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Abstract. We consider the sloshing problem for an incompressible, inviscid, irrotational fluid in
an open container, including effects due to surface tension on the free surface. We restrict ourselves to
a constant contact angle and seek time-harmonic solutions of the linearized problem, which describes
the time-evolution of the fluid due to a small initial disturbance of the surface at rest. As opposed
to the zero surface tension case, where the problem reduces to a partial differential equation for
the velocity potential, we obtain a coupled system for the velocity potential and the free surface
displacement. We derive a new variational formulation of the coupled problem and establish the
existence of solutions using the direct method from the calculus of variations. We prove a domain
monotonicity result for the fundamental sloshing eigenvalue. In the limit of zero surface tension, we
recover the variational formulation of the mixed Steklov—Neumann eigenvalue problem and give the
first-order perturbation formula for a simple eigenvalue.
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1. Introduction. In fluid dynamics, sloshing refers to the motion of the free
surface of a liquid inside a container. Spilling and splashing of a fluid is possible if the
sloshing amplitude is large enough. Indeed, sloshing of a cup of coffee can devastate
a perfectly good day [41]. Examples of more significant consequences due to sloshing
include the free surface effect in ships and trucks transporting oil and liquified natural
gas (LNG) [2, 18] and sloshing of liquid propellant in spacecraft tanks and rockets
[1, 27].

LNG carriers usually operate either fully loaded or nearly empty, but there has
been a growing demand for membrane-type LNG carriers that can operate with cargo
loaded to any filling level. Experimental and numerical studies show that the coupling
effect between sloshing dynamics inside tanks and ship motions can be significant
at certain frequencies of partially filled tanks, where violent sloshing generates high
impact pressure on the tank surfaces and compromises structural safety. As such,
prediciting and understanding the natural sloshing frequencies, modes, and impact
load at partially filled levels are of great concern to the safety and operability of LNG
carriers close to an LNG terminal and remain one of the most crucial design aspects
in LNG cargo containment system.

Since Robert Goddard’s first launch of a liquid propellant rocket in 1926, scientists
and engineers have worked to better understand the sloshing behavior of propellants
in their tanks. This is important not only in terms of reducing costs and increasing
efficiency of future spacecraft designs but also in minimizing potential impacts espe-
cially on flight safety, since violent sloshing fuels can, for example, produce highly
localized impact loads and pressure on tank walls or affect the spacecraft’s guidance
system. There are many instances where space missions were either deemed a failure
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or could not be completed due to sloshing [36, 26, 28, 59, 54]. For instance, in March
2007 the SpaceX Falcon 1 vehicle tumbled out of control, when an oscillation appeared
in the upper stage control system approximately 90 seconds into the burn and insta-
bility grew in pitch. It was verified by third party industry experts that cryogenic
liquid oxygen (LOX) sloshing was the primary contributor to this instability [58].

Recent advances in computational fluid dynamics (CFD) tools have made accu-
rate numerical modeling of sloshing dynamics and extraction of mechanical parameters
such as sloshing frequency and sloshing mass center possible [50]. However, it requires
extensive experimental validation and verification in microgravity or zero gravity en-
vironment, since fluid behaves in an unpredictable manner due to the absence of
gravity. To benchmark and expand CFD tools to characterize sloshing dynamics,
engineers with NASA together with researchers from the Florida Institutute of Tech-
nology and the Massachusetts Institute of Technology designed the SPHERES-Slosh
experiment (SSE), carried aboard at the International Space Station. This investiga-
tion is planned to collect valuable data and information on how liquids move around
inside of a container in the presence of external force. A description of design details
of the SSE can be found in [10, 38].

In this paper, we study the linearized sloshing problem of an incompressible, invis-
cid, irrotational fluid in containers, including surface tension effects on the free surface.

1.1. Surface tension effects. Surface tension is present at all fluid interfaces,
and it manifests itself in nature, most commonly in capillary phenomena such as the
rise of water up a capillary tube. Surface tension, defined as force per unit length,
can be explained in terms of surface force or surface energy [39, 9]. Roughly speaking,
it is the intermolecular force required to contract the liquid surface to its minimal
surface area. Geometrically, including surface tension forces is equivalent to con-
sidering the curvature of the interface. If we denote by p,g,T,l the density of the
fluid, gravitational acceleration, surface tension, and some characteristic length scale
of the system, respectively, and assume that p, T are constant, then the dimensionless
parameter Bo = pgl?/T, known as the Bond-E6tvés number [27], measures the im-
portance of the surface tension force relative to the gravitational force. For Bo > 1,
surface tension is assumed to be negligible and this is often the case for fluids in large
containers under a regular gravity field. However, if Bo < 1, then surface tension is
not negligible anymore; this occurs when one is examining sloshing behavior in a mi-
crogravity environment or if the characteristic length of the interface is much smaller
compared to the capillary length 12 = T'/(pg).

Closely related to the concept of surface tension is that of the contact angle, in
other words the angle of contact between the solid and the liquid-air interface along the
line of intersection between the container’s wall and the fluid free surface, known as the
contact line [16]. On one hand, the contact angle is a geometrical quantity uniquely
defined as a dot product, while on the other hand it is a physical quantity which
quantifies the wettability of a solid surface. In the static case, the resulting condition
is known as the Young’s equation and can be derived from an energy minimization
argument on the contact line [47, 19]. In the dynamic case, accurately describing the
contact angle remains poorly understood, mainly due to contact angle hysteresis. We
will further discuss the contact angle in section 2.

1.2. Sloshing problem with surface tension. Consider an irrotational flow
of an incompressible, inviscid fluid occupying a bounded region Dy C R? in a simply
connected container. The Cartesian coordinates X = (Z, ¢, Z) are chosen in such a way
that the static free surface (or static meniscus), denoted by F, lies in the Z-g plane
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FiG. 1. An illustration of the domain D with boundary 0D = F U B for the linearized problem
in (3). We assume hgr agrees with iig on OF.

and the Z-axis is directed upward. Here, Dr is a bounded simply connected Lipschitz
domain; in particular its boundary D7 has no cusps. 0D consists of two parts: the
(evolving) free surface Fr defined by Fr = {(#,7,2) € R3: 2 = 7j(2,7,t)}, where 7
is the free surface displacement, together with the wetted boundary B = 0Dr \ Fr.
Moreover, the container’s wall over which the contact line moves is vertical. The
subscripts on Dr, Fr are used to denote time-dependence.

The static meniscus F is assumed to intersect the vertical container wall orthog-
onally, and this corresponds to a 90° (static) contact angle and, together with the
assumption that the wall is vertical near the free surface, implies fig(x) = fgr(x)
for all x € OF; see Figure 1. Another consequence is that F is a flat interface on
the plane {Z = 0}; this will be proved in section 2. One can think of Fr as a small
perturbation of F.

