
LECTURE 2: THE SIMPLE WALK IN DIMENSION ONE

Laws of large numbers are a class of results that state that, in one way or another,
averaging many independent random quantities yields their expectation as long as you
average enough things.

For example, suppose you wanted to know the average output α of a machine. If you
could simulate the output of this machine on your computer, it would be natural to run
several simulations, average the outputs, and declare that as an “estimate” for α. The
following shows that this procedure actually works. You may need to refer to §2 of Lecture
1 for further motivation.

(0.1) Kolmogorov’s Strong Law of Large Numbers. Suppose X1, X2, . . . are inde-
pendent and identically distributed. If Sn := X1 + · · · + Xn denote the corresponding
random walk, and if µ := E{X1} exists, then

P

{
lim

n→∞
Sn

n
= µ

}
= 1.

In the unbiased case where µ = 0, this shows that the asymptotic value of the walk is
much smaller than n. In fact, in most of these cases, the asymptotic value is of order

√
n.

(0.2) The Central Limit Theorem. Suppose X1, X2, . . . are independent and identi-
cally distributed. If Sn := X1 + · · · + Xn denote the corresponding random walk, and if
E{X1} = 0 and 0 < σ2 := Var(X1) < +∞, then for any real number x,

lim
n→∞P

{
Sn√

n
≤ x

}
=

1√
2πσ2

∫ x

−∞
e−y2/2σ2

dy.

In the physics literature, this type of
√

n-growth is referred to as “diffusive.”

§1. THE STRONG LAW FOR THE SIMPLE WALK
Once again, Sn is now the simple walk (on the integer lattice). While the general

form of the Kolmogorov strong law is a rather difficult result, for the simple walk, things
are not so bad as we shall see.

Here is a start: Let us apply Chebyshev’s inequality from (4.4) of Lecture 1 to see
that for any ε > 0,

(1.1) P {|Sn| ≥ nε} ≤ Var(Sn)
n2ε2

=
1

nε2
.

We are using two more facts from Lecture 1. Namely, that the expectation of Sn is zero
(3.1, Lecture 1) and its variance is n (3.2, Lecture 1). This shows that for any ε > 0
(however small),

lim
n→∞P

{∣∣∣∣Sn

n

∣∣∣∣ ≥ ε

}
= 0.
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This is not quite as strong as the strong law, but it has the right flavor. We will enhance
this calculation to get the strong law.

Proof of The Strong Law For the Simple Walk: We can improve (1.1) by using higher
moments than the second moment (i.e., the variance). Namely, let us use the Chebyshev
inequality for fourth moments (4.5, Lecture 1) and the fact that E{S4

n} = 3n2− 2n ≤ 3n2

(3.3, Lecture 1) to obtain the following: For all ε > 0,

(1.2) P {|Sn| ≥ nε} ≤ E{S4
n}

ε4n4
≤ 3

ε2n2
.

So in fact the abov probability goes to zero faster than the rate of (nε2)−1 stated in (1.1).
Now let N denote the number of times the random walk is at least nε units away from
the origin. That is,

N :=
∞∑

n=1

1{|Sn|≥nε},

where 1A is the indicator of the event A; cf. (4.2, Lecture 1). Since E{1A} = P{A},
E{N} =

∑∞
n=1 P{|Sn| ≥ nε}. In particular, by (1.2) above, and using the fact that

1, 1
4 , 1

9 , . . . , 1
n2 , · · · is a summable sequence, we see that E{N} < +∞. This means that N

is finite with probability one. In other words, we have shown that with probability one,
for any ε > 0, there exists a random time N past which |Sn| ≤ nε. This is the same as
saying that with probability one, Sn/n → 0. ♣

§2. RETURNS TO THE ORIGIN
What we have done is to show that Sn is much smaller than n as n →∞. One rough

explanation for this is that Sn is fluctuating as n →∞; so much so that it has little time
to go very far from the origin. This is one of the reasons that the movement of the simple
walk has proven to be an important model for “one-dimensional molecular motion.” (The
more realistic three-dimensional setting will be covered soon.)

One way in which we can study the said fluctuation phenomenon more precisely, is
by considering the notion of recurrence. In the context of nonrandom dynamical systems,
this notion is due to the work of H. Poincaré.

Remember that S0 is zero. That means that the random walk always starts at the
origin. So it makes sense to consider Nn which is the number of returns to the origin by
time n; i.e.,

Nn :=
n∑

j=1

1{Sj=0}, n = 1, 2, 3, . . . .

(2.1) The Expected Number of Returns. As n → ∞, E{Nn} ∼
√

2n/π, where
an ∼ bn means that an/bn → 1 as n →∞.

