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A MICRO-MACRO FRAMEWORK FOR ANALYZING STERIC AND
HYDRODYNAMIC INTERACTIONS IN GLIDING ASSAYS∗
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Abstract. Macroscopic flows of filament-motor mixtures, driven by the hydrolysis of ATP,
are important to many cellular processes such as cytoplasmic streaming in Drosophila oocytes and
cortical flow in the first cell division of C. elegans. Gliding assays, reduced in vitro model systems
where motor proteins adsorbed onto a planar substrate bind to and move filaments, recreate large-
scale dynamic patterns like coherent swarming motion and density waves. These systems are sensitive
to the microscopic behavior such as motor protein binding and unbinding dynamics, which take place
on a faster timescale than the direct and fluid-mediated filament interactions. In this work, we present
a multiscale modeling and simulation framework for gliding assays that allows detailed microscopic
motor modeling as well as both steric and hydrodynamic interactions between filaments. Our model
is based on continuum kinetic theory, and our implementation utilizes CPU and GPU parallelism
to track the sparse but high-dimensional state space arising from the microscopic motor protein
configurations. We find that steric interactions play a role in the formation of spatiotemporally
coherent flow structures and qualitatively reproduce experimentally observed behaviors including
filament crossover and alignment and clump formation, merging, and splitting.
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1. Introduction. Actin and tubulin filaments working in concert with motor
proteins play a central role in cell functions including mitosis and pronuclear cen-
tering [32]. Gliding assays, in which stabilized filaments are propelled by anchored
motor proteins powered by the hydrolysis of ATP in a thin quasi–two-dimensional
chamber, are commonly used to study the behavior of these cellular components in
vitro (see Figure 1). Large-scale pattern formation is observed in such experiments,
including clump formation, merging, splitting, density waves [30], and the emergence
of a lattice of microtubule vortices [33].

The physics of the filament-motor-fluid system are inherently multiscale in space
and time, with nanoscale motors with fast binding/unbinding kinetics coupled to mi-
croscale filaments interacting in a macroscopic fluid domain. These systems have been
studied with a variety of theoretical and computational approaches. Models that track
explicit representations of filaments with Langevin dynamics underscore the sensitivity
of the system to the motor behavior; [15, 16] included a load-dependent force-velocity
relationship of motor proteins in a gliding assay and found that the motor activity
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increases nematic ordering, and [20, 21, 23] found that the time spent by individual
motors at the end of a microtubule before falling off plays a central role in the emer-
gence of coherent structures. These models neglect fluid-mediated filament-filament
interactions and are therefore not suitable for addressing such behaviors. Moreover,
the computations have scaled to only hundreds of filaments, while many systems of
interest such as the mitotic spindle are estimated to have tens or hundreds of thou-
sands of filaments. A model based on macroscopic configuration fields, and thus more
suitable to a large system and large length and time scales, was proposed by [17]. This
was expanded upon by [28] in a hydrodynamic theory incorporating explicit tracking
of bound and unbound motor populations. Both [17] and [28] rely on phenomenolog-
ically motivated constitutive equations in the model derivation and neglect filament
density fluctuations. Another class of modeling approaches starts with a microscopic
model and coarse-grains the system to attain a macroscopic description [1, 19, 34].
For example, [19] assumes a constant motor density and demonstrates that inhomo-
geneities in motor stepping rate are necessary to drive bundle formations, and [34],
without considering fluctuations in motors or filament densities, shows that the order
of the isotropic-nematic transition depends on the force-dependent motor detachment.
However, [1, 34] neglect fluid-mediated filament-filament interactions, although they
could be coupled to the fluid equation using a configurational average of an expression
involving the distribution function to include the contribution of the particles to the
fluid stress [4, 5]. This approach has been widely applied to nanorods [35], and more
recently to active gels [18] and to suspensions of active swimmers [26, 27], and was
used in our previous work [12]. Such methods have the benefit of flexibly allowing
detailed microscopic modeling. However, it is not always possible to avoid tracking
the microscopic variables, which can incur significant computational cost.

As shown experimentally by, among others, [15, 30, 33], the filament density
and steric interactions play a critical role in the formation of coherent structures.
In this paper we consider dense suspensions of filaments, and we build upon our
previous model [12] to include steric interactions between filaments. A widespread
model of steric interaction is the excluded volume potential [5]. This model, widely
used in liquid crystal theory [19, 35], has been adapted to active suspensions of self-
propelled pushers and pullers in three dimensions [8]. The latter includes a rotational
steric alignment term but neglects the linear steric contribution, which can prevent
unphysical “piling up” amongst the microtubules in a gliding assay. We broaden this
approach to modeling steric interactions, including both rotational and linear steric
interaction terms.

Characterizing the interplay of steric versus hydrodynamic effects requires an
exploration of different filament densities and motor systems. At a microtubule den-
sity of .05µm−2, Sumino et al. [33] are able to model their experimentally observed
vortex lattice with a phenomenological agent-based method neglecting hydrodynam-
ics. In contrast, at actomyosin surface densities ranging between 2µm−2 and 21µm−2,
Schaller et al. [30] demonstrate filament clump and density wave persistence and scale
that cannot be explained through purely steric interactions. Additionally, Schaller et
al. [29] demonstrate evidence of hydrodynamic effects in the formation of depletion
layers between clump-clump or clump-wall collisions that cause reorientation before
physical contact. The particulars of the microscopic motors may also significantly
influence the collective motion. For example, [33] reports that using kinesin motor
proteins instead of dynein results in a higher rate of microtubule crossover events,
limiting steric interactions and preventing the formation of a vortex lattice. The im-
portance of fluid effects can also be seen further in the theoretical study of filaments
in a quasi–two-dimensional chamber [11].
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In this work, we present a novel micro-macro model and computational framework
to simulate both steric and hydrodynamic interactions in a microtubule gliding assay.
Our new framework supports different motor protein activity models, as well as the
option to treat the filaments as self-propelled. Rather than use phenomenological
steric interaction rules, we model fluid stresses due to microtubule inextensibility,
rotational and translational steric interactions, and self-propulsion if applicable.

We base our approach on our previous work [12], where we developed a contin-
uum model coupling the motion of the fluid to the motion of the motors and micro-
tubules. In that work, we used closure approximations to reduce the fluid equations
to depth-averaged two-dimensional equations, and restricted ourselves to the dilute
limit, ignoring steric interactions. Here, we solve the fluid equations in three dimen-
sions and avoid making closure approximations. As in [12], we track distributions
of microtubules and kinesin motor proteins, with behavior governed by conservation
equations.

The paper is organized as follows: Our framework is presented in section 2, the
implementation and numerical methods are presented in section 3, simulation results
are presented in section 4, and we conclude in section 5.

2. Modeling framework. This section reviews the setup of a gliding motility
assay, describes our continuous representation, and details the individual components
of our modeling framework. Two distributions are tracked: one for the microtubules
and one for the bound motors. Each distribution satisfies a conservation equation.
We present one such equation for the microtubule distribution, taking into account
hydrodynamic and steric effects, and two for the bound motor distribution. Bulk
fluid forces and steric stresses are calculated from the bound motor proteins and the
microtubule distribution, respectively, and are included in the fluid equations.

2.1. Microscale model. Figure 1 illustrates the experimental setup. A micro-
tubule gliding assay consists of two plates separated by a small distance. A fluid
fills the gap, with fluid flow characterized by low Reynolds number. Motor proteins
(kinesin in our case) are anchored to the bottom plate with their heads free to bind
to microtubules, walk along them, and detach. The microtubules, in turn, glide along
the motor protein heads, effectively constrained within a single plane. They are stabi-
lized to prevent growth or depolymerization, and have an orientation defined in terms
of a plus and minus end. Upon binding, kinesin motor proteins walk towards the plus
end of the microtubule, propelling the microtubule in the direction of its minus end.
We assume ATP saturation, so the motor proteins are continuously active. We refer
the reader to [12] for a list of values of physical parameters found in the literature.

