48) coincides with (39) for n ¼ 2.

n ¼ 3. The argument for n ¼ 3 parallels that for n ¼ 2; hence, we omit details and simply state the

main steps of the proof. Again, we replace all instances of uðR; tÞ and utðR; tÞ in (37) with n ¼ 3 by

using the first equation in (38) with n ¼ 3. From the second and third equations in (38), we then

express w1ðtÞ and w2ðtÞ only in terms of w3ðtÞ and its derivatives. Finally, integration by parts and

combination of terms to form squares yields (39) with n ¼ 3.
nP 4, induction step. We assume that (39) holds for n and shall now show that it also holds for nþ 1.

To begin we rewrite the first equation in (38) as

uðR; tÞ ¼ _w1ðtÞ þ
nðnþ 1Þ

2

1

R

Xn
j¼1

wjðtÞ: ð49Þ

Here we have dropped indices from unm and wnm for simplicity––recall that wkðtÞ denotes the kth
component of the n-vector function wnmðtÞ. In (49) we now evaluate the scalar product dn � _wðtÞ and

replace both uðR; tÞ and utðR; tÞ by using (49). Then we extract all terms involving w1ðtÞ from the sums,

so that all sums now start at j ¼ 2. These calculations lead to
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Inm ¼ �R
2
_w1ðT Þ

2 � R2

Z T

0

€w1ðtÞ
2
dt þ nðnþ 1Þ

2

� �2

2
4� 1

R
w1ðT Þ

2 � 2

R
w1ðT Þ

Xn
j¼2

wjðT Þ

� 1

R

Xn
j¼2

wjðT Þ
 !2

� 1

R
w1ðT Þ

Xn
j¼2

jwjðT Þ �
1

R

Xn
j¼2

wjðT Þ
Xn
j¼2

jwjðT Þ

þ 1

R

Xn
j¼2

j
Z T

0

w1ðtÞ _wjðtÞdt þ
1

R

Xn
j¼2

Z T

0

_w1ðT ÞwjðtÞdt þ
1

R

Z T

0

Xn
j¼2

wjðtÞ
Xn
j¼2

j _wjðtÞdt

�
Z T

0

_w1ðtÞ
2
dt � 2

Xn
j¼2

Z T

0

_w1ðtÞ _wjðtÞdt �
Z T

0

Xn
j¼2

_wjðtÞ
 !2

dt

3
5

þ nðnþ 1Þ
2

"
� 2 _w1ðT Þw1ðT Þ � _w1ðT Þ

Xn
j¼2

wjðT Þ � _w1ðT Þ
Xn
j¼2

jwjðT Þ þ
Z T

0

_w1ðtÞ
2
dt

þ
Xn
j¼2

j
Z T

0

_w1ðtÞ _wjðtÞdt � R _w1ðT Þ
2 � 2R

Xn
j¼2

Z T

0

€w1ðtÞ _wjðtÞdt
#
: ð50Þ

We integrate by parts all integrals in (50), except the sixth, tenth, and those which involve

squared quantities. In the resulting expression, we again seek to replace every wjðtÞ, j ¼ 1; . . . ; n� 1, in

terms of wnðtÞ and its higher derivatives. To do so, we note that the last n� 1 equations in (38) imply
that

wjðtÞ ¼
R

ajþ1

_wjþ1ðtÞ ¼ � � � ¼ Rn�j

ajþ1 � � � an
wðn�jÞ

n ðtÞ; j ¼ 1; . . . ; n� 1:

Hence, from Lemma 1 (Appendix A) we conclude that

wjðtÞ ¼ Rn�j2ncnj
n!

ð2nÞ!w
ðn�jÞ
n ðtÞ; j ¼ 1; . . . ; n� 1: ð51Þ

For ease of notation, we shall now restrict ourselves to the case R ¼ 1. We use (51) in (50) (with R ¼ 1) to

replace every wjðtÞ, j ¼ 1; . . . ; n� 1, in terms of wnðtÞ and its higher derivatives. This yields

Inm ¼ � n!2n

ð2nÞ!

� �2

c2n1

Z T

0

wðnþ1Þ
n ðtÞ2 dt þ n!2n

ð2nÞ!

