Translation lengths in Out(F},)

Emina Alibegovié¢

Abstract

We prove that all elements of infinite order in Out(F},) have posi-
tive translation lengths; moreover, they are bounded away from zero.
As a consequence we get a new proof that solvable subgroups of
Out(Fy,) are finitely generated and virtually abelian.

1 Introduction

In this paper we will study the translation lengths of outer automorphisms
of a free group. Following [GS91]| we define the translation length 7x ¢(g) of
g €T to be

lim M

n—oo 7
where I' is a group with finite generating set X, and ||g|| denotes the length
of g in the word metric on I' associated to X.

Farb, Lubotzky and Minsky proved that Dehn twists (more generally,

all elements of infinite order) in Mod(3,) have positive translation length
([FLM]). We prove

Theorem 1.1. Every infinite order element O € Out(F,) has positive trans-

lation length. Furthermore, there exists a positive constant €, such that
7(0) > e,, VYO € Out(F,).
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Once more we can see the strong analogy between mapping class group of
a surface, Mod(%,), and outer automorphism group of a free group, Out(F;,).
To prove their theorem, Farb, Lubotzky and Minsky found a way to
measure how much a Dehn twist is ‘twisted’ by looking at simple closed
curves and their intersection number. Such an approach cannot work in the
case of Out(F;,) as we do not have an analogue of the intersection number.
As a consequence of our main result we have

Corollary 1.2. Every abelian subgroup of Out(F,) is finitely generated.

Corollary 1.3. Every solvable subgroup of Out(F,) is finitely generated and
virtually abelian.

Corollary 1.3 was proved in [BFH99a|, but Theorem 1.1 offers an alternative
proof. Proofs of corollaries 1.2 and 1.3 for Artin groups can be found
in [Bes99, 4.2, 4.4]. Artin groups and Out(F},) share the properties crucial
to the aforementioned proofs. In particular they are virtually torsion free,
their virtual cohomological dimension is finite, and the translation length
restricted to a torsion free abelian subgroup is a norm on that subgroup.
The last fact for Out(F,) follows from the Theorem 1.1.

I would like to thank Peter Brinkmann for suggesting a careful examina-
tion of the exponents (see Definition 2.2). I also express gratitude to Mladen
Bestvina for his support and help.

2 Translation lengths

From the definition of translation length we can see that it depends on the
choice of generating set for a group I'.  We will omit the reference to the
generating set, since it will be clear which one we are using.

We list some properties of translation lengths which can be found in
[GS91].

Proposition 2.1. Let X be a generating set for a group T'.
1. 0<7(g) < llgll
2. For allz,g € G, T(zgx ') = 7(9).
3. 7(g")=n-7(9) Yn € N .



Let X = {z1,9,...,2,} be a set of generators of a free group F,,. Let Y be
the set of generators for Aut(F,,) consisting of:

1. permutations (z; — xj, x; — x;, Ty — % for all k # 1, j),
2. inversions (z; — z;', x; — x; for all j # i),
3. Nielsen twists (x; — x;x;, xp —  for all k #17).

Let Y denote the generating set for Out(F),) consisting of equivalence classes
of elements of Y.

Our goal is to prove that every element of infinite order in Out(F},) has
positive translation length. Since Aut(F,) embeds into Out(F,1), it will
follow that every infinite order element of Aut(F,) has positive translation
length.

We will need the following definition for our proof:

Definition 2.2. Define a map o : F;, — N by

a(w) = the largest p > 0 such that for some nontrivial reduced word u the
word u? is a subword of w,

where elements of F;, are regarded as reduced words in the generators and
their inverses. We also define

a([w]) = max{a(u) : u is a cyclically reduced conjugate of w}
for the conjugacy class, [w], of w.

Example 2.3.
a(l)=0

aab™"c) =7

Lemma 2.4. There ezists a constant C > 0 such that for any § € Y and
any cyclically reduced word w € F,, we have

&(g([w])) < a([w]) +C.