Proof: Note that

E{Nn} = E


 n∑

j=1

1{Sj=0}


 =

n∑
j=1

P{Sj = 0}.
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So it suffices to estimate P{Sj = 0} for j →∞. First, we note that if j is an odd number
Sj 6= 0. So it suffices to estimate E{Nn} for n even. Moreover, if n is even,

E{Nn} =
n/2∑
j=1

P{S2j = 0}.

Here is where combinatorics come in: Thanks to (1.1, Lecture 1), the probability that
S2j = 0 is equal to 2−2j times the number of paths of length 2j such that at time j the
path is at 0. Any such path π0, . . . , π2j hits 0 at time j if and only if it has gone to the
right exactly j times, and gone to the left exactly j times. There are

(
2j
j

)
-many ways for

choosing where these rights and lefts are, so

P{S2j = 0} = 2−2j

(
2j

j

)
.

This and the preceding display, together show

(2.2) E{Nn} =
n/2∑
j=1

2−2j

(
2j

j

)
.

But
(
2j
j

)
= (2j)!/(j!)2, and this can be estimated by

(2.3) Stirling’s Formula. As k →∞, k! ∼ √
2πkk+ 1

2 ek.

We use this to see that

(2.4)

E{Nn} ∼
n/2∑
j=1

2−2j

√
2π(2j)2j+ 1

2 e−2j(√
2πjj+ 1

2 e−j
)2 =

n/2∑
j=1

1√
2π

2
1
2

j
1
2

=

√
1
π

n∑
j=1

1√
j

=
√

n · 1
n

n∑
j=1

1√
j/n

.

But 1
n

∑nT
j=1 f(j/n) → ∫ T

0
f(x) dx if f is continuous; in fact this is the Riemann-sum

approximation of the calculus of real functions. Apply this with f(x) := 1/
√

x to see that
(1/n)

∑n
j=1 1/

√
j/n ∼ √

n · ∫ 1/2

0
1/
√

x dx =
√

2n. Together with (2.4), this completes our
asymptotic evaluation of E{Nn}. ♣

§3. THE REFLECTION PRINCIPLE
Here is another application of the combinatorial way of thinking. This is a deep result

from the 1887 work of D. André:
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(3.1) The Reflection Principle. For any λ, n = 1, 2, . . .,

P

{
max

1≤j≤n
Sj ≥ λ

}
= 2P{Sn ≥ λ}.

Proof: The combinatorial representation of the simple walk (1.1, Lecture 1) tells us that
the above is equivalent to showing that

(3.2)
# {paths that go over λ before time n}

= 2×# {paths that are go over λ at time n} .

There are two types of paths that go over λ before time n: The first are those that
are over λ at time n, i.e., those paths for which πn ≥ λ (Type 1). The second (Type 2)
are those that go over λ some time before time n and then go below it so that at time n,
πn < λ. If you think about it for a moment, you will see that (3.2) is really stating that
the number of paths of Type 2 is equal to the number of paths of Type 1. But this is clear
from a picture; for example, see the picture at

http://www.math.utah.edu/~davar/REU-2002/notes/lec2.html.

Namely, any path of Type 2, can be reflected about the line y = λ at the first time it
hits λ. This gives a paths of Type 1. Conversely, any paths of Type 1 can be reflected to
give a path of Type 2. This shows that there are as many paths of each type, and we are
done. ♣
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§4. APPENDIX: STIRLING’S FORMULA
It would be a shame for you not to see why Stirling’s formula (2.3 above) is true; so

I have added this section to explain it, although we did not discuss this section’s material
in our meeting.

Consider ln(k!) =
∑k

i=2 ln(i). By the integral test of calculus,

∫ k

1

ln(x) dx ≤ ln(k!) ≤
∫ k+1

1

ln(x) dx.

But
∫ T

1
ln(x) dx = T ln(T )− 1. Therefore,

(4.1) k ln(k)− 1 ≤ ln(k!) ≤ (k + 1) ln(k + 1)− 1.

Now, recall Taylor’s expansions for ln(1 + y):

(4.2) ln(1 + y) = 1 + y − y2

2
+ · · · .

We don’t apply this to ln(k + 1) but rather note that ln(k + 1) = ln(k) + ln((k + 1)/k)) =
ln(k) + ln(1 + 1

k
). Apply (4.2) with y = 1

k
to deduce that

ln(k + 1) = ln(k) +
1
k
− 1

2k2
+ · · · .

Put this back in to (4.1) to get

k ln(k) ≤ ln(k!) ≤ (k + 1)
[
ln(k) +

1
k
− 1

2k2
+ · · ·

]

≤ (k + 1)
[
ln(k) +

1
k

]

= k ln(k) + ln(k) + 1 +
1
k

.

Since the exponential of k ln k is kk, we can exponentiate the above inequalities to obtain

kk ≤ k! ≤ kk+1 × e1+ 1
k ∼ ekk+1.

Stirling’s formula is a much sharper version of these bounds. (For instance note that both
sides are off by k

1
2 to the leading order.)
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