� �2

8<
:� n2 þ n� 2

2
c2n1w

ðnÞ
n ðT Þ2

� c2n1 wðnÞ
n ðT Þ

�
þ nðnþ 1Þ

2
wðn�1Þ

n ðT Þ
�2

� 1

2
cn1w

ðnÞ
n ðT Þ

 
þ nðnþ 1Þ

2
�
Xn
j¼2

wðn�jÞ
n ðT Þcnj

!2

� nðnþ 1Þ
2

� �2 Z T

0

Xn
j¼2

wðn�jþ1Þ
n ðtÞcnj

 !2

dt

2
4

þ cn1
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cnj

Z T

0

wðn�1Þ
n ðtÞwðn�jþ1Þ
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þ jcnj

Z T

0

wðnÞ
n ðtÞwðn�jÞ

n ðtÞdt



þ
Z T
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Xn
cnjw
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jcnjw
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þ 2cn1
Xn
j¼2

cnj

Z T

0

wðnÞ
n ðtÞwðn�jþ1Þ

n ðtÞdt þ c2n1

Z T

0

wðnÞ
n ðtÞ2 dt5

� nðnþ 1Þ
2

"
� c2n1

Z T

0

wðnÞ
n ðtÞ2 dt þ cn1

Xn
j¼2

jcnj

Z T

0

wðnþ1Þ
n ðtÞwðn�jÞ

n ðtÞdt

þ 2cn1
Xn
j¼2

cnj

Z T

0

wðnþ1Þ
n ðtÞwðn�jþ1Þ

n ðtÞdt
#9=
;: ð52Þ

Since cn1 ¼ nðnþ 1Þ=2, the first term on the right of (52) agrees with the first term on the right of (39).

Therefore we need to apply the induction step only to the remaining terms. We do so in Lemma 2

(Appendix A), where we show that if the remaining terms on the right of (52) agree with the remaining

terms on the right of (39) (with R ¼ 1) for a certain n, they also do so for nþ 1, which completes the

proof. h
6. Numerical examples

We shall now present several numerical examples, which demonstrate the high accuracy achieved by

combining the nonreflecting boundary condition (4) with an adaptive finite element method. These test

problems are far more challenging than those in previous studies (see, e.g., [14,15,29,30]), because of their

much higher frequency content; hence, they are more typical of realistic applications. All test problems are

time-dependent, three-dimensional, yet axisymmetric, that is u-independent, so that X only needs to be

two-dimensional. Thus we use the 2.5-D optimizations described in Section 4. All computations are per-

formed in cartesian rather than spherical coordinates; hence, the inclusion of the origin into the compu-
tational domain X causes no particular difficulty.

6.1. Adaptive strategy

The numerical results are obtained with a program based on the deal.II finite element library [4–6]. It

uses locally refined adaptive meshes on every time slab, which may vary from one time step to another, to

efficiently track traveling small scale features––typical meshes are shown in Fig. 6. The successive refine-

ment strategy attempts to equilibrate the a posteriori error indicator

gK ¼ h1=2K k½aonuh�k2oK ; ð53Þ

where hK denotes the diameter of cell K and ½aonuh� the jump of the conormal derivative of the numerical

solution uh across element interfaces. We refer to [24] for a rigorous derivation of (53) for the Laplace
equation and to [6] for further details about the implementation. This refinement criterion is used every-

where inside X, but not along the artificial boundary B––this point is discussed more extensively below in

Section 6.3.

Because we use implicit time integration we need not satisfy a CFL condition; in fact, we usually violate

it. Nevertheless, to preserve accuracy we choose for the current step size a fixed multiple of the step size

mandated by the CFL condition. As a consequence, the spatial mesh refinement automatically results in

adaptive time stepping.

Once the solution has been computed up to time T on a first set of grids, the grids at all time levels are
refined according to the error indicator (53), while new time levels are possibly added. Then, the entire
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numerical solution is recomputed up to time T on this new set of grids. Time steps are chosen to ensure that
the local CFL-number, cKk=hK , for any spatial grid remains below a fixed upper bound; here cK is the local

wave speed in cell K. We call the entire set of spatial grids a ‘‘space–time mesh’’ and mean by ‘‘refinement’’

the space–time adaptive strategy described above. A more in-depth discussion of adaptivity for the wave

equation can be found in [6].

The use of adapted nonuniform meshes precludes any convergence study with respect to a ‘‘typical’’

mesh size h. Instead, we shall show convergence results with respect to the accumulated number of space–

time degrees of freedom, that is the number of time steps multiplied by the average number of degrees of

freedom per time step. It is roughly proportional to the total computational work involved and therefore
more precise a measure than any other quantity based on, say, a minimal or average mesh size.