Fig. 1. Microtubule gliding assay setup. Motor protein (black) tails are anchored to a fixed
plate, while their heads bind and pull microtubules (green). (See online version for color.)
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2.1.1. Microtubule distribution. In this model, we assume that the micro-
tubules of length 2l and diameter b are inextensible and rigid, an appropriate approxi-
mation for microtubules of l ≤ 2µm [31]. We describe the microtubules by the position
of their center-of-mass x and a vector p pointed towards their plus end. Let Ψ(x,p, t)
be the microtubule distribution function. Ψ evolves according to the Smoluchowski
equation (see also [12, 13])

∂tΨ +∇x · (ẋΨ) +∇p · (ṗΨ) = 0,(1)
ẋ2 = −Vspp2 + u2(x)−∇x2Ut −Dt,||∇x2 ln Ψ,(2)
ż = w(x)− ∂zUt −Dt,⊥∂z ln Ψ,(3)
ṗ = (I− pp)∇xu(x)p−∇pUr −Dr∇p ln Ψ.(4)

Here the subscript 2 denotes the in-plane x, y components and derivatives with respect
to these variables. The first two and last terms in the equations for ẋ = (ẋ2 ż)T and ṗ
are similar to those of the active bacteria swimming model of [27]. Vsp is a propulsion
speed, analogous to the self-propulsion term in active swimmer models. In our model,
motor forces spread to the fluid grid (described below) can only be resolved on the
scale of the fluid grid. We allow a phenomenological self-propulsion velocity to com-
pensate for this reduction in resolution of microtubule motion. Since microtubules do
not propel themselves through the fluid as a bacterium does [29], but are propelled
by motors, the resulting force should act like a monopole (see (15)–(16)), similar to
sedimenting particles [6]. Therefore, we include both a self-propulsion velocity and
a passive force in our model. Furthermore, u(x) = (u2(x)w(x))T is the velocity of
the surrounding fluid at x with which the microtubules are advected. Because the
kinesin motors walk towards the plus end, i.e., in the direction of p, the microtubule
will move in the direction −p2 in the plane of motion where it is restricted to leading
order, as shown in [12]. Dt,||, Dt,⊥ and Dr are the translational and rotational diffu-
sion coefficients, respectively. Because of the channel geometry and the experimental
observation that microtubules move in a z-plane, we expect Dt,⊥, the diffusion in the
z direction, to be smaller than the in-plane diffusion, Dt,||. We use zero diffusion in
all of our examples. We also do not include thermal fluctuations in the present model.
The third term in ẋ2 and ṗ and the second term in ż describe the effect of steric inter-
actions through a translational and rotational potential, Ut/r, respectively. We model
the steric potential using the Maier–Saupe potential Kt/r(p,p′) = −U0

t/r(p ·p
′)2 with

Ut/r(x,p, t) =
∫

Ψ(x,p′, t)Kt/r(p,p′)dp′.

The above form of Ur is identical to that proposed by [8] for active suspension, but we
also keep the translational steric potential Ut from [2, 19] to prevent interpenetration
in the plane of the microtubules. Neglecting this term was less consequential for [8],
as their model is three-dimensional; our two-dimensional rod reduction below (sec-
tion 2.2) leads to a more highly constrained geometry in which this term is important.
With this term included, we see behavior closer to the experiments of Schaller et al.
[29], where clumps grow in extent rather than increasingly concentrating into a small
area. We refer the reader to [2] for details on how the translational term arises in the
Smoluchowski equation for the microtubule density. With the previous definitions of
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the steric potential, the translational and rotational fluxes become

ẋ2 = −Vspp2 + u2(x) + U0
t,‖pp : ∇2D(x, t)−Dt,||∇2 ln Ψ,(5)

ż = w(x) + U0
t,⊥pp : ∂zD(x, t)−Dt,⊥∂z ln Ψ,(6)

ṗ = (I− pp)(∇xu(x) + 2U0
rD(x, t))p−Dr∇p ln Ψ,(7)

where D(x, t) =
∫

Ψ(x,p, t)ppdp is the second moment of Ψ with respect to p. The
total number of microtubules is given by N =

∫∫
Ψdxdp.

2.1.2. Motor distributions. In general, the free and bound motor populations
evolve according to a reaction-diffusion-advection equation. In a gliding assay, motor
tails are fixed to a plate and cannot diffuse or advect with the flow. Hence, we consider
only the conversion between the free and bound populations, and the advection and
procession of the bound motor heads. We represent the free motor density asMf (r0),
the density of motors with free heads and tails anchored at position r0. We do not
track the position of free motor heads. We represent the bound motor density per mi-
crotubule asMb(r0, s|(x,p), t), with r0 the position where the motor tail is anchored,
x, s,p the center of mass, arclength parameter, and orientation of the microtubule
the motor head is bound to, and t the time. The notation |(x,p) denotes that the
probability is conditional on the distribution of microtubules Ψ(x,p, t). Finally, we
let M(r0) be the total (bound + free) motor density at r0. We define the free motor
density Mf as

Mf (r0, t) =M(r0)−
∫∫∫

Mb(r0, s|(x,p), t)Ψ(x,p, t)ds dx dp;(8)

that is, for every motor with tail anchored at r0 the head is either free or bound. The
total number of bound motors is given by Nb =

∫∫∫∫
MbΨdr0dxdpds. In the entire

system, the total number of motors Nm = Nf +Nb is constant.
The possible configurations of bound motor heads face constraints. First, a head

detaches if it walks off the plus end of the microtubule (|s| > l). Second, the motor
head detaches due to stretching of the motor stalk, which happens beyond a critical
distance rc. We do not model the spring force of the motor stalk extension. We enforce
these two constraints by requiring that Mb be zero when |s| > l and by taking Mb

to be zero when |x + sp − r0| ≥ rc. Equivalently, the second condition says that for
a given tail r0 there is only a small subset of x + sp available for attachment. This
crucial locality restriction effectively reduces the dimensionality ofMb. We represent
the allowable local configurations as a ball of radius rc (illustrated in Figure 2),

Brc
(r0) = {(x′, s′,p′) : |x′ + s′p′ − r0| < rc}.(9)

We consider two equations for the bound motor distribution. The first, here-
after referred to as the “evolved” model, tracks Mb through the evolution of a full
conservation equation. It models motor head stepping along microtubules as well
as attachment proportional to the available number and length of microtubules and
detachment. Since motors bind and unbind quickly relative to the speed of the mi-
crotubules, this conservation equation has its own smaller timescale. The second
model, hereafter referred to as the “simplified” model, assumes that motors bind to
any reachable position s along a microtubule with equal probability, and that the
distribution of bound motors MbΨ with tails anchored at r0 is proportional to the
density of microtubules to bind to up until all available motors are bound. The fidelity
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Fig. 2. Set Brc (r0) of microtubule segments accessible to motor head for motor tail anchored
at r0 in solid green (illustrated in two dimensions for clarity).

of the smaller timescale behavior from the evolved motor model is lost. Instead of
solving a conservation equation at a separate timescale,Mb is updated from Ψ on its
own timescale.

In the evolved motor model, following [22], the number of binding events per
second is proportional to the local density of free motors times the available length of
microtubules (as an approximation for the available binding sites) with the constant
of proportionality, denoted by kon, that has units of µm2s−1. Defining B̄(r0) =∫∫∫

Brc
ΨMbdsdxdp, then B̄(r0) represents the number of bound motors in Brc

per
unit area. Since B̄ and Mf have units of number per unit area (and not per unit
volume), we divide kon by the capture radius rc to obtain a constant of proportionality
that has units of µm s−1, before repeating the argument of [22] for B̄. In order to
convert from a number per area to a number, we multiply B̄(r0)by the area of the
disk Drc

of radius rc centered at r0. Therefore, after dividing through by |Drc
| and

neglecting advection terms, we have a relationship of the form

∂tB̄ = −koffB̄ +
kon

rc|Drc
|
Mf

∫∫∫
Brc

Ψdxdpds,

where the integral of Ψ over Brc represents the total length of available microtubules
and where koff (units of s−1) is the detachment rate. Setting kon = kon/(rc|Drc |) with
units of (µms)−1 and including advection terms, the conservation equation for MbΨ
is

∂t(MbΨ) + ∂s(VmMbΨ) +∇x · (ẋMbΨ) +∇p · (ṗMbΨ)
= konΨMf1Brc (r0) − koffMbΨ.

(10)

Here 1Brc
(r0) is the indicator function for Brc

(r0). The flux terms on the left-hand
side express the procession of the motor along the microtubule with speed Vm and
the motion of the motor-microtubule complex with the background flow. The source
terms on the right-hand side express the attachment of a free motor at s to the
microtubule x,p at a rate per length kon, and the detachment of a bound motor at a
rate koff. Using (1) to eliminate Ψ, (10) simplifies to

(11) [∂tMb + ∂s(VmMb) + ẋ · ∇xMb + ṗ · ∇pMb] Ψ = konMfΨ1Brc
− koffMbΨ.

We note that if Ψ 6= 0 for all (x,p, t), we can divide by Ψ, but we will refrain from
doing so until section 2.2.

In this paper, we also consider a simplified heuristic motor model where all motor
heads are located in the same plane at height z0 and the number of bound motors
is proportional to the number of microtubules available within the binding range.
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Therefore, we let Mb be the piecewise function

(12) Mb(r0, s|(x,p), t) =

0 if |x + sp− r0| ≥ rc,

min
(
C, M(r0)∫∫∫

Brc
Ψdxdpds

)
if |x + sp− r0| < rc.

In the above, the cutoff constant C has the same units asMb. The second term in the
minimum effectively caps Mb so that

∫∫∫
Brc
MbΨdxdsdp ≤ M, the total available

motors at r0. Above the threshold value C, all local motor heads are bound. As C
increases, so do the number of bound motors at r0 for a fixed value of

∫∫∫
Brc

Ψdxdsdp,
so larger C values decrease the minimum rod density needed to bind all local motors.

2.1.3. Fluid. The bulk fluid motion is described by the incompressible Stokes
equations for low Reynolds number flows with suspended microtubule and motor
microstructure. As is customary [3], the total stress in the fluid can be divided into
a Newtonian stress and an extra stress arising from the microstructure, leading to

−µ∇2
xu(x) +∇xq(x) = ∇x · σp(x) + fm(x), ∇x · u(x) = 0.(13)

In the above, q is the pressure, µ is the dynamic viscosity, σp is the extra stress, and
fm is the force density due to the motors acting at x on the immersed microtubules.
We take the fluid domain to be doubly periodic in x, y with no-slip conditions at the
plate z = −H/2 and at the cover slip z = H/2.