We give a brief description of the water waves equations describing fluid motion
in Dr; details of the derivation can be found in Appendix A. We denote by G(X, ) the
velocity field of the fluid. Incompressibility and irrotationality imply the existence
of a velocity potential, denoted q~5 = qz(i,& satisfying Laplace’s equation in Dr.
The Neumann boundary condition is imposed on B, while the classical kinematic and
dynamic boundary conditions are imposed on Fr, the latter of which can be expressed
in terms of ¢ using Bernoulli’s principle for an ideal fluid with unsteady irrotational
flow. Nondimensionalizing the system with dimensionless variables

(1) x=X =% g=—2_ -1
a a ar/ga a

where a > 0 is some characteristic length scale of the system, we obtain the following
system of dimensionless nonlinear partial differential equations:

(2a) Aj =0 in Dr,

(2b) Oagp =0 on B,

(2¢) nm+Ve-V(n—2)=0 on Fr,
1 1 o

(2d) ¢t+§|v¢|2+n:_§v'n}-T on Fr,

(26) ﬁ[g . ﬁ]:T =0 on 8.7:1“
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Here, V = (9y,0,,0.), A = 97 + 9, + 02, fip, iz, are the outward unit normal to
the boundary B and the free surface Fr, respectively. By 0, we mean the normal
derivative of a function. We discuss in details the contact line boundary condition
(2e) in section 2.

We further simplify (2) as follows. Consider an equilibrium solution (¢g, ) =
(¢,0) of (2), where ¢ is any constant scalar function (which gives zero velocity field).
Assuming the free surface displacement 7 is a small perturbation of {z = 0}, we look
for solutions of the form ¢(z,y, z,t) = ¢+ ep(x, y, 2, t), n(x,y, t) = en(z,y,t), where
e > 0 is some small parameter and collect O(¢) terms. Next, we Taylor expand ¢E and
its derivatives around z = 0. This transforms the boundary conditions, (2¢) and (2d),
from Fr to F.

Finally, time harmonic solutions (with angular frequency w and phase shift §) are
sought, via the ansatz

o(x,y,2,t) = ®(x,y, 2) cos(wt + 0),
ﬁ(xa Y, t) = f(ﬂC, y) Sin(Wt + 5),
where ®(x,y, z) and {(z, y) are the sloshing velocity potential and height, respectively.

We obtain the linearized eigenvalue problem for (w,®,¢), which we refer to as the
sloshing problem with surface tension:

(3a) AD =0 in D,

(3b) 0a®=0 on B,

(3¢c) O, =wé on F,
1

(3d) f—B—OAfﬁszI) on F,

(3e) 00l =0 on OF.

Here, Vr = (05,0y), Ar == V5 Vg = Opz + Oyy, . = 0.P and D is the fixed
reference domain, with boundary 0D = FUB; see Figure 1. This problem must also be
complemented with the condition | 7&dA =0, which amounts to mass conservation
of the fluid. Since we are only interested in nontrivial solutions of (3), we exclude
the trivial solution (wo,®o,&n) = (0,1,0) by imposing the orthogonality condition
J 7 ®dA = 0. Interestingly, the spectral parameter, w, appears in the boundary
condition on the free surfaces, (3c) and (3d).

1.3. Zero suface tension. We summarize some well-known results for the case
of zero surface tension corresponding to Bo = oo, which has received considerable
attention in the literature; see, for example, [60, 61, 20, 30, 27, 5, 31, 35].

When Bo = oo, we see from (3d) that the free surface height £ is proportional to
the sloshing mode ® restricted to the free surface F and can be eliminated from (3).
This yields the greatly simplified eigenvalue problem for (w, ®)

(4a) AP =0 in D,
(4b) 0a® =0 on B,
(4c) P, = w?d on F,

which is commonly referred to as the mized Steklov-Neumann eigenvalue problem or
the sloshing problem. It is known [46, 29] that, if D and F are Lipschitz domains,
then (4) has a discrete sequence of eigenvalues

0=wi<w!<wi<- - withw? — ocoasn— oo
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The corresponding eigenfunctions {®,,}°°, belong to the Sobolev space H!(D) and
when restricted to the free surface F form a complete orthogonal set in L?(F). The
eigenvalues, w2, can be characterized by means of a variational principle [46, 61]:

. 2 .
(5) <I)1Enl£n /D|V<I>| av subject to ||®[|z2(F) = 1,

where H,, is defined by
H, = {CI> € H'(D): / <I><I>jdA:0forallj:0,1,...,n—1},
]__

where ®; is the jth eigenfunction of (4). Here @ is the constant solution correspond-
ing to wp = 0.

It is worth mentioning that the fundamental eigenfunction ®; corresponding to
the fundamental (first nontrivial) eigenvalue w? can be used to determined the “high
spot,” the maximal elevation of the free surface of the sloshing fluid. (See, for exam-
ple, [37] for such relation.) Several results about the location of high spots for different
container geometries in two and three dimensions were obtained in [32, 33, 34]. More-
over, it was shown in [32] that for vertical-walled containers with constant depth,
the question about high spots is equivalent to the hot spots conjecture formulated by
Rauch. (See [8] for a recent review.)

1.4. Main results. Modeling irrotational water waves using variational princi-
ples has been investigated recently in [11]. There are mainly two variational principles:
the Hamiltonian of Petrov—Zakharov [49, 69] and the Lagrangian of Luke [66, 40, 67].
In this paper, we derive a variational principle similar to Luke, in the sense that it is
of free boundary type [14, pp 208]. Let H be the direct sum of Sobolev spaces defined
by

H:{(@,g)eﬂl(p)xﬂl(f): /fcbdA:():/fgdA}.

Define the Dirichlet energy of ® € H'(D) and the free surface energy of & € H'(F)
by

D[®] :%/D|v<1>|2dv and  S[¢] = %/}_(524—%|V}'§|2> dA,

respectively. Our main result is the following theorem giving a variational character-
ization of the fundamental eigenvalue of (3).

THEOREM 1.1. There exists a minimizer (®1,£1) to the following minimization
problem:

(6) (@}gfeH D[®] 4 S[¢]  subject to (P,&)p2F) = 1.

Moreover, (®1,£1) is an eigenfunction of (3) in the weak sense with corresponding
eigenvalue wy = D[®1] + S[&1].

We also prove a Rayleigh—Ritz generalization of Theorem 1.1 for higher eigen-
values; see Theorem 4.3. An interesting feature of both variational characterizations
are the constraints involving the L? inner product on the free surface F, requiring
the sloshing mode and the free surface height to have unit inner product and be
orthogonal to lower modes; see Lemma 3.1.
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Remark 1.2. Tt is not difficult to show that if (¢(z,y, z,t),&(x,y,t)) satisfies the
time-dependent linear sloshing problem (43), then the quantity E(t) = D[¢(t)] +
S[n(t)] is conserved.