6.2. Off-centered pulse

As a first example, we compute the purely outgoing wave field that originates from a localized off-

centered pulse, defined by the initial conditions

u0ðxÞ ¼
f ðjx� x0jÞ
jx� x0j

; v0ðxÞ ¼
otf ðjx� x0j � tÞ

jx� x0j

� �
t¼0

; ð54Þ

f ðrÞ ¼ ð27=4Þs3r2ðs� rÞ2 for 06 r6 r0;
0 otherwise:

�

We choose r0 ¼ 0:1, x0 ¼ ð0; 0; 0:8ÞT, R ¼ 1, and q ¼ a ¼ 1. Hence the propagation speed is c ¼ 1 every-
where. The location of the initial pulse is indicated in Fig. 1. The exact solution uðx; tÞ ¼ f ðjx� x0j � tÞ=
jx� x0j corresponds to a purely outgoing spherically symmetric wave centered about x0, with maximal

amplitude equal to one. Because the spatial extension of the initial disturbance, which is determined by r0, is
small, the frequency content of the exact solution is significant down to rather small length scales

k ’ ðdiamXÞ=30. Moreover, on the right of Fig. 1 we observe the rather slow decay with n of the Fourier

modes ðYnm; uÞ on B, up to n ’ 100. Thus, we expect both a highly refined mesh and a large value of N to be

prerequisites for any accurate numerical solution for this problem.

Let again EðtÞ ¼ ERðtÞ denote the energy of the wave field within the computational domain X:
ERðtÞ ¼

R
jxj<R ðotuÞ

2 þ ðruÞ2 dx. Then a short calculation reveals that
R=1
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Fig. 1. Off-centered pulse. Computational domain (left); L2-norm over ½0; T � of the nth Fourier mode on B (right). The vertical lines

indicate three typical values for N used in the computations.
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ERðtÞ ¼ 2p
Z 1

0

2 f 0ðr
	�

� tÞ

2 � 2

r
f ðr � tÞf 0ðr � tÞ þ 1

r2
f ðr � tÞ2

�
xðrÞdr: ð55Þ

Here, xðrÞ corresponds to the fraction of the surface of the sphere of radius r about x0 ¼ ð0; 0; z0Þ, which
lies inside the centered sphere of radius R:

xðrÞ ¼

1 for r < R� z0 ¼ jx0j;
1

2
1þ R2 � r2 � z20

2z0r

� �
for R� z0 6 r6Rþ z0;

0 for r > Rþ z0:

8>><
>>:

With z0 ¼ 0:8, the (exact) wave field uðx; tÞ has entirely left X at t ¼ 1:8, so that ERðtÞ ¼ 0 for tP 1:8.
We shall now compare the evolution of ERðtÞ for u, which we explicitly calculate from (55) with u0; v0

given by (54), with that obtained from the numerical solution. If the boundary condition imposed atB were

perfectly absorbing, we would expect the numerical curve to approach the analytic one as the mesh size and

the time step are successively refined. As shown in Fig. 2, however, the evolution curves for ERðtÞ obtained
from increasingly accurate discretizations do not approach the correct limit, for any fixed value of N .

Instead, they converge to the limiting behavior of a different initial-boundary value problem, with the

boundary condition on B truncated at that fixed value of N . As N increases, however, we observe that the
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Fig. 2. Off-centered pulse. Decay of energy in the numerical solution for absorbing boundary conditions with orders N ¼ 0 (top left),

N ¼ 20 (top right), N ¼ 50 (bottom left), and N ¼ 75 (bottom right).
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limit curve for h; k ! 0 approaches the correct analytic behavior. Thus convergence of the numerical
solution to that of the original problem stated in unbounded space is only achieved by reducing k and h,
while simultaneously increasing N .

In Fig. 3 the fraction of energy ERðt ¼ 1:8Þ=ERð0Þ persisting in the numerical solution at time t ¼ 1:8, is
shown; by that time the exact solution has already left the domain. This residual energy consists of two

independent contributions: Eh;k, due to the discretization error, and EN , due to the truncation of the

nonreflecting boundary condition at a finite N . Since EN ¼ OðN�bN Þ and Eh;k ¼ Oðhbh þ kbk Þ, where

bN ; bh; bk > 0 are constants that depend on the particular discretization and the smoothness of the solution,

the residual energy ERðtÞ ¼ Eh;k þ EN will only converge to zero, if the mesh is refined while N is simul-
taneously increased. Otherwise, if N remains constant the energy decay stalls as h; k ! 0, an indication that

the contribution of EN now dominates in ERðtÞ. For instance, a residual energy of nearly 2%, obtained with

N ¼ 0 on the finest mesh, corresponds to an error in the wave amplitude close to 15%, since the energy is

quadratic in the wave amplitude. Yet by setting N ¼ 75 in the boundary condition, the residual energy at

t ¼ 1:8 is about 10 times smaller.

6.3. Scattering from a sphere

We now consider scattering from a sphere of radius r ¼ 0:5, as shown in Fig. 4. The impinging wave

originates from a localized disturbance defined by initial conditions u0, v0, with u0 as in (54) and v0 ¼ 0.