We define the extra stress as σp = σf + σt similar to [8], where σf arises from
microtubule inextensibility and σt arises from steric interaction. These extra stresses
are

(14) σf = σfS : E, σt = −σt[D ·D− S : D],

where E(x, t) = 1
2

(
∇u +∇uT

)
is the rate-of-strain tensor and S is the fourth order

moment of Ψ, S(x, t) =
∫

Ψppppdp. The coefficients are σf = πµ4l3/3 ln(2r) and
σt = πµ8l3U0

r /3 ln(2r), which can be derived using slender body theory, with r the
microtubule aspect ratio and l the microtubule half-length [8, 27]. While the deriva-
tion in [8, 27] is for rods in free space, and our model has walls in the z-dimension,
our two-dimensional reduction below (section 2.2) restricts these stress terms to the
x, y-plane, for which we use periodic boundary conditions. Therefore we do not derive
these coefficients for the case of a nearby boundary. We remark that steric interaction
in space does not lead to extra stress terms in the slender body framework, as the
resulting force is constant along the microtubule.

In this model, we apply the force spreading approach of the immersed boundary
method (see [24]) to our polymeric fluid to obtain the motor force [4]
(15)

fm(x, t) =
∫∫∫∫

F(y, s,p, r0)δ(y + sp− x)Ψ(y,p, t)Mb(r0, s|(y,p), t)ds dr0 dy dp,

where F is the force associated with a single motor. Further, we note that the convo-
lution with the Dirac-δ function converts from the center-of-mass–based description
of Ψ to the spatial description of the force density. The force generated by all bound
motor heads acting at y+sp is spread to x by integrating over all possible motor con-
figurations with head at y + sp. In general, motor stepping speed is load-dependent
[14]. However, here we assume that the motor is stepping at a constant speed Vm,
where its max stepping speed is Vmax, and thus exerts a constant force of magnitude
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Fst(1− Vm
Vmax

) in −p, with Fst the motor stall force. This gives the simplified expression
for the motor force

(16) F(y, s,p, r0) = F(p) = −Fst

(
1− Vm

Vmax

)
p.

2.2. Two-dimensional reduction. In [12] we showed that to leading order the
microtubule orientations are restricted to the x, y-plane. Moreover, experiments have
shown that the microtubules and bound motor heads are concentrated about a two-
dimensional plane of motion [25]. Taking advantage of this fact obviates the need to
track Ψ andMb in the z-dimension, which provides critical memory and computation
savings when storing and solving for the two distributions. We also restrict the forcing
term in the fluid equations to be localized to that plane.

2.2.1. Microtubule distribution. The microtubules are centered around a
plane z = z0, where z0 is about the length of the motor protein, above the bottom
plate

(17) Ψ(x,p, t) = Ψz0(x2,p, t)δa(z − z0).

Here δa is a smooth delta function, chosen to be

(18) δa(z − z0) =

{
1
2a (1 + cos(π(z−z0)

a )), |z − z0| ≤ a,
0, |z − z0| > a.

We note that, to prevent the presence of microtubules or motors at the top or bottom
plates of the assay, we further require that z0 − a > −H

2 and z0 + a < H
2 . We

also introduce the notation Ai =
∫
δia(z − z0)dz to denote the moments of δa. By

construction, we have A1 = 1, A2 = 3/(4a), and A3 = 5/(6a). Next, the microtubules
are constrained to the plane given the geometry of the assay, so p = (cos θ, sin θ, 0)T .
Defining p2 = (cos θ, sin θ)T , we have the decomposition Ψz0(x2,p, t) = Ψz0(x2,p2, t).

Using (17), the microtubule reduction proceeds by integrating (1) with respect to
z. We use a bar to denote the integral over z of a quantity weighted by the smooth
delta function, for example ū(x2) =

∫
u(x2, z)δa(z)dz. Plugging (17) into (1) and (5)–

(7), integrating over z, and using the facts that ∇p = p⊥2 ∂θ and that both w and δa
vanish at the top and bottom plates, we obtain

(19) ∂tΨz0 +∇2 · (ẋ2Ψz0) + ∂θ( ˙̄θΨz0) = 0,

where we have defined the quantities ẋ2 and ˙̄θ as

ẋ2 = −Vspp2 + ū2 +A2U
0
t,‖p2p2 : ∇2D2,z0 −Dt,||∇2 ln Ψz0 ,(20)

˙̄θ = (∇2ū2 + 2U0
rA2D2,z0) : p⊥2 p2 −Dr∂θ ln Ψz0 .(21)

2.2.2. Bound motor distribution. We make the same assumptions for the
bound motor distribution, since the bound motor heads must be in plane with the
microtubules they are bound to, and write Mb analogously to (17) as

Mb(r0, s|(x,p), t) =Mb,z0(s, r0|x2, θ, t)δa(z − z0).(22)

To derive a reduced equation for the evolved bound motor distribution, we plug the
assumptions (22) and (17) into (11), integrate with respect to z, and divide by Ψz0 .
Noting that the set Brc

(r0) can be approximated as

Brc
(r0) ≈

{
(x, s,p) : (x2, s,p2) ∈ Drc

(r0) and − H

2
≤ z ≤ −H

2
+ drc

(x2, s, θ)
}
,
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where Drc
(r0) = {(x2, s, θ) : |x2 + sp2− r0| < rc} is the disk of capture radius rc and

drc
(x2, s, θ) =

√
r2
c − |x2 + sp2 − r0|2, we find

∂t(Mb,z0) + ∂s(VmMb,z0) + ˙̃x2 · ∇2Mb,z0 −
˙̃
ζMb,z0 + ˙̃

θ∂θMb,z0

= −koffMb,z0 +
kon

A2
MfB21Drc

.
(23)

In (23), we defined the tilde quantities similarly to the bar quantities in (20)–(21),
but with respect to δ2

a as opposed to δa. We have

˙̃x2 = −Vspp2 +
1
A2

ũ2 +
A3

A2
U0
t,‖p2p2 : ∇2D2,z0 −Dt,‖∇2 ln Ψz0 ,(24)

˙̃
ζ =

1
2A2

∂̃zw −
B1

A2
U0
t,⊥p2p2 : D2,z0 ,(25)

˙̃
θ =

(
1
A2
∇2ũ2 + 2U0

r

A3

A2
D2,z0

)
: p⊥2 p2 −Dr∂θ ln Ψz0 .(26)

The constants B1 and B2 are

B1 =
1
2

∫
δ2
a(z− z0)∂zzδa(z− z0)dz = − π2

4a4 , B2 =
∫ −H

2 +drc (x2,s,θ)

−H/2
δa(z− z0)dz.

While the quantity B2 is a function of x2, s, and θ, plugging (18) for δa into B2, inte-
grating, and using a Taylor series expansion of sine yield 0 ≤ B2 ≤ rc/a. Therefore,
for the remainder of this paper, we let B2 = rc/a.

Following the same steps for the simplified motor model, we have

(27) Mb,z0(r0, s|(x2, θ), t) =

0 if (x2, s, θ) /∈ Drc
,

H min
(
C, M(r0)∫∫∫

Drc
Ψz0dx2dθds

)
if (x2, s, θ) ∈ Drc

.

2.2.3. Fluid. While we do not average the fluid equations over z, some of the
stress and force components are zero as a result of the two-dimensional reduction of
Mb and Ψ. As the stresses are defined in terms of moments of Ψ with respect to p,
the implications of (17) for the stress tensors in (14) are

σf = σfSz0(x2, t) : E(x, t)δa(z − z0),(28)

σt = −σt (Dz0(x2, t) ·Dz0(x2, t)− Sz0(x2, t) : Dz0(x2, t)) δ2
a(z − z0),(29)

where we have defined

Dz0(x2, t) =
∫

Ψz0(x2, θ, t)ppdθ and Sz0(x2, t) =
∫

Ψz0(x2, θ, t)ppppdθ.

We note that the third row and column of σf,σt are identically zero because the
z-component of p is zero. Therefore, we use the subscript 2 to denote the upper
2 × 2 block of each tensor, such as D2,z0 . Since the motor force F(p) in (16) is in
the direction −p, the z-component of fm is zero. As a result, the fluid equations (13)
take the form

−µ∇2
2u2(x)− µ∂zzu2(x) +∇2q(x) = ∇2 · σp

2(x) + f2(x),(30)

−µ∇2
2w(x)− µ∂zzw(x) + ∂zq(x) = 0,(31)
∇2 · u2(x) + ∂zw(x) = 0,(32)
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with

f2(x) = −Fst

(
1− Vm

Vmax

)
δa(z− z0)2

∫∫∫∫
p2δ(y2 + sp2−x2)Ψz0Mb,z0dsdr0dy2dθ.

2.3. Nondimensionalization. In this section, we nondimensionalize the set
of reduced equations introduced in section 2.2. To do so, we first introduce the
characteristic scales. Let the characteristic length be L in the x, y-dimensions and
H = εL in the z-dimension (ε � 1); let the characteristic velocity be U in the x, y-
dimensions and W in the z-dimension; and let the characteristic fluid timescale be
T = L/U . We set

x2 = Lx′, z = εLz′ = Hz′, u2 = Uu′2, w = Ww′, t = Tt′,

where ′ denotes dimensionless quantities. By a similarity argument, we have that
W = εU .

