LECTURE 5: THE CRITICAL PERCOLATION PROBABILITY
FOR BOND PERCOLATION

Recall that, in percolation, each edge in Z¢ is open or closed with probability p or
(1 — p), and the status of all edges are independent from one another. In (4.1, Lecture
4) we showed that there exists a critical probability p. (sometimes written as p.(Z?) to
emphasize the lattice in question), such that for all p > p., there is percolation (i.e., with
positive probability, there exists an infinite connected open path from the origin), and
for p < p., there is no percolation. However, this statement is completely vacuous if the
numercial value of p. were trivial in the sense that p. were 0 or 1. In this lecture, we will
show that this is not the case. In fact, we will show that in all dimensions d > 2,

(0.1) 1 <pe(ZhH <1-—

b
(d) C(d)’

where C(d) is the connectivity constant of Z¢; see (§4.2, lecture 3).

(0.2) Concrete Bounds on p.(Z?). Since that d < C(d) < (2d) (§4.2, lecture 3), then
it follows from (0.1) above that 2—1d < po(Z%) <1 — ;L. This can be easily improved upon,

e
since by §4.9 of lecture 4, C(d) < (2d—1), so that % < pe(Z?) < 1— 57 in particular,

pe(Z?) is strictly between 0 and 1, which is the desired claim. &

(0.3) The Planar Case. The planar case deserves special mention: The previous bounds
show that p.(Z?) is between  and 2. In fact, it has been shown that

a. p.(Z?) = 1 (Harris and Kesten);

b. If p = p.(Z?), then there is no percolation (Bezuidenhout and Grimmett). &

§1. THE LOWER BOUND IN (0.1).
We first verify the lower bound of (0.1) on p.. Note that showing p. > ﬁ amounts

to showing that whenever p < ~=~, then P{percolation} = 0.
cd)

First note that the chance that any self-avoiding path 7 of length n is open is p™.
Therefore,

E {# of self-avoiding paths of length n} = E [Z 1{m is open}]

T

= ZP{T( is open} = Zp”,

(1.1)

where )~ denotes the summation over all self-avoiding paths of length n, and 1{---} :=
14...y is the indicator of {---}. Since there are x,, many self-avoiding paths of length n,

(1.2) E {# of self-avoiding paths of length n} < x,p".
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But x, ~ {C(d)}", where

log ay,
(1.3) an, & by, mean nlig)lo 1Zizn =
This means that as soon as p < ﬁ, then
(1.4) E{# of self-avoiding paths of length n} — 0, (n — 00).

(Why? Be sure that you understand this!) But for any n,

P{percolation} < P {# of self-avoiding paths of length n > 1}

(1.5) .
< E{# of self-avoiding paths of length n},

thanks to Markov’s inequality (8§4.1, lecture 2). Since P{percolation} is independent of n,
(1.3) shows that it must be zero as long as p < ﬁ. This shows that p. > C(d), which is

the desired result. &

§2. THE UPPER BOUND IN (0.1).

Now we want to prove the second inequality in (0.1). That is, we wish to show that
ifp>1-— ﬁ, then P{percolation} > 0. This is trickier to do, since we have to produce
an open path or an algorithm for producing such a path, and this is a tall order. Instead,
let us prove the (logically equivalent) converse to the bound that we are trying to prove.
Namely, we show that if P{percolation} = 0, then p < 1 — %. For this, we need to
briefly study a notion of duality for percolation, and one for graphs. From now on, we will
only work with Z?; once you understand this case, you can extend the argument to get
the upper bound in (0.1) for any d > 2.

(2.1) The Dual Lattice. Briefly speaking, the dual lattice 72 of Z? is the lattice

2._ 72
(2.2) 72 .=7 +<2,2).

At this point, some of you may (and should) be asking yourselves, “What does it mean to
sum a set and a point?’ In general, A + z is short-hand for the set {y + z; y € A}. That

is, A+ z is A shifted by z. Consequently, the dual lattice 72 is the lattice Z2 shifted by

(0.5,0.5). Pictorially speaking, the dual lattice Z2 looks just like Z2, except that its origin
is the point (0.5,0.5) instead of (0,0); i.e., its origin has been shifted by (0.5,0.5). You

should plot Z? to see what is going on here.

(2.3) Dual Percolation. Each edge e in Z? intersects a unique edge in Z? halfway in the
middle. We can call this latter edge the dual edge to e. Whenever an edge in Z?2 is open,
its dual is declared close, and conversely, if an edge in Z2 is closed, we declare its dual edge
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in Z2 open. Clearly, this process creates a percolation process on the dual lattice 2\5, but
the edge-probabilities are now (1 — p) instead of p. Now if there is no percolation on Z2

this means that on Z?2, there must exist an open “circuit” surrounding the origin. For a
picture of this, see

http://www.math.utah.edu/ davar/REU-2002/notes/lec5.html

The probability that any given circuit, surrounding the origin, of length n is dual-open
is (1 —p)™. So,

(2.4) E [# of open circuits in Z2 of length n] < Cn(1-p)",

where C,, denotes the number of circuits—in 72— of length n that surround the origin.
Thus, we have shown that

(2.5) P {no perocolation in Z*} < C,(1 —p)".

We want to show that is p is large enough, the above goes to zero as n — oo. To do so,
we need a bound for C,,.

(2.6) Bounding C,. It is easier to count the number of circuits of length n in Z?
(not the dual) that surround the origin. This number is also C, (why?). But for a
path 7w := mg,...,m, to be a circuit of length n about (0,0), it must be that any (n —
1) steps in m form a self-avoiding path, and that 7 must go through one of the points
(1,0),(1,£1),(1,£2),...,(1,£[5]). (There are at most (n+1) of these points.) Therefore,
Crn < (n+ 1)xn_1 (why?) Recalling (1.3) above, and since x,_1 ~ {C(d)}"~1, this and
(2.5) show that whenever p > 1 — ﬁ, then there can be no percolation, which is the
desired result. &
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