Snapshots of the wave field are shown in Fig. 4 at times t ¼ 0:5; 1; 1:5.
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Fig. 3. Off-centered pulse. Fraction of the energy ERðt ¼ 1:8Þ=ERð0Þ in the numerical solution at a time, when the exact solution has left

the domain entirely. The curves for N ¼ 0 and N ¼ 6 essentially coincide.
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Fig. 4. Scattering from a sphere. Computational domain (left). Snapshots of the solution are shown at t ¼ 0:5, 1, and 1.5.
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Fig. 5. Scattering from a sphere. Computed solution at the receiver�s position for different values of N ðmax juðt ¼ 0Þj ¼ 1Þ.
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In Fig. 5 the time evolution of the signal at the receiver, located at x ¼ 0:5 cosð3p=10Þ and z ¼
�0:5 sinð3p=10Þ, is shown for different values of N––recall that the maximum of u at t ¼ 0 is equal to one.
For N ¼ 50 the computed solution clearly displays the expected two peaks, where the first corresponds to

arrival at t ¼ 1:33 via the shorter (clockwise) travel distance, and the second corresponds to arrival at

t ¼ 1:96 via the longer (counter-clockwise) travel distance. Comparison of the different numerical solutions

obtained with N ¼ 0; 20; 30; 50, respectively, shows that the value of N hardly affects the first peak.

However, as spurious reflections reach the receiver starting at t ¼ 1:77, they entirely obscure the second

(smaller) peak for moderate values of N . As N further increases up to fifty, the second peak in the signal

eventually emerges while spurious reflections are successfully eliminated, an indication that errors due to

the nonreflecting boundary condition no longer dominate the computed signal.
As the wave front impinges on B in the vicinity of the source, the refinement criterion based on the

smoothness of the solution automatically adapts the mesh locally in that region. These small cells excite

high-frequency modes, which are immediately transmitted along the entire artificial boundaryB, because of

the global coupling of the unknowns induced by the nonreflecting boundary condition. Since these high-

frequency modes are not well-represented in parts of B where the mesh is coarse, their superposition in (4)

does not cancel out exactly there, as it would at the continuous level. As a consequence spurious precursors

appear in the computed signal, even prior to the physical first arrival time––see the top right graph of Fig. 6.

Similar difficulties are to be expected whenever nonreflecting boundary conditions that were derived at the
continuous level, are applied to a numerical solution which is poorly resolved in some parts of the artificial

boundary. A simple remedy to remove this artifact is the uniform refinement of the mesh along the entire



Fig. 6. Scattering from a sphere. Signal at the receiver�s position (left), and a typical mesh (right). Standard refinement indicator (53)

(top); with added refinement along the artificial boundary (bottom)––the spurious precursor has now disappeared.
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artificial boundary. Fig. 6 shows a comparison of the signals computed either with or without additional

refinement at B, together with two typical resulting grids. With the added refinement the signal is flat until

first arrival, while the spurious precursor has disappeared.

The requirement for additional refinement on B is clearly an artifact of the nonreflecting boundary

condition. However, it does not significantly limit the applicability of adaptive meshes, since we only refine

along the artificial boundary. Moreover, since the latter only is a lower-dimensional manifold, the total

number of degrees of freedom increases by a mere few percent; therefore, it has no significant impact on the
efficiency of our method either.

6.4. Scattering from complex geometry

As a last example we consider plane wave acoustic scattering from the wine glass-shaped acoustically

‘‘soft’’ obstacle displayed in Fig. 7. The incoming plane wave packet, uiðz; tÞ, is given by

uiðz; tÞ ¼ sinðksÞrðsÞ; s ¼ z� ðt � t0Þ; t0 ¼ 2; k ¼ 2p
k
; k ¼ 1

3
;

where rðsÞ ¼ expð�1=ð1� s2ÞÞ for jsj < 1; hence uiðz; tÞ is centered about t ¼ t0 and tapered to zero at

t ¼ t0 � 1; outside the time window ½t0 � 1; t0 þ 1� it is identically zero. Since the total wave field u ¼ ui þ us
vanishes on the surface of the obstacle C, the (unknown) scattered field us satisfies the homogeneous wave

equation outside C, with boundary condition

u ðx; tÞ ¼ �u ðx; tÞ on C:
s i



Fig. 7. Scattering from a complex geometry. Computational domain and obstacle; the locations of the two receivers are indicated by

�+� signs (left). Isocontours of the solution at progressing times (middle to right).

-0.16

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

0.16

0 2 4 6 8 10

u(
x,

t)

Time

N =  0
N = 50

-0.02

-0.01

0

0.01

0.02

0 2 4 6 8 10

u(
x,

t)

Time

N =  0
N = 50

Fig. 8. Scattering from a complex geometry. Total wave field u ¼ ui þ us for N ¼ 0 and N ¼ 50: outside the obstacle (left), and inside

the obstacle (right).