In Theorem 4.2, we prove a domain monotonicity result, analogous to a result
in [46], for the fundamental eigenvalue of (3). In subsection 4.1, we describe the
variational formulation for the sloshing problem (3) of Kopachevsky and Krein [29]
and compare to the present work.

In Corollary 5.1, we establish that in the limit of zero surface tension, (Bo = o0),
the variational principle in Theorem 1.1 reduces to the mixed Steklov—Neumann vari-
ational principle (5). In Theorem 5.2, we give the first-order perturbation formula for
a simple eigenvalue satisfying (3) in the limit where the Bond number is large. Fi-
nally, we illustrate Theorem 5.2 with a cylindrical container, where the exact solution
is known.

1.5. Outline. This paper is structured as follows. We begin by discussing the
contact angle and its role in contact line boundary condition (2e) in section 2. In
section 3, we prove preparatory results for Theorem 1.1. We prove Theorem 1.1
in section 4 and provide a Rayleigh—Ritz generalization of Theorem 1.1 for higher
eigenvalues. Section 5 describes the asymptotic behavior of the eigenvalue w in the
limit where Bo is large. We conclude in section 6 with a discussion. In Appendix A,
we give a physical derivation of the sloshing problem with surface tension, (3).

2. Contact angle and its relation with contact line boundary condition.
It can be seen in Appendix A that including surface tension effects on the free surface
Fr introduces additional terms involving second derivatives of 1 onto the dynamic
boundary condition (2d) on Fp. It is thus deemed necessary to impose a boundary
condition on OFr so that the sloshing problem (3) is well-posed. Such a boundary
condition, commonly referred to as the contact-line boundary condition, controls the
free surface height at the contact point, i.e., the point at which the contact line
intersects the container’s wall [24].

The contact angle, defined in subsection 1.1, plays an important role in describing
the contact line behavior. As first described by Young in his celebrated essay [68],
the static contact angle 05 (also called Young’s angle) is characterized by the follow-
ing equation Trg cos0s = Tsg — Tsr, where Trg, Tsq, Tst represents the liquid-gas,
solid-gas, and solid-liquid surface tension,respectively. Once the contact line is in
motion, one should expect the contact angle to be different from 6,; such a contact
angle is then called the dynamic contact angle 4. Accordingly, the static contact
angle should remain unchanged in static conditions; however, experimental evidence
[16, 13, 12] demonstrates that this is false in general. In fact, the static contact angle
lies between a range 0r < 05 < 04, where 0 and 64 are the so-called receding and
advancing contact angle, respectively. Such behavior is known as the contact angle
hysteresis, and surface roughness or heterogeneity of the container wall seem to be
the reason behind this.

It is therefore extremely difficult to derive boundary conditions that takes into
account both the contact angle hysteresis and the dynamic behavior of the contact
line. We list three contact-line boundary conditions proposed in the study of capillary-
gravity waves, each of which works under different assumptions. (See [51] for a recent
review.)

1. Free-end edge constraint (Neumann-type), which has the form dazn = 0 on
OFr, where 1 is the normal to the solid boundary drawn into the fluid. This
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is a standard approach in studying capillary-gravity waves. This occurs if one
assumes that the contact line can freely slip across the container’s wall and
04 ~ 5. Reynolds and Satterlee consider such a special case in [52].

2. Pinned-end edge constraint (Dirichlet-type), which has the form 7; = 0 on
OFr. This corresponds to fixing the contact line at the contact point (hence
the word pinned) and assuming the dynamic contact angle 84 lies within the
interval (0g,04). This was first suggested by Benjamin and Scott [7] and
investigated in [21, 22, 6, 23]; however, these are all restricted to flat static
interface or 6 = m/2. The case of curved static interface or 6, # m/2 was
recently investigated by [55]. It is worth mentioning that while this boundary
condition makes the theoretical analysis much more difficult but still possible,
it is not compatible with the kinematic condition at the container’s wall [56].

3. Wetting boundary condition (Robin-type), which has the form n; = A\0an
on OFp, where A is some constant measuring the ratio of the contact line
velocity to the change in contact angle. Observe that this model includes, as
limiting cases, both the free-end (A = oo) and the pinned-end (A = 0) edge
conditions. This was first proposed by Hocking [24, 25] and investigated by
Miles [42, 43, 44, 45] and Shen and Yeh [57]. The assumptions needed here
are that the contact angle hysteresis 84 — 0 is negligibly small, 5 = 7/2,
and Ay is an linear function of the contact line velocity.

In this paper, we assume that the static contact angle is 5 = m/2 and the contact
angle hysteresis is negligibly small; this is physically achieved by a container with
smooth walls and a fluid that is free of contamination. It can then be shown [56] that
the contact angle remains unchanged, i.e., 5 = m/2. Assuming that the contact line
slips freely, we can write down the boundary condition (2e)

0 =cos(0g) = —ip - hr, on 0Fr.

Another consequence of this assumption is that the static meniscus F is flat
everywhere. Assuming constant surface tension Ty = T, its shape, which we denote
by S(Z,9), is governed by the Young-Laplace equation [19, 9]:

(7) pgS =TV -ir.

Since fig = figr on OF and 05 = 7/2, the contact line boundary condition becomes
0aS = 0 on OF. Next, assuming SZ. + Sgg < 1 (small slope approximation), we
can linearize the Young—Laplace equation; upon nondimensionalizing the system, we
obtain the dimensionless linearized Young—Laplace equation

(8a) Szz + Syy = Ars = (Bo)s in F,
(8b) Oas =0 on OF.
The trivial solution s(x,y) = 0 exists for problem (8), but since Bo is assumed to be

positive, an energy argument shows that there is no nontrivial solution.

3. Preliminary results. In this section we collect a range of auxiliary results
that are required in the proof of Theorems 1.1 and 4.3.

3.1. Properties of solutions to (3).

LEMMA 3.1. Suppose (w, ®,&), (w;, ®;,&;), (wk, P, ) are weak solutions of (3).
(a) Ifw#0, then (@, 1)r2(7) = 0= (£, 1) 12(5).
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(b) We have the identities
(9&) /]:((I)j)zq)k dA = /}_q)j(q)k)z dA,
(90) [ @areigan= [ garean

(¢) If |wj| # |wk|, the following orthogonality condition holds:

(10) (5,8 2(F) = 0= (&, Pr) L2 (7).

