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1. Introduction

For every integer n ≥ 1 consider the 2n-th order polynomial

(1.1) Pn(x) :=
n∑

j=0

(
n

j

)2

x2j(1− x)2(n−j), where x ∈ (0 , 1).

Kowalski and Rivoal (2005b) have proved that Pn attains its minimum at x = 1/2. That is,

(1.2) Pn(x) ≥ Pn(1/2) for all x ∈ (0 , 1).

Kowalski (2006) has applied this inequality, in turn, to present a novel proof of a slightly

weaker form of the celebrated theorem of Paley, Wiener, and Zygmund (1933) in the following

form: “Almost every” continuous function f : [0 , 1] → R is non-differentiable at almost

everywhere point x ∈ [0 , 1]. The first “almost everywhere” holds with respect to Wiener’s

measure on the space of continuous functions; the second with respect to Lebesgue’s measure

on [0 , 1].

The derivation of (1.2) by Kowalski and Rivoal (2005b) is involved, as it hinges on a

delicate analysis of Pn via its connections to hypergeometric functions 4F3 and 3F2. Thus,

Kowalski (2006) has asked if there are more elementary proofs of (1.2); see also Part (a)

of Problem 11155 of the May issue of The American Mathematical Monthly (Kowalski and

Rivoal, 2005a). The chief aim of this note is to answer this question in the affirmative. This is

done by once interpreting the polynomial Pn probabilistically, and once Fourier analytically.

As a by-product of our solution we obtain an elementary proof of Part (b) of Problem 11155

of Kowalski and Rivoal (2005a) as well.

Our solution hinges on first establishing the following formula, which can be found already

in Kowalski (2006).

Theorem 1.1. For all x ∈ (0 , 1),

(1.3) Pn(x) =
1

π

∫ π

0

(
1− 2x(1− x)(1− cos t)

)n
dt.
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Because x(1− x) is maximized at x = 1/2, Theorem 1.1 verifies (1.2). Furthermore, this

theorem readily implies that Pn(x+ 1
2
) =

∑n
j=0 qjx

2j, where

(1.4) qj =
4j

π

(
n

j

) ∫ π

0

(
1 + cos t

2

)n−j (
1− cos t

2

)j

dt.

Thus, if we expand Pn(x + 1
2
) in powers of x, then we find that the coefficient of xk is

nonzero (and positive) if and only if k is an even integer between zero and 2n. This gives

an elementary solution to Problem (b) of Kowalski and Rivoal (2005a). This problem was

solved originally in Kowalski and Rivoal (2005b) using more sophisticated ideas.

The forthcoming discussion assumes that the reader is conversant with elements of prob-

ability theory at an advanced undergraduate level (Stirzaker, 2003).

Acknowledgements. I would like to thank Emmanuel Kowalski for a number of enjoyable

discussions, and Chris Orum for gently pointing out a typographical error in a previous draft.

2. Proof of Theorem 1.1

For each x ∈ (0 , 1) let X1(x), . . . , Xn(x) denote n independent, identically distributed

random variables with common distribution

(2.1) P {Xj(x) 6= 0} = P {Xj(x) = 1} = x for all 1 ≤ j ≤ n.

Define Sn(x) := X1(x) + · · ·+Xn(x). Then, a basic fact from elementary probability is that

Sn(x) has the binomial distribution,

(2.2) P {Sn(x) = j} =

(
n

j

)
xj(1− x)n−j for all j = 0, . . . , n.

Define X ′
1(x), . . . , X

′
n(x) to be a sequence of independent random variables, all with the

same distribution as X1(x), but also independent of X1(x), . . . , Xn(x). Then we can interpret

Pn as follows:

(2.3) Pn(x) =
n∑

j=0

P {Sn(x) = S ′n(x) = j} = P {Sn(x)− S ′n(x) = 0} ,

where S ′n(x) := X ′
1(x) + · · ·+X ′

n(x). Define

(2.4) Dj(x) := Xj(x)−X ′
j(x).