Proof. Let w € F,, be a cyclically reduced element of length n with a(w) = p.
Write w = Au? B, for some u € F,,. Consider

g(w) = [lg(A)N {lg(@)* [lg(B)]],

where [[z]] denotes the reduced word obtained from z. By the Bounded Can-
cellation Lemma ([Coo87]) there is a constant C(g) such that at most C(g)
cancellations occur after concatenation of the words [[g(A)]] and [[g(@)7]].
Hence p can decrease by at most 2C(g) (cancellations may occur at the be-
ginning and at the end of [[g(w)?]]). Let Cy = 2 max{C(g),C(¢7")}. We
now have

a(llg(w)]]) = o
a(w) = a(g™(
a({lg(w)]]) < a(w) + C.

If we take C' = max{Cy : g € Y}, our claim is proved for elements of Y.

Let § € Y and let ¢ be a representative for the equivalence class §. The
argument in this case differs from the above argument in that after applying
g to w, p can decrease by at most 3C(g) (it may happen that g(w) is not
cyclically reduced and we can get cancellation at the ends of g(w)). We now
proceed as above.

]

Example 2.5. We illustrate the idea of the proof of Theorem 1.1 with an
example of a Nielsen twist. Let g be a Nielsen twist which sends x5 to x4
and fixes all other generators of F,.

a(g*(22)) = awe2®) = k.

Write g¥ = g;--- g, with g; € Y and m = ||gF||. By Lemma 2.4, we have

that

k=a(gb(x2) < a(z) +mC=mC+1,

. ||gk|| k-1 1
= lim — > lim ——— = — .

So g has positive translation length.



We give a short list of definitions which will be used throughout the rest
of the paper, but we suggest that the reader look at [BFH99b].

Every element O € Qut(F},) can be represented by a homotopy equiva-
lence f: G — G of a graph G whose fundamental group is identified with
F,. Amap o: J— G (J is an interval) is called a path if it is either locally
injective or a constant map (we also require that the endpoints of o are at
vertices). Every map o: J — G is homotopic (relative endpoints) to a path
[o])-

If o =0y...071s a decomposition of a path or a circuit ¢ into nontrivial
subpaths we say that it is a k-splitting if

i o) = [[fF )] [ ()]

is a decomposition into subpaths and is a splitting if it is a k-splitting for all
k> 0.

We say that a nontrivial path o € G is a Nielsen path for f : G — G if
[[f(0)]] = 0. The Nielsen path o is indivisible if it cannot be written as a
concatenation of nontrivial Nielsen paths.

Let = Gy ; G4 ; ; Gk = G be a filtration of G by f-invariant
subgraphs, and let H; = G;\G;_;. Suppose H; is a single edge E; and
f(E;) = B! for some closed indivisible Nielsen path v C G;_; and some
[ > 0. The exceptional paths are paths of the form E;v¥E; or EoFE;, where
k>0,j<tiand f(E;) = Ejv™, for m > 0.

We remind the reader that every element of Out(F,,) of infinite order has
either exponential or polynomial growth ([BH92]). A polynomially growing
outer automorphism O € Out(F,,) is unipotent if its action in H,(F,;Z) is
unipotent (UPG automorphism).

The following Theorem can be found in [BFHO00](page 564).

Theorem 2.6. Suppose that O € Out(F,) is a UPG automorphism. Then
there is a topological representative f: G — G of O with the following prop-
erties:

1. Fach G; is the union of Gi—1 and a single edge E; satisfying f(E;) =
E;-u; for some closed path u; that crosses only edges in G;_1 ( - indicates
that the decomposition in question is a splitting).

2. If o is any path with endpoints at vertices, then there exists M = M (o)
so that for each m > M, [[f™(o0)]] splits into subpaths that are either
single edges or exceptional subpaths.
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We need to modify a definition of our map « to the new setting.
Definition 2.7. For a path v in a graph G let

a(7y) = the largest p > 0 such that for some nontrivial path o the path o? is
a subpath of 7,

The map « is defined on circuits in the exactly same way.

The following example demonstrates the difference between these two
seemingly identical maps.