Proof. Part (a) is obtained by simply integrating (3) over respective domains
and applying divergence theorem. Part (b) is an easy consequence of the divergence
theorem. We now prove part (c¢) using part (b). First, substituting (3c) for both
®;, @), into (9a) yields

o.)j/ §j®de:/(q>j)zq>de:/ @j(@k)ZdAZwk/ q)jfde.
F F F F

Similarly, substituting (3d) for both &;, & into (9b) yields
1
/ (—w; @ + &)Ek dA = / (B—Afﬁj) &k dA
F F \ Do

1
= | =A A
6 (oo ) d
Z/ij(—wkq’k—kﬁk)dfl.
f
Rearranging these equations gives
(11&) wj/ qu)de—wk/ (I)jfdeZO,
F F
(11b) wj/ @jfde—wk/ qu)deZO,
F F

which can be written as a linear system

wi _ (0 & PR em) (P, k) L2
4 (Wk> B (0> o where A= {(%,&)p(r) —(&> Pr)r2(F)]

A nontrivial solution exists for the linear system if and only if det(A) = 0, i.e.,

(®,86) 720 — (&5 Pr)Te(r) = 0 = (@5, &) r2(F) = £, k) L2(7)-
But using (11a) and |w;| # |wk|, we obtain (10). 0
LEMMA 3.2. Suppose (®,&,w) is a weak solution of (3). We have the following
expression for w:
_pIVRR AV [, (€4 £IVsEP) dA _ Dlo)+ S
B 2 [ ®EdA - [F®EdA T

(12)

In particular,

(13) D[] = 5[6] = 5(®,8) 20,
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Proof. First, integrating both (3b), (3e) against ®,£ over B,dF, respectively,
gives

/ 0aPPdA =0 and / 0a&€ds = 0.
B oF

Next, integrating (3a) against ® over D and applying the divergence theorem gives

oz/(Acb)cbdvz aﬁ<1><1>dA—/ |V<D|2dV:/ <I>Z<I>dA—/ |V®|?dV.
D D F D

BUF

Integrating (3c) against ® over F and using the equation above gives

(14) w/ <I>§dA:/ <I>Z<I>dA:/ Vo2 av.
F F D

Next, integrating (3d) against & over F and applying the divergence theorem gives

_ 2 _i _ 2 i 2
(15) w/f@&dA—/fg dA BO/f(A;g)gdA_/fg dA—I—BO/}_|V}'f| dA.

The result follows from summing (14), (15) and rearranging terms. O

3.2. Direct method from the calculus of variations. This subsection es-
tablishes results for the functional in (6) so that we may apply the direct method
from the calculus of variations [15, 17] to prove Theorem 1.1. We begin by remind-
ing the reader that D C R? is assumed to be a bounded Lipschitz domain, and
the Sobolev space H'(D) admits a natural inner product, given by (v,w) 1 (p) =
(v,w)2(py + (Vu, Vw) 2(py for any v,w € H'(D) with induced norm ||1;H%11(D) =
HU||2L2(D) + ||VU||2L2(D). For any ® € H'(D) and ¢ € H'(F), we denote by [®]F, [£]F
the average value (mean) of ®,¢ over F, respectively. That is,

1 1
[@]f—m/]ﬁcm and [s]f—m/]rgcm,

where |F| denotes the two-dimensional Lebesgue measure of F; here [®] £ is under-
stood in the sense of trace [17, Chapter 5.5]. The first result shows that the space of
functions in Theorem 1.1 is a Hilbert space.

LEMMA 3.3. The space of functions
H= {(@,5) € H (D) x H(F): / PdA=0= / fdA}
F F

is a Hilbert space with its induced norm ||(®,&)||3 = H<I>H§{1(D) + ||€||%11(}.).

Proof. Define the following function spaces:
XD:{q)eHl(D):/(DdA:O} and Xf:{ﬁeHl(]:):/fdA:O}.
F F

We first show that Xp, Xr are closed subspaces of H'(D), H'(F), respectively. It
is clear that both Xp, X+ are subspaces. Consider any ® € Xp, the closure of Xp.
There exists a sequence (®;) € Xp such that ®; — ® in H'(D). Using the continuity

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/14/17 to 155.101.241.52. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1004 TAN, HOHENEGGER, AND OSTING

of the trace operator I'p: H'(D) — L2(0D) [17],

[waa- [ aa4 < [0 sjaas e - a0
F F F
< |FI"2|@ = @l 2 (0m) = |FI"?|Tp(® — ;)| r20m)

< CF|F|1/2H(I) — @jHHl(D) — 0 as ] — OQ.

This shows that Xp is closed in H!(D) since

0:/<I>jdA—>/<I>dA.
F F

A similar argument using only the Cauchy—Schwarz inequality shows that X r is closed
in H(F). Finally, since the closed subspace of a Hilbert space is also a Hilbert space,
the direct sum of Xp and X r, which is H, is a Hilbert space, with its inner product de-
fined by (vi,v2)m = (1, P2)xp +(§1,&2) x> With vy = (1,81),v2 = (P2,&2) € H. O

To apply the direct method, one needs to verify that D[®]+ S[¢] satisfy coercivity
and sequentially weakly lower-semicontinuity over H; the latter follows since both
DI[®], S[€] possess some convexity property, which we will make precise in Lemma 3.5.
Coercivity means that D[®] + S[¢] admits some lower growth condition in terms of
[|(®,8)]74- The structure of H clearly suggests inequality of the Wirtinger type to
estimate D[®] 4+ S[¢]. As ® has zero mean over F C 0D instead of D, a variant
of the classical Poincaré—Wirtinger inequality, stated below, is applicable in showing
coercivity, as we shall see in Lemma 3.5.

THEOREM 3.4 (see [4, Example 3.6]). Consider a bounded Lipschitz domain
QC R'n>1. Let Tq: HY(Q) — L%*(0Q) be the trace operator. For any open
portion ¥ C 99, the following inequality holds for any v € H(Q):

|Q| 1/2
o= sl < (14t (1) ) (V17 G3) 19l

where |Q| and |X| are the n and (n — 1) Lebesgue measure of Q and X, respectively,
and Cr,, Cp positive constants that depends only on €.

LEMMA 3.5. The integral functional 7 (v) = D[®] + S[¢] is weakly lower semi-
continuous in H and satisfies the coercivity condition

F(v) > Ol forall v=(9,§) e H

for some constant C = C(Bo, D, F) > 0.

Proof. Observe that integrands of both D[®] and S[¢] are convex with respect
to V@ and V€&, respectively. It follows that they are weakly lower-semicontinuous
in HY(D), H'(F), respectively [53, Theorem 2.12]. Thus, for any (v;) = (®;,&;) —
(®,¢) =vin HY(D) x HY(F) we have

F(v) = D[®] + S[¢] < liminf D[®;] + lim inf S[¢;]
jeN jeN
< liminf [ D[®;] + S[¢;]| = lim inf #(v;).
< liminf | D[®;] + S[§;]| = liminf. 7 (v;)

The result follows since H is a subspace of H*(D) x H*(F).
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Since [®]r = 0, Theorem 3.4 yields
12]1%: (p) < C(D, PV L2p) = 2C(D, F)D[2].

On the other hand,

25[¢] = /f (52 + %|V}'§|2> dA = min{l, %} 11171 (7.