A key feature of this interpretation is the fact that

(2.5) Sn(x)− S ′n(x) =
n∑

j=1

Dj(x)
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is the sum of n symmetrized random variables Dj(x), j = 1, . . . , n. “Symmetrization” is

meant in the sense of Lévy (1937). Namely, that the distribution of each Dj(x) is the same

as that of −Dj(x). Moreover, the said distribution is described as follows:

P
{
Xj(x)−X ′

j(x) = 0
}

= x2 + (1− x)2,

P
{
Xj(x)−X ′

j(x) = 1
}

= P
{
Xj(x)−X ′

j(x) = −1
}

= x(1− x).
(2.6)

If X is a random variable, then its characteristic function is the complex-valued function

ψ(t) := E[eitX ], as t ranges over all real numbers. A basic fact from Fourier analysis is that

if X is integer-valued, then

(2.7) P{X = 0} =
1

2π

∫ π

−π

ψ(t) dt.

We can verify this by computing the integral directly:

(2.8)

∫ π

−π

ψ(t) dt =

∫ π

−π

E
[
eitX

]
dt = E

[∫ π

−π

eitX dt

]
= 2πE

[
1{X=0}

]
,

where the random variable 1{X=0} takes the values one and zero, depending on whether

X = 0 or X = 1, respectively.1 Because E[1{X=0}] = P{X = 0}, this proves (2.7).

Equations (2.7), (2.3), and (2.5) together yield the following:

Pn(x) =
1

2π

∫ π

−π

E
[
eit(Sn(x)−S′

n(x))
]
dt

=
1

2π

∫ π

−π

E

[
n∏

j=1

eitDj(x)

]
dt.

(2.9)

The random variables D1(x), . . . , Dn(x) are independent; and so are their complex expo-

nentials. Because the expectation of the product of independent random variables is the

product of the respective expectations, and since D1(x), . . . , Dn(x) have the same character-

istic function, it follows that

Pn(x) =
1

2π

∫ π

−π

(
E

[
eitD1(x)

])n
dt

=
1

2π

∫ π

−π

(
x2 + (1− x)2 + 2x(1− x) cos t

)n
dt.

(2.10)

A direct computation concludes the proof. �

1The interchange of expectation and the integral is justified by Fubini’s theorem, because |ψ(t)| ≤ 1 for all
values of t.
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3. A remark

As Kowalski (2006) points out,

(3.1) Pn(1/2) ∼ 1√
πn

as n→∞,

where “an ∼ bn” means that an/bn converges to one as n→∞. [This is an example of the so-

called “local limit theorem” of classical probability theory.] He also derives the quantitative

bound

(3.2) Pn(1/2) ≥ 9

32
√
n
≈ 0.28125√

n
for all n ≥ 1.

See Lemma 5.1 of that paper (loc. cit.). Next we observe that the Fourier-analytic method

here improves (3.2), without much effort, to the following:

(3.3) Pn(1/2) ≥ 4

3π
√
n
≈ 0.42441√

n
for all n ≥ 1.

This is nearly unimprovable because we will see soon in (3.4) that P1(1/2) = 1/2. But the

lower bound can be improved for larger values of n. For instance, the same method below

will imply that Pn(1/2) ≥ 43/(30π
√
n) ≈ 0.45624/

√
n for all n ≥ 2.

Now let us prove (3.3). In accord with (2.10), and by symmetry,

(3.4) Pn(1/2) =
1

π

∫ π

0

(
1 + cos t

2

)n

dt.

Taylor’s expansion of the cosine, with remainder, implies that 1
2
(1 + cos t) is greater than or

equal to the maximum of 1− (t2/4) and zero. Hence,

Pn(1/2) ≥ 1

π

∫ 2

0

(
1− t2

4

)n

dt

≥ 1

π

∫ 2/
√

n

0

(
1− t2

4

)n

dt

=
1

π
√
n

∫ 2

0

(
1− s2

4n

)n

ds.

(3.5)

A basic fact, from calculus, is that (1 − θ/n)n increases with n for all θ between zero and

one. This and the preceding together prove that

(3.6) Pn(1/2) ≥ 1

π
√
n

∫ 2

0

(
1− s2

4

)
ds,

which yields (3.3) readily.
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