LECTURE 3: THE SIMPLE WALK IN HIGH DIMENSIONS

Let us continue our discussion on the simple walks to higher dimensions. To do so, it
helps to introduce a more abstract walk first (and briefly).

§1. THE SIMPLE WALK ON A GRAPH

(1.1) Graphs. A graph is a collection of points (or vertices) and a set of neighboring
relations (edges) between these vertices. An example of a graph is Z'—the one-dimensional
integer lattice—which can be thought of as a graph: The vertices are 0,4+1,+£2,... and
there is an edge between two vertices a and b if and only if |a — b| = 1. In particular, every
vertex has two neighbors.

An obvious generalization to this is Z¢, which is the d-dimensional integer lattice.
This can be thought of as a graph with vertices of type (z1,...,24) where the z;’s are
integers, and there is an edge between z = (z1,...,24) and w = (w1, ...,wy) if and only
if Zle |w; — z;| = 1 (check this!) So every vertex has (2d) neigbors on this graph. (Can
you compute this from the formal definition that I have written?)

A third example of an interesting graph is a binary tree. Here, you start with one
vertex; it then branches into two; each of these branches into two, and so on. Check that
at the nth level of this construction, there are 2™ vertices. The edges are the natural
ones: Two vertices are neighbors (i.e., have an edge in common) if and only if one of them
branched off into the other. You should check that evey vertex except for the first one (the
root) has three neighbors, whereas the root has two neighbors.

As a fourth and final example, consider the complete graph on n vertices. Here, the
graph is made up of a finite number (n) of vertices, and everyone is the neighbor of everyone
else.

(1.2) The Simple Walk. The simple walk on a graph is the random process that starts
someplace in the graph (call it the origin if you want), and then moves to one of the nearest
neighboring vertices with equal probability. (Warning: This makes sense only if the graph
has no vertices with infinitely many neighbors, of course.) And the walk proceeds this way,
everytime going to a nearestneighbor independently of all his/her other moves, and always,
all neighbors are equally likely.

§2. THE SIMPLE WALK ON Z2

Returning to Si, Sa, ... being the simple random walk on the planar integer lattice Z2,
we ask, “how many times is the walk expected to return to its origin?” We have already
seen in (2.1, Lecture 2) that the one-dimensional walk returns to the origin about y/n-times
in the first n steps, as n — oo. One should expect fewer returns for the planar walk, since
there is “more space.” Here is the precise result.

(2.1) Expected Number of Returns. If N,, denotes the number of times the simple
walk returns to the original before time n, then for n even,

n/2

E{N,} = ;4—23' <2j>2

9

In particular, for some constant ¢, E{N,} ~ clog(n).

A Semi-Proof: 1 gave a geometric proof of this in the lecture; the idea was that if you
rotate the xy-plane, you rotate the simple walk S,, on to the simple walk S,, which is a
simple walk on the lattice in which the neighbors of the origin (0, 0) are the 4 points,

(1 1)(1 1)(1 1)(1 1)
Since we have only turned the plane, S, = 0 if and only if gn = 0, so these two events have
the same probability, but P{S, = 0} ~ ¢/y/n (cf. the Stirling-formula approximation
in (2.4, Lecture 2)). So, P{S, = 0} ~ C?/n. On the other hand, just as in the one-

dimensional case, E{N,} = >_7_; P{S; = 0}, so that E{N,} ~ >°7_, C?/j. Let us see
how this sum behaves:

n n

e
BN} ~ O 5 = O 2 Gy

1
~ 02/ In(z) dz,
1/n

by a Riemann-Sum approximation. (How did the lower limit of the integral become (1/n)?)
As n — o0, this behaves like clog(n)—check!
When done carefully, as we did in the lecture, the exact calculation follows also. &

¢3. THE SIMPLE WALK ON Z%,d >3

In higher dimensions the rotation trick fails, but our intuition that the coordinates
of S, are almost independent simple walks is in a sense correct and can be made precise.
This leads to P{S, = 0} ~ (C/y/n)% = cn=%2. On the other hand, since d > 3, this sums
and we have

(3.1) The Simple Walk in d > 3 is transient. We have E{N,} < +oo. Therefore,
the expected number of times to hit any point is finite. Therefore, after a finite (but
random) number of steps, Sy, will leave any finite neighborhood of the origin, and this is
the property that the word “transient” is referring to.

4. THE SELF-AVOIDING WALK Certain models of polymer chemistry lead to the
self-avoiding walk, which is defined as follows: First consider all paths of length n in your
favorite infinite lattice, say Z?. On the latter, there are (2d)" such paths, but many of
them self-intersect, i.e., there are distinct 7,j < n such that m; = m;. Let x, denote the
total number of self-avoiding paths of length n, and from these y,, self-avoiding paths,
choose one at random. This is the self-avoiding walk of length n.

10

(4.1) Bounds on xy,. I claim that for every n, d" < x, < (2d)".
Actually much better bounds are possible (say when d = 2), but this is good enough.

