LECTURE 11: PROBABILISTIC SOLUTION TO ELLIPTIC PDE’S
§1. ANOTHER ITO’s FORMULA

We now explore some of the many connections between Brownian motion and second-
order partial differential equations (PDE’s). To start, we need a variant of I1t6’s formula.
This one is an It6-type development for a function f(z,t) of space-time (z,t); the “space
variable” is € R4, and the “time variable” is t > 0.

Throughout, W denotes d-dimensional Brownian motion.

(1.1) Another Itd’s Formula. For any T > ¢ > 0,
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where Af(z,t) := 2?21 86—;2f($, t) is the Laplacian of f in the “space variable” z € R
J

§2. THE HEAT EQUATION

The heat equation is the equation that governs the flow of heat in a nice medium. If
u(z,t) denotes the amount of heat at place z € R? at time ¢, then it states that u is “the
continuous solution” to the following:

1
Qu(m,t) = iAu(x,t), t>0,z€RY,

(2.1) ot
u(z,0) = f(z), z € RY,

where f is the function that tells us the initial amount of heat introduced at each point
r € R? in space, and u tells us how this heat propagates (i.e., cooling). The number
% is chosen for the sake of convenience and can be replaced by any other number ¢; in
general, this is the so-called thermal conductivity of the medium that is being heated, and

can be obtained by a change of variables of type v(z,t) := u(y/cz,t). Indeed, note that
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(2.2) Ev(w,t) = cAv(x,t), t>0,z€ R?,

v(z,0) = f(z/\c), r € R4,

So we might as well study (2.1) when the thermal conductivity is 3.
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(2.3) The Probabilistic Solution. The solution to (2.2) can be written as follows,
where W denotes d-dimensional Brownian motion: u(z,T) = E,{f(W(T))}, where E,
denotes the expectation relative to Brownian motion started at z € R9.

(2.4) It6’s Formula Once More. We can deduce (2.3) from (1.2) with T := t as follows:
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All that we care about is that the expected value of the stochastic integral is zero; cf. the
simulation approximation (2.9, Lecture 9) to convince yourselves of this. Moreover, the
other two integrals are equal to fOT (%Au — %u) = 0, since u solves the heat equation
(2.1). So, we can take the expectation of (2.5) conditional on W (0) = z (i.e., start your
Brownian motion at x € R%) to get E,{u(W(T),0)} = u(z,T). Since u(y,0) = f(y) for
all y, this proves (2.4).

(2.6) Project. How would you simulate E,{f(W(T))}? (Hint: Kolmogorov’s strong law
of large number (0.1, Lecture 2).)

(2.7) THE DIRICHLET PROBLEM. If you put a unit of charge in the middle of
a sphere, it charges the outer shell of the sphere and the charge distribution is uniform.
More generally, if D is a nice domain in R (the analogue of the sphere), and if f is the
charge distribution on the boundary (or shell) 9D of D, then we have a charge distribution
u(z) at x that is given by the Dirichlet problem:

Au(z) =0 z € D ie., no-flux inside

(28) u=f, ondD.

The probabilistic solution, using Brownian motion, is u(z) := E {f(W (7p))}, where W
denotes Brownian motion started at x and in d dimensions, and 7p is the first time W
leaves D. How would you simulate this?
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