2476 W. Bangerth et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 2453–2482
To evaluate the accuracy of the nonreflecting boundary conditions we shall compare for varying N
the total acoustic field u ¼ ui þ us at the two locations shown in the left part of Fig. 7, inside and

outside the obstacle. The complicated geometric features of the obstacle require higher order finite

elements and boundary approximations––here we choose piecewise quadratic shape functions and a

quadratic approximation of both interior and artificial boundaries. Both are available in the deal.II

library [4,5].

In Fig. 8 the total acoustic wave field is shown at both receivers for both N ¼ 0 and N ¼ 50. Higher

values of N did not lead to any further change in the numerical solutions. At the first location outside the

obstacle, we observe for N ¼ 0 about 20% error in the amplitude, together with some ringing effects at later
times due to multiple spurious reflection. At the second location, however, the difference is more dramatic

as spurious reflections from B begin to enter and resonate inside the ‘‘wine-glass’’. As a consequence, for

N ¼ 0 a spurious signal, about 10 times larger in amplitude than that obtained with N ¼ 50, builds up

inside the obstacle and completely masks the physical signal. Contrary to our expectation these compu-

tations demonstrate that accurate nonreflecting boundary conditions, which are imposed on the outermost

artificial boundary, are in fact crucial to obtain accurate numerical results inside the innermost regions of

the computational domain, even inside shielded structures and resonant cavities.
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7. Conclusion

An efficient and highly accurate adaptive finite element method for time-dependent acoustic scattering in

unbounded space has been proposed. It combines space–time adaptivity [6] with an exact nonreflecting

boundary condition [14,15]. With the nonreflecting boundary condition the overall numerical scheme re-

tains its optimal rate of convergence, as the error introduced at the artificial boundary can always be re-

duced below the discretization error due to the numerical methods used in the interior computational

domain.
The overall efficiency of the method results from the capability to locally resolve propagating small-scale

disturbances or geometric singularities, and to move the artificial boundary close to the scatterer without

loss of accuracy. To avoid any stability constraints on the time-step because of small grid cells, we have

opted for the implicit trapezoidal method in time. Although the use of an implicit time integrator couples all

unknowns, both in the interior and at the boundary, the resulting system of linear equations can be de-

coupled and efficiently solved with (standard) preconditioned conjugate gradient iterations. Hence the

additional work incurred by the use of the nonreflecting boundary condition remains marginal, even if high

accuracy is required. Since the nonreflecting boundary condition naturally fits into the weak formulation at
the continuous level, that is regardless of the discretization, neither unstructured meshes nor high-order

finite elements cause any particular difficulty.

In practice the infinite series in the nonreflecting boundary condition (4) needs to be truncated at a finite

value N . An interesting open question for future research is the derivation of a posteriori error estimates,

similar to those in [6], yet with the artificial boundary condition included. Then, not only the mesh size and

the time step, but also the value for N can be adapted a posteriori, so that the accuracy of the finite element

approximation in the interior automatically matches that of the truncated nonreflecting boundary con-

dition. The first author is currently investigating this issue and will report on this work elsewhere in the
future [3].
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Appendix A

Lemma 1. For nP 2, let

ai ¼
ðnþ iÞðnþ 1� iÞ

2i
; i ¼ 2; . . . ; n:

Then for all 26 k6 n,

pk ¼
Yn
j¼k

aj ¼
ð2nÞ!
ðnÞ!

1

2ncn;k�1

; ðA:1Þ

with cnm as in (40) (see Proposition 2).
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Proof. The proof is by induction over k.

Case k ¼ 2.

p2 ¼
ðnþ 2Þðn� 1Þ

2 � 2
ðnþ 3Þðn� 2Þ

2 � 3 � � � ð2n� 1Þ2
2ðn� 1Þ

2n � 1
2n

¼ ð2nÞ!
n!

1

2ncn1
:

Induction step. Suppose that (A.1) holds for k, k6 n� 1. We need to show that it holds for k þ 1, too.

This follows immediately from

pkþ1 ¼
pk
ak

¼ ð2nÞ!
n!

1

2ncn;k�1

1

ak
¼ ð2nÞ!

n!
1

2ncnk
: �
Lemma 2. Let Nnm denote all terms but the first on the right of (52). If Nnm satisfies

Nnm ¼ � ðnþ 1Þ!
ð2n� 1Þ!