It follows that

1 2 RN 2 2
F(v) > m”q’ﬂm(@) +m1n{§, E} €12 (=) = C(Bo, D, F)|v[gg. O

Having established coercivity and sequentially weakly lower-semicontinuity, we
prove the final ingredient, which essentially says that the minimizing sequence will
“preserve” the integral constraint in the variational problem (6). The main tool in
the proof below is the compactness of the trace operator I'p: H(D) — L?(9D) [48,
p. 103).

LEMMA 3.6. The function (®,£) — [ ®EdA is weakly continuous in H'(D) x
HY(F).

Proof. Consider any (nonrenumbered) subsequence of a weakly convergent se-
quence v; = (®;,&) — (9,£) = v in HY(D) x H(F). Equivalently, (®;) — @
in HY(D) and (§;) — ¢ in H'(F). First, the Rellich-Kondrachov theorem implies
that there exists a subsubsequence (¢;,) € H'(F) such that £;, — ¢ strongly in
L?(F). Recall that, since I'p is a compact linear operator, it maps weakly convergent
sequences into strongly convergent sequences. Thus, I'p(®;) — I'p(®) strongly in
L?(dD). For this subsubsequence (¥, ,&;, ), the Cauchy-Schwarz inequality gives

‘/ v i~ | ¢>€dA‘ < [ 105, - aligsaa+ [ |elg, - da
F F F F
<@g, — @l 5l 22 7) + 1@l 2 ) €5 — Ell 27y
< |Tp(®j,) — (@)l 200 1€k | 2 ()
Pl 2 7)€ — EllL2(F)

— 0as k — o0,

where we used the fact that ||, || .2(7) is bounded since (&;, ) is a convergent sequence
in L?(F). This shows that

/<I>jk§jde—>/<I>§dA as k — 00.
F F

Since this is true for any subsequence of (®;,§;), the result follows. d

4. Proof of Theorem 1.1, a Rayleigh—Ritz generalization, and other
results. We are now ready to prove Theorem 1.1. An immediate consequence is the
domain monotonicity property for the fundamental eigenvalue of (3). We also prove
a variational characterization of the higher eigenvalues of (3).

Proof of Theorem 1.1. We begin by establishing the existence of minimizers of
(6), using the direct method from the calculus of variations; see [53, Theorem 2.36].
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Let M = {(®,§) € H: (®,&)12(r) = 1}. Choose a minimizing sequence v; =
(®;,&) € M such that

D)+ 5l — inf (DI2] +S[e]) = .

Since bounded sets in reflexive Banach spaces are sequentially weakly relatively com-
pact, Lemmas 3.3 and 3.5 imply the existence of a weakly convergent subsequence
vj, — v1 = (®1,&) in H. Lemma 3.6 asserts that v; satisfies the constraint
(@*,6%)2(F) = 1 so that v; € M, while Lemma 3.5 gives

wp < D[‘bl] + S[fl] < llelle%wnf (D[‘bjk] + S[fjk]) = wi.

Hence, D[®4] 4+ S[&1] = w1 and (P, &) is a minimizer of (6).
Let (®1,&1) be a minimizer to the problem (6). The method of Lagrange multi-
pliers leads us to consider the functional J(®,¢) defined by

1
/|V<I>|2dV+/ (£2+—|Vf§|2) dA—)\l/ <I>§dA—~yl/ @dA—yg/gdA
D F Bo F F F

with Lagrange multipliers A1, v1,72 € R. For a minimizer (®1, £;), the first variation of
J(®,€) in the direction of (f, g) € H*(D)x H'(F) must be zero. A direct computation
gives the Euler-Lagrange equations

(16a) AP, =0 in D,

(16b) 8ﬁ(I)1 =0 on B,

(16C) ((I)l)z = >\l§l +m on ]:a
1

(16(1) 61 — %A}—gl = )\1'1)1 + Y2 on ]:,

(16e) 0aé1 =0 on OF.

Note that integrating (16c), (16d) over F, using [, ®1dA = 0 = [, & dA and the
divergence theorem gives

’}/1/ dA:/((bl)sz—Alf 61 dAZ/ A‘bl dV—/8ﬁ<I>1 dAZO,
F F F D B
1 1
72/ dA:/gldA——/AffldA—/\lf<I>1dA:—— Oaé1ds = 0.
F F Bo Jx F Bo Jor

Since [ dA # 0, we must have 71 = 72 = 0 and (16¢), (16d) reduce to

(17a) (@1): =M&1 on F,
1
(17b) 61 - %AI& = /\1'131 on F.

Now, integrating (17a), (17b) against ®1, &1, respectively, over F and using

(@1,&1)L2(F) = 1
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yields

M :Alf 16, dA=/(<I>1)z<I>1dA
F F

:/(A<I>1)<I>1dV—/8ﬁ<I>1CI>1dA+/ |V, |2 dV
D B D

=/ VO, 2 dV
D

M= /f ey dA = /f §aA— o /f (Ar€)6) dA

1 1
_ 2 o R i 2
—/}_fldA Bo /(9}_8n51d8+B0/]:|V]:51| dA
1
2 2
= — A.

Finally, summing these two equations gives

w=g{ [ivmpavs [ (&4 givsar) aa} = o+ sial =

COROLLARY 4.1. The variational formulation (6) is equivalent to

D[®] + S[¢]

18 in e Bl S
(18) (@.)en\{0} (P, &) 127

Proof. Write a = (®,§) 12(F), which, without loss of generality, we may assume to

be positive. Set (®,&) = (®/+/a,&/+/a), where (®,€) # (0,0). Then <<i>,§:>Lz(]:) =1
and

we POIESE e pgssa, 0
@oemo}  a (@.éen
(2,8) 27 =1

In the following theorem, we prove a domain monotonicity result about the funda-
mental eigenvalue of (3), stating that if two containers have an identical free surface
and both container walls are vertical at the free surface, then the larger container
has a higher fundamental sloshing frequency. A similar result for the mixed Steklov—
Neumann problem is given in [46].

_ THEOREM 4.2. Suppose we have two bounded Lipschitz domains D,D such that
D C D and the container’s wall over which the contact line moves is vertical for both
D, D. Suppose D = FUB,0D = FUDB, and B, B are such that B envelops B. Then

wP < WP, where w1 (-) is the first nontrivial (positive) eigenvalue of (3).

Proof. Denote by Dq[®] the Dirichlet energy of ® € H'(2), where the domain
of integration is Q. Since D C D, any function ® € H'(D) satisfies Dj[®] < Dp[®].

Let (®,¢),(®P,€) be minimizers of the variational problem (6) over domains D, D,
respectively, with corresponding minimum w?, wP. Tt follows that

WP = D8] + S[€] < Dpl®] + S[e] < Dpl®] + 5[] = wP. 0
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The variational formulation (6) in Theorem 1.1 admits a Rayleigh-Ritz general-
ization for higher eigenvalues of (3).