Since the motors evolve on a smaller scale than the fluid, we introduce new char-
acteristic scales. We take the microtubule half-length l as the length scale, the mo-
tor speed Vm as the velocity scale for motor evolution, and obtain a new timescale,
τ = l/Vm. We set

s = ls′, V = VmV
′, t = τt∗.

2.3.1. Microtubule distribution. To nondimensionalize Ψ we recall that it
integrates to N , the number of microtubules. Furthermore, since the smooth delta
function satisfies

∫
δa(z − z0)dz = 1, we define Ψ′z0 as

(33) Ψz0(x2, θ, t) =
N

L2 Ψ′z0(x′2, θ, t
′)

so that
∫∫

Ψ′z0dx
′
2dθ = 1. Alternatively, if we introduce the nondimensional smooth

delta function δ′a′(z′ − z′0) as δa(z − z0) = 1
H δ
′
a′(z′ − z′0) with a′ = a/H to mimic the

behavior of a Dirac delta function, then we have for the full nondimensional density
of microtubules Ψ′(x′,p, t′) = Ψ′z0(x′2, θ, t

′)δ′a′(z′ − z′0) and
∫∫∫

Ψ′dx′dp = 1. The
microtubule evolution equation (19) is nondimensionalized on the same scale as the
fluid equations. Therefore, plugging the definition of the rescaled quantities into (19),
(20), and (21) yields

∂t′Ψ′z0 +∇′2 · ( ˙̄x′2Ψ′z0) + ∂θ( ˙̄θ′Ψ′z0) = 0,(34)

ẋ
′
2 = −V ′spp2 + ū′2 +A′2U

0′

t,‖p2p2 : ∇′2D′2,z0 −D′t,||∇
′
2 ln Ψ′z0 ,(35)

˙̄θ′ = (∇′2ū′2 +A′2U
0′

r D′2,z0) : p⊥2 p2 −D′r∂θ ln Ψ′z0 ,(36)

with constants D′t,|| = Dt,||T

L2 , D′r = DrT , U0′

r = 2U0
rNT
HL2 , U0′

t =
U0

t,‖NT

HL4 , V ′sp = Vsp
U ,

and A′2 =
∫
δ

′2
a′(z′ − z′0)dz′ = HA2. We let ˜U0

t,‖ = A′2U
0′

t,‖ to simplify notation. The
nondimensional forms of the moment tensors are

S′z0 =
N

L2 Sz0 , Dz0 =
N

L2 D′z0 .

2.3.2. Motor distributions. We nondimensionalize the bound motor distribu-
tion Mb so that it integrates to the ratio of bound to total motors:∫∫∫∫

M′bΨ′ds′ dr′0 dx′ dp =
Nb
Nm

and
∫∫∫∫

M′b,z0Ψz′
0
ds′dr′0dx

′
2dθ =

Nb
Nm

.
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Recalling that
∫∫∫∫

MbΨds dr0 dx dp = Nb, plugging in the two-dimensional reduc-
tions (17) and (22), and comparing to the above, we obtain

(37) Mb,z0(s, r0|(x2, θ), t) =
NmH

lL2NA′2
M′b,z0(s′, r′0|(x′2, θ), t∗),

and similarly for the full nondimensional distribution,

M′b(s, r0|(x,p), t∗) =
1
A′2
M′b,z0(s, r0|(x2, θ), t∗)δ′a′(z′ − z′0).

We rescale the distribution of free motors to the fraction of free motors, settingMf =
Nm

L2 Mf and M = Nm

L2 M′ to obtain

(38) M′f (r′0, t
∗) =M′(r′0)−

∫∫∫
M′b,z0Ψ′z0 ds

′ dx′2 dθ.

Using these definitions and the second set of nondimensional variables, we have

∂t∗M′b,z0 + ∂s′M′b,z0 +
τ

T
˙̃x′2 · ∇2′M′b,z0 −

τ

T
˙̃
ζM′b,z0 +

τ

T
˙̃
θ∂θM′b,z0

= −k′offM′b,z0 + k′onM′f1Dr′
c
,

(39)

together with the dimensionless fluxes

˙̃x′2 = −V ′spp2 +
1
A′2

ũ′2 +
A′3
A′2

U0′

t,‖p2p2 : ∇2D′2,z0 −D
′
t,‖∇

′
2 ln Ψ′z0 ,

˙̃
ζ ′ =

1
2A′2

∂̃z′w′ −
B′1U

0′

t,⊥

A′2
p2p2 : D′2,z0 ,

˙̃
θ =

(
1
A′2
∇′2ũ′2 +

A′3
A′2

U0′

r D′2,z0

)
: p⊥2 p2 −D′r∂θ ln Ψ′z0

and constants A′3 = H2A3, U0
t,⊥ = U0

t,⊥NT

H3L2 , B′1 = H4B1, k′off = koffτ , k′on =
konτ lNrc/a. We note that the dot in the above equations refers to a time deriva-
tive with respect to t∗. For completeness, we write the definition of the dimensionless
disk of radius r′c centered at r′0 as

Dr′
c
(r′0) =

{
(x′2, s

′, θ) :
∣∣∣∣x′2 +

l

L
s′p2 − r′0

∣∣∣∣2 ≤ l2

L2 r
′2
c

}
.

As the bound motor density timescale is approximately a thousand times smaller than
the microtubule timescale, we drop most of the terms with τ

T in (39), except the terms
involving the steric parameters U0′

t,‖ and U0′

r , as their product with τ/T could end up
being order one. We drop the term with U0′

t,⊥, since our assumption that the motion
of the microtubule is constrained to a plane makes it a small number. Eliminating
these terms, we have

∂t∗M′b,z0 + ∂s′M′b,z0 +
A′3
A′2

τ

T
U0′

t,‖p2p2 : ∇′2D′2,z0 · ∇2′M′b,z0

+
A′3
A′2

τ

T
U0′

r D′2,z0 : p⊥2 p2∂θM′b,z0 = −k′offM′b,z0 + k′onM′f1Dr′
c
.

(40)
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Again, for simplicity, we introduce Ũ0
t,‖ = A′3τU

0′

t,‖/(A
′
2T ) and Ũ0

r = A′3τU
0′

r /(A
′
2T ).

For the simplified motor model, it is straightforward to see that the nondimen-
sional version of (27) is

(41) M′b,z0(r′0, s
′|(x′2, θ), t∗) =

0 if (x′2, s
′, θ) /∈ D′r′

c
,

min
(
C ′,

M′(r′
0)∫∫∫

D′
r′

c

Ψ′
z′
0
dx′

2dθds
′

)
if (x′2, s

′, θ) ∈ D′r′
c
,

where C ′ is an independent problem-specific parameter.

2.3.3. Fluid. To nondimensionalize the bulk fluid equations, we first rescale the
extra stresses as

σf = σ′fS
′
z0(x2, t) : E′(x, t)δ′a(z − z0),(42)

σt = −σ′t
(
D′z0(x2, t) ·D′z0(x2, t)− S′z0(x2, t) : D′z0(x2, t)

)
δ′2a (z − z0),(43)

and E(x, t) = 1
T E′, where E′ is dimensionless rate-of-strain tensor. Here, we note

that the dimensionless gradient of the velocity field has the form

∇′u′(x, t) =
(
∇′2u2

′ 1
ε∂z′u′2

ε(∇′2w′)T ∂z′w′

)
.

In (42)–(43) the constants are σ′f = σfN
THL2 and σ′t = σtN2

H2L4 . Plugging (33) for Ψ
and (37) for Mb into the force density (15), changing variables, and setting F =
Fst
(
1− Vm

Vmax

)
Nm

L2HA′
2
, we obtain f2(x, t) = −F f ′2(x′, t′), where

f ′2(x′, t′) = δ
′2
a′(z′ − z′0)

∫∫∫∫
p2δ

(
y′2 +

l

L
s′p2 − x′2

)
Ψ′z0M

′
b,z0ds

′dr′0 dy
′
2 dθ.

Finally, we plug the nondimensional stresses and forces into the incompressible
reduced Stokes equation (30)–(32), and we let the characteristic pressure be P0 to
find (ε = H/L)

−∇
′2
2 u′2 −

1
ε2 ∂z′z′u′2 + P ′0∇′2q′ = F ′f ′2 + σ̃f∇′2 · σf’ − σ̃t∇′2 · σt’,(44)

−∇
′2
2 w
′ − 1

ε2 ∂z′z′w′ + P ′0∂z′q′ = 0,(45)

∇′2 · u′2 + ∂z′w′ = 0.(46)

In the above, the constants are P ′0 = P0L
µU , F ′ = FL2

µU , σ̃f = L
µU σ

′
f , and σ̃t = L

µU σ
′
t.

In the remainder of this paper and in the supplemental movies at http://www.cs.ucr.
edu/∼shinar/videos/mtk/mm-gliding-assays.html, we drop all prime, star, tilde, and
bar notation and numerically solve the complete set of nondimensional equations,
which are summarized in Table 1. For reference, Table 2 lists all parameters and
variables used in the model.