� �2

22n�5
Xn�1

k¼0

ð2k

2
4 þ 1Þ

Xk
j¼0

ckjw
ðn�jÞ
n ðT Þ

 !2

þ ðnþ 1Þ
Xn
j¼0

cnjw
ðn�jÞ
n ðT Þ

 !2
3
5 ðA:2Þ

with w ¼ wnm for a certain nP 3, then Nnþ1;m satisfies (A.2), with n replaced by nþ 1 and w ¼ wnþ1;m. Note
that the right of (A.2) coincides with all terms but the first on the right of (39) with R ¼ 1.

Proof. We assume that (A.2) holds for n and shall now show that it also holds for nþ 1. First, we let

lnj ¼
nþ 1þ j
nþ 1� j

;

which satisfies the two useful identities,

cnþ1;j ¼ lnjcnj and cnþ1;nþ1 ¼ ð2nþ 1Þcnn:

We now evaluate Nnþ1;m, which yields

Nnþ1;m ¼ 1

ð2nþ 1Þ2
n!

ð2nÞ!

� �2

22n �c2n1l
2
n1 wðnþ1Þ

nþ1 ðT Þ þ ðnþ 1Þðnþ 2Þ
2

wðnÞ
nþ1ðT Þ

� �2

8><
>:

� 1

2
ðn2 þ 3nÞc2n1l2

n1w
ðnþ1Þ
nþ1 ðT Þ2 � 1

2
ln1cn1w

ðnþ1Þ
nþ1 ðT Þ þ ðnþ 1Þðnþ 2Þ

2

Xn
j¼2

cnjlnjw
ðnþ1�jÞ
nþ1 ðT Þ

 !2

�wnþ1ðT Þ
ðnþ 1Þðnþ 2Þ

2
ð2nþ 1Þ � cnn ln1cn1w

ðnþ1Þ
nþ1 ðT Þ þ ðnþ 1Þðnþ 2Þ

2

Xn
j¼2

cnjlnjw
ðnþ1�jÞ
nþ1 ðT Þ

 !
:

� ðnþ 1Þðnþ 2Þ
2

� �2 ð2nþ 1Þ2

2
c2nnwnþ1ðT Þ

2þ
Z T

0

Xn
j¼2

cnjlnjw
ðnþ2�jÞ
nþ1 ðtÞ

 !2

dt

2
64

þ 2ð2nþ 1Þcnn
Z T

0

wð1Þ
nþ1ðtÞ

Xn
j¼2

cnjlnjw
ðnþ2�jÞ
nþ1 ðtÞdt þ ð2nþ 1Þ2c2nn �

Z T

0

wð1Þ
nþ1ðtÞ

2
dt

þ ln1cn1
Xn
j¼2

cnjlnj

Z T

0

wðnÞ
nþ1ðtÞw

ðnþ2�jÞ
nþ1 ðtÞdt
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þln1cn1ð2nþ 1Þ � cnn
Z T

0

wð1Þ
nþ1ðtÞw

ðnÞ
nþ1ðtÞdtþ ln1cn1

Xn
j¼2

jcnjlnj

Z T

0

wðnþ1Þ
nþ1 ðtÞwðnþ1�jÞ

nþ1 ðtÞdt

þ ln1cn1ð2nþ 1Þcnnðnþ 1Þ
Z T

0

wnþ1ðtÞw
ðnþ1Þ
nþ1 ðtÞdtþ

Z T

0

Xn
j¼2

cnjlnjw
ðnþ2�jÞ
nþ1 ðtÞ

Xn
j¼2

jcnjlnjw
ðnþ1�jÞ
nþ1 ðtÞdt

þð2nþ 1Þcnn �
Z T

0

wð1Þ
nþ1ðtÞ

Xn
j¼2

jcnjlnjw
ðnþ1�jÞ
nþ1 ðtÞdt

þð2nþ 1Þcnnðnþ 1Þ
Z T

0

wnþ1ðtÞ �
Xn
j¼2

cnjlnjw
ðnþ2�jÞ
nþ1 ðtÞ

 !
dt

þð2nþ 1Þ2c2nnðnþ 1Þ
Z T

0

wnþ1ðtÞw
ð1Þ
nþ1ðtÞdtþ ln1cn1w

ðnÞ
nþ1ðT Þ

Xn
j¼2

cnjlnjw
ðnþ1�jÞ
nþ1 ðT Þ

þln1cn1ð2nþ 1Þcnnw
ðnÞ
nþ1ðT Þwnþ1ðT Þþ 2ln1cn1

Xn
j¼2

cnjlnj

Z T

0

wðnþ1Þ
nþ1 ðtÞwðnþ2�jÞ

nþ1 ðtÞdt

þ2ln1cn1ð2nþ 1Þcnn �
Z T

0

wð1Þ
nþ1ðtÞw

ðnþ1Þ
nþ1 ðtÞdtþ l2

n1c
2
n1

Z T

0

wðnþ1Þ
nþ1 ðtÞ2 dt

3
75

� ðnþ 1Þðnþ 2Þ
2

� �l2
n1c

2
n1

Z T

0

wðnþ1Þ
nþ1 ðtÞ2 dt þ ln1cn1

Xn
j¼2

jcnjlnj

Z T

0

wðnþ2Þ
nþ1 ðtÞwðnþ1�jÞ

nþ1 ðtÞdt:

2
64

þln1ð2nþ 1Þcnnðnþ 1Þcn1
Z T

0

wðnþ2Þ
nþ1 ðtÞwnþ1ðtÞdtþ2ln1cn1

Xn
j¼2

cnjlnj �
Z T

0

wðnþ2Þ
nþ1 ðtÞwðnþ2�jÞ

nþ1 ðtÞdt

þ2ln1cn1ð2nþ 1Þcnn
Z T

0

wð1Þ
nþ1ðtÞw

ðnþ2Þ
nþ1 ðtÞdt

3
75
9>=
>;: ðA:3Þ

To further simplify the notation we introduce

mnj ¼
2j

nþ 1� j
:

Note that lnj ¼ 1þ mnj. We now concentrate on the underlined terms in (A.3). By further adding

and subtracting terms in (A.3) we attempt to make the coefficients before the sums and integrals coincide

with the corresponding coefficients on the right of (52). Thus we rewrite only the underlined terms in (A.3) as

l2
n1

ð2nþ 1Þ2
22n

n!
ð2nÞ!

� �2

8<
:� c2n1 w

ðnþ1Þ
nþ1 ðTÞ þ nðnþ 1Þ

2
w

ðnÞ
nþ1ðTÞ

� �2

� 2ðnþ 1Þc2n1w
ðnÞ
nþ1ðT Þ wðnþ1Þ

nþ1 ðT Þ þ nðnþ 1Þ
2

wðnÞ
nþ1ðT Þ

� �

� ðnþ 1Þ2c2n1w
ðnÞ
nþ1ðT Þ

2 � 1

2
ðn2 þ n� 2Þc2n1w

ðnþ1Þ
nþ1 ðTÞ2

� ðnþ 1Þc2n1w
ðnþ1Þ
nþ1 ðT Þ2 � 1

2
cn1w

ðnþ1Þ
nþ1 ðTÞ þ nðnþ 1Þ

2

Xn
j¼2

cnjw
ðnþ1�jÞ
nþ1 ðTÞ

 !2
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� nðnþ 1Þ
2

cn1w
ðnþ1Þ
nþ1 ðT Þ þ nðnþ 1Þ

2

Xn
j¼2

cnjw
ðnþ1�jÞ
nþ1 ðT Þ

 !Xn
j¼2

cnjmnjw
ðnþ1�jÞ
nþ1 ðT Þ

� nðnþ 1Þ
2

� �2
1

2

Xn
j¼2

cnjmnjw
ðnþ1�jÞ
nþ1 ðT Þ

 !2
2
4 þ

Z T

0

Xn
j¼2

cnjw
ðnþ2�jÞ
nþ1 ðtÞ

 !2

dt

þ 2

Z T

0

Xn
j¼2

cnjw
ðnþ2�jÞ
nþ1 ðtÞ

Xn
j¼2

cnjmnjw
ðnþ2�jÞ
nþ1 ðtÞdt

þ
Z T

0

Xn
j¼2

cnjmnjw
ðnþ2�jÞ
nþ1 ðtÞ

 !2

dt þ cn1

Xn
j¼2

cnj

Z T

0

w
ðnÞ
nþ1ðtÞw

ðnþ2�jÞ
nþ1 ðtÞdt

þmn1cn1
Xn
j¼2

cnjlnj

Z T

0

wðnÞ
nþ1ðtÞw

ðnþ2�jÞ
nþ1 ðtÞdt

þcn1
Xn
j¼2

mnj

Z T

0

wðnÞ
nþ1ðtÞw

ðnþ2�jÞ
nþ1 ðtÞdt

þ cn1

Xn
j¼2

jcnj

Z T

0

w
ðnþ1Þ
nþ1 ðtÞwðnþ1�jÞ

nþ1 ðtÞdt þ mn1cn1
Xn
j¼2

jcnjlnj

Z T

0

wðnþ1Þ
nþ1 ðtÞwðnþ1�jÞ

nþ1 ðtÞdt

þcn1
Xn
j¼2

jcnjmnj

Z T

0

wðnþ1Þ
nþ1 ðtÞwðnþ1�jÞ

nþ1 ðtÞdt þ
Z T

0

Xn
j¼2

cnjw
ðnþ2�jÞ
nþ1 ðtÞ

Xn
j¼2

jcnjw
ðnþ1�jÞ
nþ1 ðtÞdt

þ
Z T

0

Xn
j¼2

cnjmnjw
ðnþ2�jÞ
nþ1 ðtÞ �

Xn
j¼2

jcnjw
ðnþ1�jÞ
nþ1 ðtÞ

 !
dt þ

Z T

0

Xn
j¼2

cnjw
ðnþ2�jÞ
nþ1 ðtÞ

Xn
j¼2