Proof: To get the upper bound of (2d)™ note that every self-avoiding path is a path, and
S0 Xn, < the number of all paths of length n, which is (2d)™. The lower bound is not much
more difficult. When d = 2, note that every path that only goes “up” or to the “right”
is self-avoiding. There are clearly 2" such paths. Note that paths of this type (i.e., the
“up-right” paths) are those that move in the direction of either vector (1,0) or (0,1).
When d = 3, the analogue of “up-right” paths are those that move in the direction of
(1,0,0), (0,1,0), (0,0,1). There are 3™ such paths. In general, only choose the directions
that keep you going “up” in the positive quadrant, and note that these paths are (i)
self-avoiding; and (ii) there are d™ many of them. &

(4.2) The Connectivity Constant C(d). There exists a constant d < C(d) < 2d, such
that
lim X" = C(d).

n—,oo N

This C(d) is called the connectivity constant.

(4.3) Remarks.
a. Such a result holds on many infinite graphs that are “self-similar.”
b. In rough terms, the above states that x, behaves (roughly again!) like (C(d))™ for
large value of n.

Proof: Note that on every self-avoiding path of length n + m, certainly the first n steps are
self-avoiding, and the next m steps are also self-avoiding. Therefore,

Xn+m S Xn * Xm-

In words, the sequence x1, X2, . . . is submultiplicative. This is equivalent to the subadditivity
of log(xn)’s, i.e.,
1og(Xn+m) < 10g(Xn) + 10g(xXm)-

Therefore, by the subbadditivity lemma below, log(xy,)/n has a limit. Note that this limit
is between d and (2d) by (4.1). &

(4.4) The Subadditivity Lemma. Any sequence ay,as,... that is subadditive (i.e.,
Uptm < Qn + an,) satisfies
. Qg . Qnp
lim — = min <—> .
k—oo k n>1 \ 1N

In particular, the above limit is always < a; which is finite. However, this limit could
be —o0!

(4.5) Limits. I will prove this shortly. However, we need to be careful when dealing with
limits, especially since the entire point of this exercise is to show that the limit exists. So
let us start with some preliminaries: For any sequence z1, xo, . ..

lim sup 2 := min max z; and lim inf 2§ := maxminz,.
k L I k] J
k— 00 n>1 3>n k—oo n>1 3>n

11

In other words, the limsup is the largest possible accumulation point of the z;’s and the
liminf is the smallest. It should be obvious that for any sequence xi,z5..., we always
have lim inf; z; < limsup; z;. When the two are equal, this value is the limit lim; z;, and
this is the only case in which the limit exists.

FEzercise 1. For our first example, consider the sequence z; :=1/j (j =
1,2---). Then you should check that liminf; ,, z; = lim SUP;_,00 = 0.
More generally, check that for any sequence 1, za, .. ., lim;_, x; exists
if and only if liminf;_, z; = limsup;_, , x;.

Ezercise 2. Show that the sequence z; := (—=1)7/j (j = 1,2,...) has no
limit. Do this by explicitly computing lim inf; z; and lim sup; z;.

Exercise 3. A point a is defined to be an accumulation point for the
sequence xi,Zs,... if there exists a subsequence n(k) — oo, such that
Zp(k) — a. Show that limsup; z; and liminf; z; are always accumula-
tion points of (z;).

Ezercise 4. Show that the sequence of Exercise 2 only has 2 accumu-
lation points. Construct a sequence x1, 2, ... that has k£ accumulation
points for any predescribed integer k. Can you construct a sequence
T1,Z9,... that has infinitely many accumulation points?

Now we are ready for

(4.6) Proof of (4.4). Since ar/k > min,(a,/n) for any k, it follows that

. .. pQ . a
lim inf -~ > min (—n> .

k— o0 n n

It suffices to show that limsupy_, .. (ar/k) < min,(a,/n). (For then, the limsup and the
lim inf agree.) We do this in a few easy stages: Thanks to subbadditivity, ax < ax—1 + a;.
But the same inequality shows that ax—1 < ax_o + a1, so that by iterating this we get

ar < ag—1 + a1
<ag_2+ a1+ a1 =ag_2+ 2aq
< ag_3+ 3a1

VAN

kal.

Therefore, limsup,(ar/k) < a1. Next, we show that this limsup is also < (a2/2). “By
induction,” this argument boosts itself up to show that for any n, lim supy (ar/k) < (a,/n),
which is what we want to show but in disguise.

To finish, I will show that
(4.7) lim sup il < 9z

12

I will then leave the “induction” part up to you as a nice exercise.
By subbaditivity, for all £ > 2, ay < ax—2+a2. Applying it again, subadditivity yields
ar < ag_4 + 2a9 for all £ > 4 and so on. In general, we see that for all £ > 2j,

(4.8) ar < ag_2; + jas.
Now, if k is even, choose j = (k/2) — 1 to see that (a) k > 2j; and so (b) ar < (k/2)as.

If k is odd, choose j = (k — 1)/2 to see that (c) k > 2j; and so (d) ax < a1 + %5tas. So
regardless of whether or not k is even, we always have

k
ap < (5> as + |a1| + |ag].

(why?) Divide by k and let k¥ — oo to deduce (4.7). [)

(4.9) Exercise on the Connectivity Constant. Improve (4.1) by showing that in all
dimensions, x, < (2d)-(2d—1)""!. Conclude from this and from (4.2) the following slightly
better bound on the connectivity constant: d < C(d) < (2d — 1), e.g., 2 < C(2) < 3.

(Hint . For step 1, you have (2d) choices, but then you cannot go back to where you were.)

13