3. Implementation. In this section, we discuss the discretization of the non-
dimensionalized equations summarized in Table 1 and the development of a stable
algorithm. Because Ψz0 and Mb,z0 evolve on two different timescales, we discretize
Ψz0 at time tn, n = 0, . . . , NT , with adaptive time step dt and Mb,z0 at time tm,
m = 0, . . . , NT∗, with smaller adaptive time step dt∗ such that tn ≤ tm ≤ tn+1. After

http://www.cs.ucr.edu/~shinar/videos/mtk/mm-gliding-assays.html
http://www.cs.ucr.edu/~shinar/videos/mtk/mm-gliding-assays.html
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Table 1
Summary of the nondimensionalized model equations for the evolution of microtubules, motors,

and fluid in a gliding assay. The primes and nondimensionalizing constants have been dropped for
simplicity.

Microtubules

∂tΨz0 +∇2 · (ẋ2Ψz0 ) + ∂θ(θ̇Ψz0 ) = 0

ẋ2 = −Vspp2 + u2 + U0
t,‖p2p2 : ∇2D2,z0 −Dt,‖∇2 ln Ψz0

θ̇ = ∇2u2 + U0
rD2,z0 : p⊥2 p2 −Dr∂θ ln Ψz0

(MT1)

(MT2)

(MT1)

Motors

∂tMb,z0 + ∂sMb,z0 + U0
t,‖p2p2 : ∇2D2,z0 · ∇2Mb,z0

+U0
rD2,z0 : p⊥2 p2∂θMb,z0 = −koffMb,z0 + konMf1Drc

Mb,z0 =

0 if |x2 + l
L
sp2 − r0| ≥ rc

min
(
C,

M(r0)∫∫∫
Drc

Ψz0dx2dp2ds

)
if |x2 + l

L
sp2 − r0| < rc

Mf =M−
∫∫∫

MbΨz0 ds dx2 dθ

(EM)

(SM)

(MF)

Fluid

−∇2
2u2 − 1

ε2
∂zzu2 + P0∇2q = σf∇2 · σf − σt∇2 · σt + F f2

−∇2
2w −

1
ε2
∂zzw + P0∂zq = 0

∇2 · u2 + ∂zw = 0

(U1)

(U2)

(U3)

Force

f2 = Fδ2
a(z − z0)

∫∫∫∫
p2δ(y2 + l

L
sp2 − x2)Ψz0Mb,z0 ds dr0 dy2 dθ (F1)

initializing Ψz0 and Mb,z0 , we calculate the initial time step dt and, if the evolved
motor model is being used, the initial time step dt∗ as well. The motor forces and
steric stresses are computed next and used to solve the fluid equations. The new fluid
velocities are used to update Ψz0 to time t+ dt, and finally Mb,z0 is updated to time
t + dt based on the updated Ψz0 . New time steps are computed, and the simulation
continues. The procedure is summarized in Algorithm 1, and details are given below.
Our numerical scheme is similar to that of our previous scheme in [12]. The primary
differences are that the fluid equations are now solved in three dimensions, and that
extra stress terms resulting from the steric interactions are included.

To compute the time step dt, we calculate the maximum of the angular and linear
advection velocities in (33) and adjust the time step according to the CFL condition.
To find the small time step forMb, we limit the fraction of available motors that can
bind or unbind in any given time step. To calculate dt∗, we compare the change due
to s-advection with the greatest change due to binding and unbinding, and use the
more restrictive of the two to clamp dt∗.

3.1. Microtubule density. We discretize Ψz0(x2, θ) over the domain (x2, θ) ∈
[−1, 1]2 × [0, 2π] at the plane of motion z = z0 with a triply periodic grid of size
Nx×Ny×Nθ, with Nx = Ny. The advection terms in (MT1) (Table 1) are discretized
spatially with an upwinding scheme and Superbee flux limiter [7]. The equation
(MT1) is integrated in time using second order Adams–Bashforth method for the
advective terms and Crank–Nicolson for the diffusive terms. The resulting system
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Table 2
Model parameters and variables.

Ψ Microtubule density
x,p Three-dimensional position and orientation
θ In-plane orientation angle
ẋ, ṗ Microtubule linear and angular velocity
Vsp Microtubule self-propulsion velocity
N Total number of microtubules
σf,σt,σp Microtubule inextensibility stress, steric interaction stress, and combined

total stress
σf , σt Inextensibility and steric interaction stress coefficients
u, q, µ Fluid velocity, pressure, and viscosity
Ut, Ur Translational and rotational steric potentials
Kt,Kr Maier–Saupe translational and rotational steric potentials
Dt,⊥, Dt,||, Dr Linear perpendicular diffusion, linear parallel diffusion, and rotational dif-

fusion
D,S Second and fourth moments of Ψ with respect to p
E Rate-of-strain tensor
M,Mf ,Mb Total motor density, free motor density, and bound motor density per mi-

crotubule
rc Motor protein capture radius
r0 Motor protein tail position
z0 Height above bottom of assay at which microtubules and bound motor

protein heads are centered
Brc (r0) Allowable configurations x,p, s of bound motors in a ball of radius rc around

r0
Dr′

c
(r′0) Dimensionless disk of radius r′c centered at r′0

kon, koff Motor protein binding and unbinding rates
C Simplified motor model binding coefficient
δ, δa Dirac delta and smooth Dirac delta function
f Bound motor force on fluid
F Force associated with a single motor
Fst Motor protein stall force magnitude
L,H,U, P0, T Macroscopic characteristic scales: assay length and height, fluid velocity,

pressure, and time
ε Ratio between assay height and length (H = εL)
l, Vm, τ Microscopic characteristic scales: microtubule half-length, motor stepping

speed, and motor evolution time

of equations for Ψz0 is solved using the conjugate gradient method with incomplete
Cholesky factorization used as a preconditioner.

3.2. Motor distributions. To advanceMb,z0 forward in time according to the
evolved motor model (EM) in Table 1, two-step Adams–Bashforth with variable time
step dt∗ is used to discretize the s-advection term and the binding and unbinding
terms. We clamp Mb,z0(r0, s|x2, θ) so that

∫∫∫
Mb,z0Ψz0 ds dx2 dθ ≤M(r0).

The bound motor density Mb,z0 is high-dimensional as it tracks motor tail posi-
tion, the filament arclength parameter, and the center of mass and orientation of the
filament the bound motor head is attached to. However, since a head detaches if the
elongation of the motor stalk exceeds a certain threshold,Mb,z0 can be computed and
stored sparsely in a local grid around r0. The specific condition x2 + l

Lsp2 − r0 ≤ rc
allows further pruning of this localized configuration space. In our formulation, the
activity of the motors anchored at r0 is independent of motors anchored elsewhere.
In discrete form each cell y stores the local grid over x, θ, s for bound motors whose
tails are anchored anywhere within the boundaries of cell y. Each cell’s motor dis-
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Algorithm 1. Numerical evolution scheme for the coupled microtubule density,
motor protein distribution, and fluid velocity equations.

Initialize Ψz0 and Mb,z0 .
Precompute LU -decomposition of semispectral matrices for all frequency pairs.
while t < tend do

Compute adaptive dt.
Compute Ψz0(t+dt) by solving (MT1)–(MT3) using second order Crank–Nicolson
for the diffusive terms and Adams–Bashforth 2 for the advection terms.
if (using EM) then

Set t∗end = t+ dt.
while t∗ < t∗end do

Compute adaptive dt∗.
Compute Mb,z0(t∗ + dt∗) by solving (EM) with Adams–Bashforth 2.
Update Mf from Mb,z0 with (MF).

end while
else if (using simplified motor model) then

Solve (SM).
Update Mf from Mb,z0 with (MF).

end if
Calculate extra stresses.
Calculate motor force (F1) using trapezoidal rule and a local grid.
Solve semispectral (U1)–(U3).

end while

tribution is updated in parallel. Mb,z0 is stored as a two-dimensional array over r0,
each containing an unrolled flat array for x2, s, θ. We solve the evolved motor density
equation on the GPU, where each r0 is updated in single instruction, multiple data
(SIMD) fashion by several threads. Another advantage to this layout is that Mb,z0

independent outermost two-dimensional arrays can be split up and sent to multiple
GPUs, or solved in batches on a single GPU if the shared memory is exceeded. As
grid resolution increases, the three copies of Mb,z0 at the current and two previous
times required by the two-step Adams–Bashforth time integration scheme may not
all fit onto the GPU on-board memory simultaneously and instead need to be solved
a few rows at a time.

Since we do not track free motor heads, we can discretize the distribution of free
motors Mf and total motors M over a uniform grid of size Nx ×Ny. Updating Mf

from M and Mb,z0 is straightforward and parallelizable over x2 by evaluating the
discretized form of (MF) in Table 1.