jcnjmnjw
ðnþ1�jÞ
nþ1 ðtÞdt

þ
Z T

0

Xn
j¼2

cnjmnjw
ðnþ2�jÞ
nþ1 ðtÞ

Xn
j¼2

jcnjmnjw
ðnþ1�jÞ
nþ1 ðtÞdt þ cn1w

ðnÞ
nþ1ðTÞ

Xn
j¼2

cnjw
ðnþ1�jÞ
nþ1 ðTÞ

þmn1cn1
Xn
j¼2

cnjlnjw
ðnÞ
nþ1ðT Þw

ðnþ1�jÞ
nþ1 ðT Þ þ cn1w

ðnÞ
nþ1ðT Þ

Xn
j¼2

cnjmnjw
ðnþ1�jÞ
nþ1 ðT Þ

þ2cn1
Xn
j¼2

cnj

Z T

0

w
ðnþ1Þ
nþ1 ðtÞwðnþ2�jÞ

nþ1 ðtÞdt þ 2mn1cn1
Xn
j¼2

cnjlnj

Z T

0

wðnþ1Þ
nþ1 ðtÞwðnþ2�jÞ

nþ1 ðtÞdt

þ2cn1
Xn
j¼2

cnjmnj

Z T

0

wðnþ1Þ
nþ1 ðtÞwðnþ2�jÞ

nþ1 ðtÞdt þ c2n1

Z T

0

w
ðnþ1Þ
nþ1 ðtÞ2 dt þ m2n1ðnþ 1Þc2n1

Z T

0

wðnþ1Þ
nþ1 ðtÞ2 dt

� nðnþ 1Þ
2

2
4� c2n1

Z T

0

w
ðnþ1Þ
nþ1 ðtÞ2 dt � mn1c

2
n1

Z T

0

wðnþ1Þ
nþ1 ðtÞ2 dt þ cn1

Xn
j¼2

jcnj

Z T

0

w
ðnþ2Þ
nþ1 ðtÞwðnþ1�jÞ

nþ1 ðtÞdt

þcn1
Xn
j¼2

jcnjmnj

Z T

0

wðnþ2Þ
nþ1 ðtÞwðnþ1�jÞ

nþ1 ðtÞdt þ 2cn1
Xn
j¼2

cnj

Z T

0

w
ðnþ2Þ
nþ1 ðtÞ � wðnþ2�jÞ

nþ1 ðtÞ
� �

dt

þ2cn1
Xn
j¼2

cnjmnj

Z T

0

wðnþ2Þ
nþ1 ðtÞwðnþ2�jÞ

nþ1 ðtÞdt

3
5
9=
; ðA:4Þ

#
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If we set wnðtÞ ¼ w0
nþ1ðtÞ in Nnm and multiply the resulting expression by l2

n1=ð2nþ 1Þ2 ¼ ðnþ 2Þ2=
n2ð2nþ 1Þ2, we find precisely the bold terms of (A.4). Hence, we can now apply the induction assumption

(A.2) to them and thereby replace the bold terms in (A.4) by

� ðnþ 2Þ2

n2ð2nþ 1Þ2
ðnþ 1Þ!
ð2n� 1Þ!

� �2

22n�5
Xn�1

k¼0

ð2k þ 1Þ
Xk
j¼0

ckjw
ðnþ1�jÞ
nþ1 ðT Þ

 !2
2
4

þ ðnþ 1Þ
Xn
j¼0

cnjw
ðnþ1�jÞ
nþ1 ðT Þ

 !2
3
5: ðA:5Þ

In fact, (A.5) nearly looks like (A.2). Indeed, if we add

� ðnþ 2Þ!
ð2nþ 1Þ!

� �2

22n�3 n
Xn
j¼0

cnjw
ðnþ1�jÞ
nþ1 ðT Þ

 !2
2
4 þ ðnþ 2Þ

Xnþ1

j¼0

cðnþ1Þjw
ðnþ1�jÞ
nþ1 ðT Þ

 !2
3
5 ðA:6Þ

to (A.5) we obtain (A.2), with n replaced by nþ 1. Therefore, to conclude the proof we only need to show

that the sum of all remaining terms, those either not underlined in (A.3) or not bold in (A.4), is equal to

(A.6). We omit these straightforward but cumbersome calculations here. h
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