THEOREM 4.3. For any fized integer m > 1, let (9;,&;), j=1,...,m —1 be the
first m — 1 eigenfunctions of (3). Define

Hy = {(2,6) € H: (2,8)1505) = 0= (€ ®)1or), j=1,..om—1}.
Consider the following minimization problem:

(19) (@751)neme D[®] + S[¢] subject to (®,&)2(F) = 1.

There exists a minimizer (9, &) to the problem (19). Moreover, (®p,,&m) is an
eigenfunction of (3) in the weak sense with corresponding eigenvalue wy, = D[®,,] +
S[&m]-

Proof. Observe that a similar argument in Lemma 3.3 shows that H,, is a Hilbert
space. Moreover, Lemmas 3.5 and 3.6 hold in H,,, since it is a subspace of H. Con-
sequently, there exists a minimizer (®,,,&y,) to the minimization problem (19). Let
(®sn, &m) be a minimizer to problem (19). The method of Lagrange multipliers leads
us to consider the following functional J(®, &) defined by

1
/|v<1>|2dv+/ (£2+B—|Vf€|2)dA—)\m/<I>§dA—71/<I>dA
D F o F F

m—1 m—1
—w/ffdA— J:Zl (aj/f%dA) - J:Zl <ﬁj/f£<1>jdA)

with Lagrange multipliers A, 71,72, (), (8;) € R. For a minimizer (®,,&m), the
first variation of J(®, &) in the direction of (f,g) € H'(D) x H'(F) must be zero. A
direct computation gives the Euler—Lagrange equations

(20a) Ad,, =0 in D,
(20b) 9a®m =0 on B,
(20c) (Pm)z = Amém + 11 + mzl a;&; on F,
j=1
(20d) Em — L Apbn = oo,
m = o lFbm = An®m 492 + ; B;®;  onF,
(20e) Oabm =0 on OF.

A similar argument in the proof of Theorem 1.1 shows that v; = 2 = 0. Observe
that by integrating (20c), (20d) against @y, &k, respectively, for some k =1,...,m—1
and using Lemma 3.1, we obtain

m—1
/ ((I)m)zq)k dA = )\m/ fmq)k dA + Z Ozj/ qu)k dA = Oék/ §k¢k dA,
F F = F F
which implies by Lemma 3.1,

Ozk/ fkq)deZ/(q)m)z‘bde:/ @m(Qk)sz:wk/ q)mfdeZO
F F F F
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Next, using Lemma 3.1, we have

m—1

1
/f i dA — o /f (Artn)éedd = [ Buudd+ ; 8; /f B¢, dA

= ﬂk/f‘I’k&c dA,

which implies by Lemma 3.1

1

B /f By dA — /f i dA — o /f (Arém)én dA
1

- /f i dA — o /f Em(Dry)dA

:/}_ﬁmfde—/f(fm(fk—wkCDk)) dA
:wk/ En®r dA = 0.
F

Since ff D& dA # 0 for every k=1,...,m— 1, we must have o, = B = 0 for every
k=1,...,m—1and (20c), (20d) reduce to

(21&) ((I)m)z = Amém on F,
(21b) Em — BLOA]:fm =A\n®,, onF.

Finally, a similar argument in the proof of Theorem 1.1 shows that

1 1
w5 { [90nPav+ [ (&4 golVrénl) da} = Dlos ]+ Sle] = D

An analogous statement as in Corollary 4.1 holds for the higher modes.

4.1. Comparison to the variational formulation of the sloshing problem
with surface tension of Kopachevsky and Krein. In [29, pp. 207], a variational
formulation for the eigenvalues (sloshing frequencies) of the sloshing problem with
surface tension is given. It is worth noting that the authors work in a more general
setting.

1. The static contact angle satisfies 65 # 7/2, which means that F is a curved
surface. Upon linearization, this introduces additional coupled terms in the
kinematic boundary condition on F. To compensate for this, a curvilinear
coordinate system is introduced.

2. The dynamic contact angle 6, is shown to remain unchanged, and the contact-
line boundary condition on dF is of Robin-type, having the form dgn = —xn,
where x is a dimensionless constant depending on 65 and curvature on O.F.

In the present work, for simplicity, we have assumed a contact angle of 65, = 7/2
and used Cartesian coordinates. Moreover, we assume Y = 0 so that the Neumann
boundary condition dan = 0 on F is recovered. Below, we discuss the results in [29]
in this setting.

While seeking time-harmonic solutions for the sloshing problem with surface
tension, the authors use the same ansatz as ours for the free surface height 7 but
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a slightly different one for the velocity potential ®. They choose gZ;(a:,y,z,t) =
wp(x,y, z) cos(wt). The sloshing problem with surface tension takes the form

(22a) Ap=0 in D,

(22b) Jap =0 on B3,

(22¢) p, =& on F,
L 2

(22d) f—B—OAff—w @ on F,

(22¢) 0a€=0 on OF.

One can show by integrating (22a) against ¢ and using divergence theorem that

(23) [ wda= [ ppaa= [ [woPav —2pil,
F F D
The system (22) is studied as follows. Define the following spaces of functions
LLi(F) = {g € L*(F): / EdA = 0} :
f
HY*(F) = {g € HY2(F): / £dA = o} :
f
H;l/z(]-") = (H;/Z(]-')) , the dual space of H;_-/2(]-').

Define the Neumann-to-Dirichlet operator C': H;l/Q (F) — H}/Z(}') such that £ —

¢|7, where p € H'(D) is the unique solution of the Neumann problem

Ap=0 inD,
Oap =0 on B,
p, =& onF.

Projecting (22d) onto the space L%(F) and viewing the LHS of the projected equation
as an operator B acting on L%(F) together with (22e), we obtain the generalized
eigenvalue problem

1
(24) §—golre=Be= WwiC¢, €€ L%(F),
where C is restricted to L%(F). Physically, the operators C' and B correspond to

the kinetic energy and potential energy operator, respectively. It is proved that the
fundamental eigenvalue w? in (24) has the variational characterization,

(25a) wi= inf Slel

ceLs(F) Dly]

peH" (D)
(25b) subject to Ap =0 in D,
(25c¢) Oap =0 on B,
(25d) v, =& onlF,
(25¢) / pdA = 0.

f
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Comparing the variational formulations (25) and (6), we make the following obser-
vations. Both variational formulations share the constraint that the velocity potential
and surface height have zero mean over F. In (6), (®,¢) need only satisfy the single
integral constraint (®,£),2(7) = 1. However, in (25) each ¢ must satisfy the con-
straint that C¢ = ¢| £, i.e., they are solutions of the Laplace problem with Neumann
data on F equal to &.