3.3. Fluid. We discretize the domain into Nx×Ny ×Nz grid cells, where Nx =
Ny, and solve for the fluid state at each discrete time tn. u2 and q are sampled at cell
centers, while w is sampled at the z faces. As we have periodic boundary conditions
in the x2-plane, we use a semispectral approach and take the Fourier transform in x2
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of (U1)–(U3), giving for each frequency pair k = (kx ky)T(
|k|2 − 1

ε2 ∂zz

)
ûn2 + iP0q̂

nk = F f̂n2 + iσf σ̂f
n
k + iσtσ̂t

n
k,(47) (

|k|2 − 1
ε2 ∂zz

)
ŵn + P0∂z q̂

n = 0,(48)

ik · ûn2 + ∂zŵ
n = 0.(49)

Equations (47)–(49) yield an independent (4Nz − 1) × (4Nz − 1) linear system for
each frequency pair. This formulation is computationally advantageous for several
reasons. First, the equations for each k can be solved independently, allowing simple
parallelization. Second, the coefficient matrix of each linear system is constant in
time, and an LU-factorization for each can be precomputed and stored. We can
reasonably store Nx × Ny

2 separate (4Nz − 1) × (4Nz − 1) matrices and use them to
solve for multiple right-hand sides. The FFTW library [9] is used with precomputed
transformation mappings to efficiently perform the FFT and inverse FFT.

As the microtubules are concentrated around the z = z0-plane, it is desirable to
have more accuracy there and in the thin δa-width region around it than in the distant
assay regions above and below it. Given the aforementioned scaling of each frequency
pair fluid solve matrix with N2

z , we use a nonuniform grid with variable spacing in
the z-dimension. We store û2, and q̂ at the z-cell centers, and ŵ at the z-cell faces.
A schematic of the z-grid is shown in Figure 3.

Fig. 3. Schematic of the nonuniform staggered grid in z used to store the spectral values of
û, ŵ, p̂.

To compute second derivatives with respect to z at a z-cell j, we construct a
fourth order Lagrange interpolating polynomial using zj−2, zj−1, zj , zj+1, zj+2 and
differentiate twice. Near the boundaries, we use boundary data and the no-slip bound-
ary condition for the extreme samples and drop to third order interpolation for the
bottom-most and top-most equations. For first derivatives at a z-face j+1/2, we con-
struct a third order Lagrange interpolating polynomial using zj−1, zj , zj+1, zj+2 and
differentiate once. Near the boundaries, we use the nearest four samples to construct
the interpolating polynomial. We find that our semispectral fluid solver is second
order accurate.
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The motor force calculation is the single most computationally intense portion of
the algorithm because the force spreading dictates that nearby forces be calculated in
order to determine the total force at x. In terms of implementation, this effectively
increases the already high dimensionality of the bound motor distribution, whether
it is approximated with the simple motor model or the evolved motor model. To
account for the motor force’s highly parallel but computationally intensive nature, it
is calculated on a GPU using a scheme similar to the bound motor solve described
above. A speedup of roughly forty times relative to a single-core implementation is
observed.

Computation of the stress tensors is straightforward and parallelizable. σf de-
pends on the rate-of-strain tensor E, which we have only for the previous time step
since we compute the extra stresses before the fluid solve. We therefore linearly ex-
trapolate E at the new time t+ dt using the current and previous values, as in [8].

4. Results. In this section, we present results for various experiments with the
following parameters held constant: 2µm-length microtubules, kon = 25, koff = .1,
Ut = −.01, 125×125µm2 assay, Nm = 3×106 motors, Vmax = 1µms−1, andN = 22300
microtubules. Our nonuniform z-grid has 30 evenly sized fine z-cells covering the range
{−.5,−.4}, with z0 = −h

2 + .05 = −.45 in the middle. Above z = −.4, the height of
each cell doubles consecutively until the cell size is sixteen times greater than that of
the fine z-cells at the bottom. Our final 3D grid dimensions are 128× 128× 49, with
32 cells in s and θ, at which we find the qualitative features to be well resolved.

In the figures, we plot the nondimensionalized spatial microtubule distribution

(50) Ψspatial,z0(x2, t) =
∫

Ψz0(x2, θ, t)dθ

with color ranging from white (low) to blue (high). We plot the nondimensional
spatial bound motor distribution

(51) Mb,spatial,z0(r0, t) =
∫∫∫

Mb,z0(s, r0, t|x2, θ)Ψz0(x2, θ, t)dsdx2dθ

with color ranging from tan (low) to red (high). The colorbars are annotated with the
corresponding percentage of the total available motors in the bound configuration, at
the low and high ranges of each normalization. Finally, we compute the orientation
matrix

(52) N(x2, t) =
∫

p2pT2 Ψz0(x2, θ, t)dθ∫
Ψz0(x2, θ, t)dθ

and draw its eigenvectors in red scaled by their associated eigenvalues. When present,
velocity vectors (black) and orientation eigenvectors are plotted for every fifth cell for
clarity.

4.1. Evolved motor model.
Single clump. We first examine the processive behavior of a clump of aligned

filaments as the steric alignment parameter is varied between Ur = 0 and .01. We
present results for Ur = 0, .01 and the evolved motor model in Figure 4. We observe
that as Ur increases to .01 the clump better maintains its shape, whereas at Ur = 0
microtubules become concentrated along the leading edge of the clump, which assumes
a widening crescent-like shape. The bottom row of Figure 5 shows the microtubule
orientation field at the final frame displayed in the upper rows with Ur = 0 (left)
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and Ur = .01 (right). For higher values of Ur, the microtubule orientation field is
uniformly aligned. For smaller values of Ur, the microtubule orientation field at the
clump’s leading edge becomes tangential to the leading edge, as the rods rotate to
avoid compression or extension by the steep velocity gradient, clearly visible in the
Ur = 0 case. For Ur = .01, the steric resistance to rotatation relative to neighboring
microtubules counteracts this effect, and the orientation field remains more uniform.
In vitro experiments have shown shape persistence in aligned clumps [29], qualitatively
similar to the Ur = .01 case.

Fig. 4. Single aligned microtubule clump simulation with evolved motor model. Bound motor
protein density visualized with gradient from tan (low) to red (high). Fluid velocity plotted as a black
arrow every fifth cell. First row: Ur = 0. Second row: Ur = .01. Images are at times t = 0, 15, 30,
and 45 s. (See online version for color.)

Fig. 5. Single aligned microtubule clump simulation with evolved motor model. Microtubule
density visualized with gradient from white (low) to blue (high). Microtubule orientation eigenvectors
plotted as red vectors every fifth cell. Simulation shown at time t = 45 s for Ur = 0 (left) and
Ur = .01 (right). (See online version for color.)

Colliding clumps. We examined the behavior of colliding clumps for three values of
the steric alignment parameter Ur = 0, .001, .01 and both head-on and perpendicular
collisions. When clumps collide, the behavior depends on the angle between the
microtubule orientations of the clumps.

A nearly perpendicular collision, as in Figure 6, results in the clumps merging and
moving as a single clump for all Ur tested. While the Ur term drives local alignment,
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alignment also occurs in the Ur = 0 case as follows. When the self-propulsion velocity
is zero, microtubules move passively with the flow. As motor forces act directly on
the fluid, motor forces acting in opposite directions cancel out. This cancellation
occurs in the example depicted in Figure 6, where the resultant force points in the
average direction of the colliding microtubule orientations—in this case, upwards.
These two mechanisms give different qualitative results, as illustrated in Figure 6. In
the Ur = 0 case (third row), the microtubule distribution remains isotropic as long
as local fluid flow remains negligible, whereas in the Ur = .01 case (fourth row), we
observe steric alignment of the microtubules throughout the entire domain. Higher Ur
results in steeper gradients in microtubule orientation and density at the midline. The
higher concentration in turn leads to stronger motor forces and higher fluid velocities.
These Ur-dependent collision phenomena are observed wherever two regions of dense
microtubules collide.

Fig. 6. Nearly perpendicular microtubule clumps driven by the evolved motor model colliding.
First row: Ur = 0 velocity field. Second row: Ur = .01 velocity field. Third row: Ur = 0 orientation
field. Fourth row: Ur = .01 orientation field. Images are at times t = 0, 45, 90, and 180 s.

In the case of two clumps with antiparallel orientations colliding close to head-on
(Figure 7 and supplemental movie 1, first example), significant differences are observed
for Ur = 0 versus Ur = .01. In the Ur = 0 case, the motor forces drive an extensional
fluid flow on either side of the collision centerline, creating two clumps moving in
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opposite directions. In the case Ur = .01, the steric force prevents alignment with
the extensional flow, and the microtubules of each clump slide past each other. As
a result of slight differences in the original clump position, the clumps break down
after collision, and smaller clumps pass through each other and continue along the
initial clump trajectories. The orientation field (Figure 7, fourth row) shows that the
microtubules do not rotate during the initial collision and its aftermath.

Fig. 7. Antiparallel microtubule clumps driven by the evolved motor model colliding. First
row: Ur = 0 velocity field. Second row: Ur = .01 velocity field. Third row: Ur = 0 orientation
field. Fourth row: Ur = .01 orientation field. Images are at times t = 0, 90, 180, and 270 s. See
supplemental movie 1, first example.

