LECTURE 7: FRACTAL PERCOLATION
§1. FRACTAL PERCOLATION

(1.1) Mandelbrot’s Fractal Percolation. Consider the square S := [0, 1] x [0,1]. That
is, S is the set of all points (z,y) such that 0 <z <1 and 0 < y < 1. We will divide S
into four equal-sized squares,
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For each square, you toss an independent coin; with probability p € (0, 1), you keep that
square, and with probability (1 — p) you jettison it. So now you have a random number
of kept squares (some random number between 0 and 4.) Split each into four equal-
sized squares, and toss an independent p-coin for each to see if you want to keep, and
repeat. Fact: If p is sufficiently large, and if you continue ad infinitum, then with positive

probability you end up with a nonempty random set that Mandelbrot calls a “random
curdle,” and these days is referred to as fractal percolation.

(1.2)

(1.3) Hard Question. Use simulation to find the critical probability p. past which you
can get fractal percolation. &

§2. FRACTALS AND MINKOWSKI (BOX) DIMENSION

(2.1) The Tertiary Cantor Set. Georg Cantor invented the following strange set that
is nowhere dense, has length zero, and yet is uncountable. It is the archetype of what is
nowadays is called a fractal.

Start with the interval I = [0, 1]; split it into three equal parts, and jettison the
middle-third to get two intervals I; := [0, 1], and I := [2,1]. Take the remaining two
intervals, split them in threes, and jettison the middle-third interval, and repeat. After
the nth stage of this construction, you will get a set C,, that is made up of 2" intervals of
length 37™. In particular, the length of C,, is (2/3)™, which goes to zero. It is not hard to
see that C := N, C, # 0, although it has length zero. A little more work shows that it is
nowhere dense.

(2.2) The Minkowski Dimension. Note that in the nth stage of the construction of
the tertiary Cantor set of (2.1), we have in pricniple 3™ intervals of length 3=, but we
only keep 2" of them. Therefore, the total number of intervals of length 37" that cover
the tertiary Cantor set should be 2". In general, let N denote the total number of the
intervals (in higher dimensions, cubes) of length k~! that cover the portion of your fractal
in [0,1], and define the Minkowski or box dimension of your fractal to be the number o
such that Ny = k¢, if such a number exists. (Recall that ay =~ bx means that as k — oo,

log(ag) =+ log(bx) — 1.)
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(2.3) Example. Consider the tertiary Cantor set of (2.1), and check that N3—» = 2™. For-
mally let £ = 3™ and convince yourself that as k — oo, N ~ k® where a = log(2)/ log(3).
That is, the tertiary Cantor set is a “fractal” of “fractional dimension” log(2)/log(3)
which is about equal to 0.63. &

(2.4) Projects for Extensions. You can try constructing other Cantor-type fractals by
cither (i) splitting into intervals of other sizes than %; (i) retaining/jettisoning intervals
by a different algorithm; or (iii) constructing higher-dimensional fractals. For instance, try
starting with the square [0, 1] x [0, 1]; split it into 9 equal-sized squares; retain all but the

middle one, and repeat. [ )

(2.5) Projects for Fractal Percolation. Now go back to fractal percolation, and ask:
<> What is the critical probability p., such that whenever p > p., you can end up with
a nonempty random fractal, and when p < p., the entire construction ends at some
random stage since everything has been jettisoned? The answer to this is known by
theoretical considerations.
¢ When p > p., can you find the box dimension of the resulting random fractal? The
answer to this is known by theoretical considerations.
¢ When p > p., can you estimate the probability that there exists a left-to-right path
on the resulting random fractal? The answer to this is unknown.
(2.6) Relation to Percolation on Trees. The act of splitting each square into four
equal-sized ones can be represented by a rooted tree in which each vertex splits into four
vertices in the next level of the tree. Now go through the edges of this tree, and with
probability p keep an edge, and with probability (1 — p) discard it. Question: Is there an
infinite kept path starting from the root? You should make sure that you understand the
following assertion: This is ezractly the same mathematical question as, “Is there fractal
percolation?”

(2.7) Relation to Branching Processes. Consider the following model for geneology
of a gene: You start with one “grandmother gene.” Upon death (or mutation or whatever
else is the case), this gene splits into a random number of “offspring,” where the offspring
distribution is: With probability p* there are 4 offpsring; with probability (‘11) p3(1—p) there
are 3 offspring; with probability (5)p?(1 — p)? there are 2 offspring; and with probability
(1 — p)* there are no offpsring. How large should p be in order for this gene population
to survive forever? Make sure that you understand that this is the same mathematical
problem as the one in (2.6), which is itself the same as asking whether or not one has
fractal percolation.
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