We claim that (25) follows from (6). To see this, we use the equivalent formulation
of (6) from Corollary 4.1. Suppose (P1,&1) is a minimizer of (18) with

D[®4] + S[&1]
{®1,81)L2(7)] =0

Writing wi¢1 = ®;1 and using the fact that (p1,&;) satisfies (23), we have

w1 =

S[E S
Dlwipd] + Slea] _ i (D[(pl] + %) Dlgil + %
w1 = = = Ww i S
! (w11, &) 2m)l wi|(p1,&1) L2(F)| ! 2D]p1]
Rearranging yields w? = g{ill]]. After specifying &1, we can obtain ¢; by solving the

Neumann problem (25b), (25¢), (25d). It follows that (¢1,&1) € H minimizes (25).
However, it is not obvious how to deduce the unconstrained formulation (6) directly
from the constrained formulation (25).

5. Asymptotics. In this section, we consider the asymptotic limit where the
Bond number, Bo, is large for the sloshing problem with surface tension (3). We first
show that in the limit Bo — oo, i.e., zero surface tension, we recover the variational
characterization for the mixed Steklov—Neumann problem or sloshing problem (4), as
derived by Troesch [61].

COROLLARY 5.1. Suppose (®1,&1) is a minimizer of the variational problem (6)
with Bo = 0o. Then (/w1 ®1 with wy = D[®1]+ S[&1] is a minimizer of the variational
principle for the mized Steklov—Neumann eigenvalue problem (5).

Proof. From Theorem 1.1, we know that (®1,&;) satisfies the constraint
(@1,&1)L2(F) = 1
and the following equation in the weak sense
(26) & =wi® onF

with w; = D[®;] + S[§1] > 0. Integrating (26) against &; over F, together with the
constraint yields S[¢1] = w1/2; this also implies D[®1] = wy /2. Defining ® = /w1 Py,
integrating (26) against ®; over F, and using the constraint again yields

1= w1<<1>1, (I>1>L2(]:) = <‘i>,‘i)>L2(]:)

and

/ IVO2dV = w, / V@12 dV = wy (2D[®1]) = w?.
D D d
We now investigate the asymptotic behavior of the eigenvalues of (3) in the limit
where the Bond number is large. Let ¢ = Bo~! and w(e) be any eigenvalue satisfying
(3) for a fixed e. The previous result shows that w(0) is an eigenvalue to the mixed
Steklov—Neumann problem (4). The following result gives the first perturbation for a

simple eigenvalue, w(e) for e < 1, i.e., Bo> 1.
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THEOREM 5.2. Assume Dpr(z) = fig(x) for all z € OF. If w° = w(0) is a simple
eigenvalue, then the derivative of w = w(e), satisfying (3), with respect to € is given

by
_w ||V}'CI’OHL2 (F)
7 | sy )

where (w9, ®°) satisfy the mized Steklov—Neumann problem (4).

dw
de

Proof. Consider the expansion of (w,®,¢) in the form w = w® + ew® + o(e),
O =00+ ed! + 0(e), £ = €0 + &€t + o(e). Substituting these expansions into (3) and
collecting O(1) terms yields

(27a) AP =0 in D,
(27b) 022 =0 on B,
(27¢) (®°), = " on F,
(27d) €0 =o'’ on F,
(27e) a8 =0 on OF,

(28a) AdD! =0 in D,
(28b) 0a®' =0 on B,
(28¢) (@), = Wit 4wt on F,
(28d) ' — A0 = w0t + wlod on F,
(28e) dal' =0 on OF.

Multiplying (28c), (28d) against ®°, £9, respectively, and integrating over F yields
(29) / (@), dA = WO/ 10044 +w1/ €290 A,
F F F
(30) / (5150 — (A;go)go) dA = w° / Ple0dA + ! / POV dA.
F F F
One can easily deduce using (27a), (27b), (28a), (28b) that

/(<I>1)Z<I>0dA:/ o1 (%), dA.
F F
Thus, using (27d), (27¢), (30), (27e), and (27d), (29) reduces to

/§OCI>OdA / ). 0 dA — w/gcbodA / L(@%), dA — /ggOdA
=w /f@ godA—/Fg godA:—/f(Afgo)godA—w /f@ogodA
— [ repaa-ut [ v an
F F

which implies

oL ([ VAP AAN W ([ (VRO dA .
2\ [ 00 dA 2 \ [7|00]2dA
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Example: A cylindrical container. We illustrate Theorem 5.2 with a cylin-
drical container, where the exact solution is well-known; see, e.g., [27, pp. 764] or [52,
pp. 415]. Consider a solid cylinder with radius a > 0. Assume that the free surface F
and the flat bottom lies at the plane {z = 0} and {z = —h}, respectively, with h > 0.
Multiplying (3d) by w and substituting (3c) yields the simplified system

(31a) AP =0 in D,

(31Db) 0a® =0 on B,
1

(31¢) @, - = = [(@z)m (D), on F.

Using separation of variables, one can compute the explicit solution of (31) in cylindri-
cal coordinates (r, 6, z) with (upon nondimensionalizing the length with radius a > 0)

0<r<1, 0<6<2m, —ESzSO.
a

LEMMA 5.3. The solution of (31) has the form

(32a)

0o oo cosh ( "
@(7’,9,2’) = Z Z Jn (an’f’)

Ay, €0S(nO) + by, sin(nh)

Znm(az + h))
[

n=0m=1 cosh (znmh)
a
Znmh 1
2b) Wy, = zZnm tanh | =2 ) |14 —27
(32) = st (220 ) 1 o2, ]

where J,, () is the Bessel function of the first kind with order n and zpy, is the mth
root of J!(-). In the case where Bo = oo, we recover the eigenvalues Apy, for the
mized Steklov—-Neumann problem (4)

nmh
(33) A2 = 2., tanh <Z - ) .

For n =0, the eigenvalues wom, Aom are simple.

For n = 0, it is not difficult to verify that the first-order term in the expansion of
(32D),

wWom (€) = Wom (0) + ewg,, (€) + 0(g) = Xom + € ()\()Tngm> + o(e),

agrees with Theorem 5.2,

Xom IV F@om |7
Wom = Aom -+ & L# o(e).
2 ||q>0m||L2(]_.)

6. Discussion. We have considered the small-amplitude fluid sloshing problem
for an incompressible, inviscid, irrotational fluid in a container, including effects due
to surface tension on the free surface. As opposed to the zero surface tension case,
where the problem reduces to a partial differential equation for the velocity potential,
we obtain a coupled system for the velocity potential and the free surface displacement
(3). In section 4, we derived a new variational formulation of the coupled problem
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and establish the existence of solutions using the direct method from the calculus of
variations. In the limit of zero surface tension, we recover the variational formulation
of the classical mixed Steklov—Neumann eigenvalue problem (4), as derived by Troesch,
and obtain the first-order perturbation formula for a simple eigenvalue.

As mentioned in subsection 1.3, the location of high spots for the sloshing problem
(4) has been investigated in two and three dimensions. Some results for specific
container geometries are summarized as follows.