Vortex lattice. To test our model’s ability to reproduce characteristics of the lat-
tice of vortices observed in [33], we simulate four overlapping rings of microtubules
oriented in clockwise fashion, as shown in Figure 8 and the first example in supple-
mental movie 2. In the overlapping regions, the microtubules from adjacent rings are
oriented opposite each other. We observe extensional flow in the dense overlapping
regions combined with counterclockwise rotation driven by the initial orientations.
With Ur = 0 the rotational flow develops four vortices rotating clockwise centered
about the spaces between the initial four vortices. The new vortices contract then
expand outward until they develop overlapping regions moving in opposite directions,
similar to the initial condition. The process repeats itself; extensional flow and rota-
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Fig. 8. Vortex lattice experiment with evolved motor model. First row: Ur = 0 velocity field.
Second row: Ur = .01 velocity field. Third row: Ur = 0 orientation field. Fourth row: Ur = .01
orientation field. Images are at times t = 0, 240, 480, and 720 s. See supplemental movie 2, first
example.

tion form again in the overlapping regions, leading to the formation of four vortices
rotating counterclockwise at the original four vortex locations. Due to diffusion, the
maximum concentration and hence velocity decrease on average throughout the pro-
cess. Due to symmetry breaking, the transition from vortices with overlapping regions
to new vortices with overlapping regions and opposite rotation repeats a few times
at most, depending on parameters, until the original structure is lost. Increasing Ur
from 0 to .01 increases the maximum microtubule density and flow velocity and gives
steeper gradients in microtubule concentration and orientation, as seen in previous
examples. It also affects the degree to which the initial dense overlapping regions
break down with the rotational forcing from the motor proteins. In particular, for
Ur = .01 (Figure 8, second and fourth rows), the dense overlapping regions extend
but do not separate, and thus preserve much of the original four vortex structure.
With the inclusion of the steric interaction term, our results are more consistent with
the experiments of [33], which demonstrate a temporally persistent lattice of vortices.

Perturbation. We perturb a uniform isotropic microtubule density in both space
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and orientation by adding

1
a

8∑
i,j=1

εij cos(πix+ ξij) cos(πjy + ξij)Pij(θ),(53)

where εij is a uniform random number in [−.001, .001], ξij is a uniform random number
in [0, 2π], a is a normalization constant, and Pij(θ) are third order polynomials in
cos(θ) and sin(θ) with random coefficients in [−1, 1]. The Ur = 0 case results in a
spatiotemporally stable Ψz0 density (Figure 9, supplemental movie 3). In the Ur = .01
case, continuous narrow tracks of stationary microtubules form and remain stable.

Fig. 9. Perturbation in x and θ giving rise to stationary concentrated pattern with Ur = .01 for
the evolved motor model. First three images: evolution of microtubule density in time. Fourth image:
magnified section of final top-row image with orientation eigenvectors in red. The microtubule
density concentrates along steep gradients in the microtubule orientation field. Images are at times
t = 0, 75, and 113 s. See supplemental movie 3. (See online version for color.)

4.2. Evolved motor model with self-propulsion.
Colliding clumps. We repeat the antiparallel colliding clumps experiment with

the addition of a phenomenological self-propulsion velocity Vsp (see (2), (MT2)) in
Figure 10 and the second two examples in supplemental movie 1. In the case of
Vsp = 0, illustrated in Figure 7, the clumps break up as they collide. At Vsp = 1 and
Ur = .01, the clumps pass through each other largely intact. For Vsp = 1 and Ur = 0,
we see a combination of both effects, with some passthrough and some spreading of
microtubules with the extensional flow formed in the collision. In general, varying
the value of Vsp between 0 and 1 leads to a corresponding combination of the extreme
Vsp = 0 and Vsp = 1 behaviors. The experiments of [29] demonstrate a combination
of passthrough and breakup when clumps collide. Experiments of the behaviors of
microtubules undergoing collisions [33] show that colliding microtubules can merge
and realign or pass through depending on the angle of collision. With the addition of
a self-propulsion term, our numerical experiments reproduce such behaviors.

Vortex rings. We repeat the four ring vortex experiment with the addition of a
self-propulsion velocity Vsp (Figure 11 and second and third examples in supplemental
movie 2). With Vsp = .1 and Ur = 0, depicted in the first row, motor forces at the
overlapping regions of the initial rings create a shear flow that separates these regions
and, in conjunction with the self-propulsion, creates counterclockwise vortices at the
separatrix between clockwise vortices, as seen in the second image of the first row. This
separates the dense bands of microtubules into two connected bands that translate
and rotate away from each other, eventually meeting other bands at the centers of the
original rings in a cross-like pattern (third image). The microtubules gather at the
centers of the crosses, then reverse direction and expand outward in a nonsymmetric
way (fourth image), similar to the switching behaviors observed when the experiment
is run without self-propulsion (Figure 8). With Vsp = .1 and Ur = .01, depicted in the
second row, the steric alignment prevents the shear flow from separating the initial
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Fig. 10. Colliding clump experiment with added self-propulsion velocity. First row: Ur = 0
and Vsp = .1. Second row: Ur = .01 and Vsp = .1. Third row: Ur = 0 and Vsp = 1. Fourth row:
Ur = .01 and Vsp = 1. Images are at times t = 0, 105, 210, 315 s in the first and second rows, and at
t = 0, 24, 48, 72 s in the third and fourth. See the second and third examples in supplemental movie
1.

overlapping regions, and the self-propulsion drives antiparallel sliding that stretches
the dense microtubule regions into long cohesive bands (second image, second row).
The bands break down into smaller clumps (third image), but the steric alignment
term keeps the new clumps following the paths of the initial bands, which roughly
correspond with the initial four vortex structure (fourth image) as observed without
self-propulsion (Figure 8). Increasing the self-propulsion velocity to Vsp = 1 causes the
self-propulsion to dominate the effects of the motor forces, so microtubule passthrough
(with alignment if Ur > 0) becomes dominant. With Ur = 0 (third row), switching
events occur continuously, and the four quadrants of the assay are symmetric. We
observe that with Ur = .01, passthrough rapidly breaks up the ring structure (fourth
row). As a result, no switching events occur.

Perturbation. We repeat the perturbation experiment with the addition of a self-
propulsion velocity Vsp (Figure 12 and second and third examples in supplemental
movie 3). At Vsp = 1 or .1 and Ur = 0, the clumps translate but simply pass through
one another without increasing in density or aligning. With Vsp = .1 and Ur = .01
(first row), we get fast translational microtubule bands, as opposed to the stationary
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Fig. 11. Vortex ring experiment with added self-propulsion velocity. Images are illustrative of
behavior and thus are not necessarily taken at the same simulation time between rows. First row:
Ur = 0 and Vsp = .1. Second row: Ur = .01 and Vsp = .1. Third row: Ur = 0 and Vsp = 1. Fourth
row: Ur = .01 and Vsp = 1. Images are at times t = 0, 225, 450, 675 s in the first two rows, and at
t = 0, 60, 120, 180 s in the third and fourth. See second and third examples in supplemental movie 2.

continuous tracks in the Vsp = 0 case shown in Figure 9. At Vsp = 1 and Ur = .01
(second row), the bands form faster and are denser than in the Vsp = .1 case.

4.3. Simplified motor model.
Vortex rings. For the parameters, experiments, and timescales presented here, the

differences in density, feature shape, and location observed between the microtubule
distribution fields generated by the simplified and evolved motor models are minor.
One notable exception is that, in the vortex ring experiment, the evolved motor model
drives clockwise rotation in the four central clumps, whereas the simplified motor
model drives counterclockwise rotation (Figure 13). This effect is due to a slight
difference in the motor force pattern around each clump. On timescales longer than
those presented in this work, simulations may eventually show significant divergence.

Colliding clumps. Results from the antiparallel colliding clump simulation driven
by the simplified motor model are presented in Figure 14 (and supplemental movie 4)
for values of the parameter C = 10, 50, 250. Increasing C not only increases the fluid
velocities in the simulation by increasing the value of Mb,spatial,z0 for a given Ψz0 ,
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Fig. 12. Perturbation experiment with added self-propulsion velocity. First row: Ur = .01 and
Vsp = .1. Second row: Ur = .01 and Vsp = 1. Images are at times t = 0, 105, 210, 315 s. See second
and third examples in supplemental movie 3.

Fig. 13. Magnified view of vortex ring experiment with evolved motor model (top row) and
simplified motor model (bottom row), Ur = 0 and Vsp = 0. A counterclockwise velocity field forms
with the evolved motor model, whereas a clockwise velocity field forms with the simplified motor
model. Images are at times t = 150, 300, 450, 600 s.

but also changes the flow features that emerge over time. We observe that for the
highest tested value, C = 250, any cell with a Ψspatial,z0 value over a threshold results
in fully bound motors, exercising the second argument to the minimum function in
the definition of the simplified motor model (SM). Therefore two cells with distinct
Ψspatial,z0 values above the threshold will produce motor forces of equal magnitude,
changing the emergent behavior within the assay.

Perturbation with and without motor-based fluid forces. In Figure 15 (and supple-
mental movie 5), we repeat the perturbation experiment with self-propulsion in the
presence and absence of the hydrodynamic forces generated by the motor proteins.
This allows us to test the observation of [29] that the stability and size of the observed
filament patterns depend on long-range hydrodynamic interactions. Consistent with
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Fig. 14. Antiparallel colliding clump experiment with simplified motor model, Ur = .001 and
Vsp = 0. First row: C = 10. Second row: C = 50. Third row: C = 250. First row images are at
times t = 0, 300, 600, 900 s. Second row images are at times t = 0, 21, 42, 63 s. Third row images are
at times t = 0, 15, 30, 45 s. See supplemental movie 4.

