MATH 6720
Final
Due Date: 05/03/2017 12pm

Instructions:

e There is a two hours time limit to complete the midterm. The time limit is enforced on the
honor system, do not spend the entire weekend thinking about the problems.

e Verbal or electronic collaborations are not allowed.
e Notes, books, electronic material are not allowed.

1. Conformal mappings

(a) Show that the transformation { = 1/z maps the line x = ¢; # 0 to a circle with center
along the real axis.

(b) A Mébius transformation maps the region between the non-concentric circles |z| = 1 and
|z —13/4] = (15/4)? onto an annulus py < |z| < 1. Find po only, i.e you don’t need to give
the transformation.

2. Green’s function
Find the Green’s function for the operator (L — A)u = §(z — &), A # 0, Lu = —u” on [0, 1] with
boundary conditions «’(0) = u(1) = 0.
HINT: sin(u) sin(v) = $[cos(u — v) — cos(u+v)] and cos(u) cos(v) = 3[cos(u — v) + cos(u +v)].

3. Asymptotic expansion of integrals
Find the leading order behavior and show that the relationship is asymptotic.
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4. Watson’s lemma
Show that the complete asymptotic expansion of
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HINT: The Gamma function satisfies I'(1/2) = /7 and I'(2)['(1 — 2) =

sinmz”