1. Consider a trough W = D x (0,1) C R3 of length [ > 0 with uniform cross
section D. If the wetted boundary, B, is the graph of a negative C2-function
given on F and B intersects F at a nonzero angle, then the trace ®1(z,y,0)
attains its extrema only on the boundary of the rectangular free surface of
the trough OF [33]. A similar result for the two-dimensional cross section is
given in [32].

2. Consider a bounded Lipschitz domain D which is axisymmetric and convex,
such that D C F x {z € (—00,0)}. The boundary 9D consists of the free
surface F which is a disc of radius ¢ > 0 and the wetted boundary B. If
®q(z,y,2) is odd in the z-variable, then the free surface height attains its
extrema at (+a,0,0) [34].

3. Consider the ice fishing problem, where D = R? = {(z,y) € R% 2 € (—0,0)}
with free surface F = {z%+y? < b?, z = 0} and wetted boundary B = OR3 \ F.
It was shown in [32] that ®; attains its extrema on the interior of F.

Motivated by the ice fishing problem, in [35], axisymmetric, bulbous (D ¢ F x
{z € (—0,0)}) containers are studied using finite element methods. It is observed
that such domains have fundamental eigenfunctions with high spots which are on the
interior of F. However, for this container geometry, fgr # fig on OF as is assumed in
the physical derivation of the contact line boundary condition; see section 2. Because
Bo — oo is a singular limit, including the physical effects due to surface tension
could result in qualitative changes in the sloshing modes near 0F, including the
location of high spots. These questions will be addressed in forthcoming work using
computational methods by investigating eigenfunctions near F for large but finite
Bo.

In [61], the variational formulation (5) is used to find the shape of the axisymmet-
ric container with fixed volume that maximizes the fundamental eigenvalue. In this
work, it is assumed that (i) the container is very shallow and (ii) effects due to surface
tension are neglected. It would be of interest to extend this work by addressing these
two assumptions.

In [62] it is shown that there exist vessel geometries, referred to as isochronous
containers, with the remarkable property that the fundamental sloshing frequency of
a fluid is independent of the level to which the container is filled. Such geometries are
shown to exist not only for the fundamental mode but for higher modes as well. In this
work, and recent papers which significantly extend this work [64, 63, 65], axisymmetric
isochronous containers are found by using the inverse method of solution. It would
be interesting to include the effect of surface tension in this work.

Appendix A. Physical derivation. A complete derivation of the nonlinear
water wave equations can be found in [37, 3, 27, 39]. We are concerned with an
irrotational flow of an incompressible, inviscid fluid with constant density, occupying
a bounded region D C R3 in a simply connected container with a rigid bottom 5.
Denote by (X, %) the fluid velocity field and Z = 7(Z,¢,) the displacement of the
disturbed fluid free surface from the plane z = 0.
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Irrotationality means  has zero curl, which gives existence of a velocity poten-
tial ¢(X,t) such that @ = V¢ = (¢z, ¢y, ¢z). This combined with incompressibility
condition shows that ¢ satisfies Laplace’s equation

(34) V-a=V-Vo=Ap=0 in Dr.
No penetration boundary condition is imposed on the wetted boundary B, so that
(35) -Ng=Vo-ng=0dap =0 on B.

The fluid free surface is an interface between gas and liquid. Such an interface requires
two boundary conditions: first, a kinematic boundary condition which requires the
normal fluid velocity of a fluid particle on the free surface to equal the normal velocity
of the free surface itself. This means that fluid particles on the free surface must

remain on the free surface. Defining an implicit form G(Xx,t) = Z—7(Z, g, t), it follows
that the material derivative of G is 0 at the free surface, i.e.,

(36) i +Ve-V(i—2 =0  onz=in(z7,1).

Second, a dynamic boundary condition balances the forces at the free surface. Due
to the effects of surface tension, there is a pressure jump across the free surface.
Assuming constant surface tension, 7', the normal stress balance equation has the
form

(37) pﬂuid(ia t) — Patm = TV . ﬁ]:T on z = ﬁ(ja Y, E)a

where fiz, is the outward unit normal to the free surface Z = 7j(%, 7, ). Equation (37)
can be written in terms of the velocity potential using Bernoulli’s principle, which is a
reduction of the Navier—Stokes equation for an inviscid fluid. For unsteady irrotational
flow, Bernoulli’s principle is

ui 1. ~
-V (pﬂ 4 Zlaf? +gz> :
p 2

uy

Substituting u = Vo, rearranging, and integrating with respect to time gives

7 ui 1 7 ~
s 4 2V + g2 = H(D),

(38) ¢i +

where H (%) is an arbitrary function of time only, which we may conveniently choose

to be patm/p- The consequence is that upon evaluating (38) at 2 = 7j(, 7, t) and using
(37) we are left with

- 1,_ -~ - T . B
(39) ¢f+§|v¢|2+gz:_;vn}—T Onz:n(xayat)

Writing the implicit form of the free surface G(X,%) = Z — 7j(Z, §, ) as before, its
outward unit normal is given by

VG —mX — 10y + Z

ﬁ]'-T: - )
VGl i+

(40)
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where X,¥,Z are the unit basis vectors in Cartesian coordinates. Computing V - i,
gives

—(Mzz + Tgg) — (Mzaz + TggM3) + 20aT5Tzg

(41) V- ﬁ]‘_T = 5 | ~2
(1+ 72 +73)3/2

The contact-line boundary condition,
(42) 0= ﬁB . ﬁ]:T on 8]-'T,

is derived in section 2. We then nondimensionalize the system of PDEs (34), (35),
(36), (39), (42) with dimensionless variables in (1), which results in the nonlinear
sloshing problem with surface tension (2).

We consider an equilibrium solution (¢g,70) = (¢,0) of (2), where ¢ is any con-
stant scalar function (which gives zero velocity field). Assuming the free surface
displacement 7 is a small perturbation of {z = 0}, we look for solutions of the form

O(z,y,2,t) = c+edla,y,2,t) and nl(z,y,t) = ei(z,y,1),

where £ > 0 is some small parameter and collect O(g) terms.

Next, we Taylor expand q@ and its derivatives around z = 0. This transforms the
boundary conditions, (2¢) and (2d), from Fr to F. Consequently, the time-dependent
linearized problem for (2) has the form

(433.) A(b = 0 in D7

(43b) Oap =0 on B,

(43c¢) = ¢ on f,
1

(43d) ¢t +n = B_O(nm + Nyy) on F,

(43¢) dan =0 on OF,

where ¢, n; denotes the partial derivative of ¢, n with respect to time t.

Finally, (3) is obtained by seeking time harmonic solutions (with angular fre-
quency w and phase shift 6) via the ansatz ¢(z,y, z,t) = ®(x,y, z) cos(wt + 6) and
Mz, y,t) = &(x,y) sin(wt + §), where ®(z,y,2) and £(z,y) are the sloshing velocity
potential and height, respectively.
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