[29], we observe larger flow structures forming in a shorter amount of time in the pres-
ence of the fluid flows driven by the motor proteins. We used the simplified motor
model, C = 100, Ur = .01, and Vsp = .1.

Fig. 15. Perturbation experiment with (first row) and without (second row) motor-based fluid
forces, showing faster formation of larger-scale features in the former case. First row images are
at times t = 150, 300, 450, 600 s. Second row images are at times t = 300, 600, 900, 1200 s. See
supplemental movie 5.
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5. Conclusions. We have developed a modeling and simulation framework cou-
pling multiple microscopic models of propulsion to macroscopic steric and hydrody-
namic interactions in a quasi–two-dimensional assay. Populations of bound and free
motor proteins and microtubules are represented as continuum distributions. The
framework facilitates study of the relative effects of hydrodynamic and steric inter-
actions on emergent phenomena. Stress tensors arising from rotational and transla-
tional steric interactions and self-propulsion are supported in addition to body forces
from active motor proteins. Experimentation is needed to empirically determine the
steric interaction parameters Ur and Ux. We avoid closure approximations in the
z-dimension, and high precision around a z-plane of interest is achieved without in-
curring significant computational overhead. Results demonstrate our framework’s
ability to replicate some of the behavior of individual and colliding clumps of fila-
ments, including crossovers, alignment, merging, and splitting [30], and thus support
observations of [29] regarding hydrodynamic effects.

We present two motor protein models, the evolved motor model, which incor-
porates motor head procession and binding/unbinding dynamics, and the simplified
motor model, which determines the bound motor distribution instantaneously as a
function of the microtubule distribution and therefore eliminates the high-dimensional
and computationally expensive motor evolution at the smaller timescale t∗. While
the different models may yield visually similar motor distributions, they can result in
qualitatively different dynamics, as illustrated in Figure 13. Additional motor mod-
els could be investigated within our framework, for example, models accounting for
cooperativity or competition between motor proteins.

One limitation of our model is the way we model the motor stalk force. The motor
stalk force has a component parallel to the filament, perpendicular to the filament
and in the x, y-plane, and in the z-direction. The component parallel to the filament
is equivalent to the motor force we apply. We ignore the perpendicular component
in the x, y-plane, which would act to translate and reorient the filament to align the
filament director with the in-plane motor stalk force. We also ignore the component
in the z-direction, which would act to move filaments in the z-direction, since we
phenomenologically model the filament distribution in the z-direction. In future work
it would be interesting to refine our motor model to capture the second component
of the force as well.

Our model applies to a microtubule gliding assay, where the motors generate force
monopoles. If multiheaded motor complexes bind two filaments, this leads to force
dipoles as in [10]. While our framework could be extended to such cases, in practice
this leads to a very high-dimensional motor complex state space which may require
additional work to make it feasible.

Motor forces on the fluid compose flow features in the microtubule density by
advecting all local microtubules with the same velocity. Even without any steric in-
teraction terms, two colliding clumps will proceed in a direction roughly equal to
the average of their orientations. However, the motor forces acting on the fluid are
prone to cancellation in isotropic or antialigned microtubule configurations. Com-
bining either motor model with a self-propulsion term in the microtubule advective
flux provides a mechanism for antiparallel sliding, resulting in persistent motion of
the microtubules. Addition of the self-propulsion term enables the passthrough of
colliding clumps, consistent with the simulations of [30].



MICRO-MACRO FRAMEWORK FOR GLIDING ASSAYS 1795

REFERENCES

[1] I. S. Aranson and L. S. Tsimring, Pattern formation of microtubules and motors: Inelas-
tic interaction of polar rods, Phys. Rev. E, 71 (2005), 050901, https://doi.org/10.1103/
PhysRevE.71.050901.

[2] A. Baskaran and M. C. Marchetti, Hydrodynamics of self-propelled hard rods, Phys. Rev.
E, 77 (2008), 011920.

[3] G. K. Batchelor, The stress system in a suspension of force-free particles, J. Fluid Mech.,
41 (1970), pp. 545–570, https://doi.org/10.1017/S0022112070000745.

[4] R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric
Liquids, Vol. 2: Kinetic Theory, 2nd ed., Wiley-Interscience, Hoboken, NJ, 1987.

[5] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press,
Oxford, UK, 1986.

[6] K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval, Direct measurement
of the flow field around swimming microorganisms, Phys. Rev. Lett., 105 (2010), 168101.

[7] C. Dullemond, Lecture on Numerical Fluid Dynamics, http://www.mpia-hd.mpg.de/
∼dullemon/lectures/fluiddynamics08, 2008.

[8] B. Ezhilan, M. J. Shelley, and D. Saintillan, Instabilities and nonlinear dynamics of
concentrated active suspensions, Phys. Fluids, 25 (2013), 070607.

[9] M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture for the FFT, in
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal
Processing, vol. 3, 1998, pp. 1381–1384, https://doi.org/10.1109/ICASSP.1998.681704.

[10] T. Gao, R. Blackwell, M. A. Glaser, M. Betterton, and M. J. Shelley, Multiscale
modeling and simulation of microtubule–motor-protein assemblies, Phys. Rev. E, 92 (2015),
062709.

[11] L. Giomi, L. Mahadevan, B. Chakraborty, and M. F. Hagan, Excitable patterns in active
nematics, Phys. Rev. Lett., 106 (2011), 218101, https://doi.org/10.1103/PhysRevLett.106.
218101.

[12] C. Hohenegger, S. Cook, and T. Shinar, Dimensional reduction of a multiscale continuum
model of microtubule gliding assays, SIAM J. Appl. Math., 74 (2014), pp. 1338–1353,
https://doi.org/10.1137/140961535.

[13] C. Hohenegger and M. J. Shelley, Dynamics of complex biofluids, in New Trends in the
Physics and Mechanics of Biological Systems, M. Ben Amar, A. Goriely, M. M. Müller,
and L. F. Cugliandolo, eds., Ecole de Physique des Houches Session XCII, 2009, Oxford
University Press, Oxford, UK, 2011, Chapter 3, pp. 65–92.

[14] J. Howard, The movement of kinesin along microtubules, Annu. Rev. Physiol., 58 (1996),
pp. 703–729.

[15] J. Kierfeld, K. Frentzel, P. Kraikivski, and R. Lipowsky, Active dynamics of filaments
in motility assays, European Phys. J., 157 (2008), pp. 123–133.

[16] P. Kraikivski, R. Lipowsky, and J. Kierfeld, Enhanced ordering of interacting fila-
ments by molecular motors, Phys. Rev. Lett., 96 (2006), 258103, https://doi.org/10.1103/
PhysRevLett.96.258103.

[17] H. Y. Lee and M. Kardar, Macroscopic equations for pattern formation in mixtures of micro-
tubules and molecular motors, Phys. Rev. E, 64 (2001), 056113, https://doi.org/10.1103/
PhysRevE.64.056113.

[18] T. B. Liverpool, Active gels: Where polymer physics meets cytoskeletal dynamics, Philos.
Trans. Roy. Soc. London A, 364 (2006), pp. 3335–3355.

[19] T. B. Liverpool and M. C. Marchetti, Bridging the microscopic and the hydrodynamic
in active filament solutions, Europhys. Lett., 69 (2005), pp. 846–852, https://doi.org/10.
1209/epl/i2004-10414-0.
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Large-scale vortex lattice emerging from collectively moving microtubules, Nature, 483
(2012), pp. 448–452, https://doi.org/10.1038/nature10874.

[34] S. Swaminathan, F. Ziebert, D. Karpeev, and I. S. Aranson, Motor-mediated alignment
of microtubules in semidilute mixtures, Phys. Rev. E, 79 (2009), 036207, https://doi.org/
10.1103/PhysRevE.79.036207.

[35] Q. Wang, A hydrodynamic theory for solutions of nonhomogeneous nematic liquid crystalline
polymers of different configurations, J. Chem. Phys., 116 (2002), pp. 9120–9136.

https://doi.org/10.1038/npg.els.0002621
https://doi.org/10.1103/PhysRevLett.100.178103
https://doi.org/10.1063/1.3041776
https://doi.org/10.1103/PhysRevE.70.031905
https://doi.org/10.1103/PhysRevE.70.031905
https://doi.org/10.1039/C0SM01063D
https://doi.org/10.1039/C0SM01063D
https://doi.org/10.1038/nature09312
https://doi.org/10.1038/nature10874
https://doi.org/10.1103/PhysRevE.79.036207
https://doi.org/10.1103/PhysRevE.79.036207

	Introduction
	Modeling framework
	Microscale model
	Microtubule distribution
	Motor distributions
	Fluid

	Two-dimensional reduction
	Microtubule distribution
	Bound motor distribution
	Fluid

	Nondimensionalization
	Microtubule distribution
	Motor distributions
	Fluid


	Implementation
	Microtubule density
	Motor distributions
	Fluid

	Results
	Evolved motor model
	Evolved motor model with self-propulsion
	Simplified motor model

	Conclusions
	References