Example 2.8. Let v = abca.
If v is a path then a(y) =1,
but if it is a circuit, then &(y) = 2.

Lemma 2.9. Let O € Out(F,) be a UPG automorphism of infinite order
and let f: G — G be its topological representative as in Theorem 2.6. For
every path v in G for which [[f(7Y)]] # 7 there ezists a € Z such that

o([LFF]) > k+a.

Proof. We prove our claim by induction on the (minimal) index, m, of the
filtration element that contains a path 7.

If v C G, there is nothing to be proved since (G; contains only one edge
E; which is fixed by f.

Suppose the claim is true for the subpaths contained in G,,,_; that satisfy
our hypothesis, and let v be a path in G,, for which [[f(7)]] # 7. By
Theorem 2.6 for every m > M(v), [[f™(7)]] splits into subpaths that are
either single edges or exceptional paths. Denote [[f™((7)]] by 7, so that
¥ ="1-... 7, Where ; is either a single edge or an exceptional path.

Assume there is an exceptional path +; which is not fixed by f. Without
loss of generality we may assume that v, = E;u"E;, where f(E;) = Ev' (1>
0), f(E;) = E;v® (s> 0) and j < i. Now we have that

[fE(v)l] = B0 By,

and
a([[f*(y)ll) > k(1 =) +r, ifl—5>0,



o([[fF(v)]) > k(s—=1) —r, ifl—s5<0.

Since ~; is not fixed, [ and s cannot be equal. Therefore
a[[fFAN) =k —r,

a([[fF D) = ([l MG 2 k= M(y) 7.

If all exceptional paths in ¥ are fixed, there exists an edge 7, = E; which
is not fixed by f. We know that f(E;) = E; - u;, where u; is a closed path
contained in G,,_;.

If [[f (u)]] = us, our claim is proven since [[f*(E;)]] = F;u¥ and so

o[l > &,

a([[fF ) > k- M(v).
if [[f (u;)]] # us, there exists a € R such that a([[f*(u;)]]) > k + a. We now

a([[FF ) = a((lFF PN = a((lfF P (w)]]) > k — M(y) +a.
0

Lemma 2.10. Let O be a UPG automorphism of F,, of infinite order. There
ezist a closed path o in G, and b € R such that

a(0*(a)) > k+b.

Proof. Let f: G — G be as in Theorem 2.6. Since O # id there is a
closed path o which is not fixed by f. We know that for every m > M(o),
[f™(0)]] = o1 - ... 0p splits into subpaths that are either single edges or
exceptional paths. Denote [[f™()(5)]] by &, so that 6 =01 - ... - 0p.

If there is an exceptional path o; in this splitting which is not fixed by f,
we get

a(O%G)) >k —r

as in Lemma 2.9.

If all exceptional paths in & are fixed, there exists an edge o; = E;
such that f(F;) = E; - u;, where u; is a closed path contained in G;_;. By
Lemma 2.9 there exists a € R such that

o fY(E)) > k+a.
Hence, in all the above cases, there is b € R such that
a(OF () > k+b.



3 Proof of Theorem 1.1

We consider the cases of exponentially and polynomially growing outer au-
tomorphisms separately.

Case 1. Let O be an exponentially growing outer automorphism of F,.
There exist A > 1 and a cyclically reduced word w such that £(O%([w])) >
Nef([w]), for all k& > 1, where ¢ denotes the cyclic word length (see [BH92]).
Let OF = Gy ... g, where §; € Y and m = ||OF||. Tt is straightforward to
show that for all § € Y and any cyclically reduced word w we have

0(g([w])) < 2¢([w])
Using this inequality we obtain:

Nee([w]) < (O ([w])) < 2me([w])

Hence

log \*

m >
~ log2

which implies

log A

T(0) > A
log 2

Case 2. Let O be a UPG automorphism. Again let OF = g, ... g,
where g; € Y and m = |O*||. By Lemma 2.10 there is a closed path ¢ in G
such that

a(O*(0)) > k+b

Let u; = gj ... Gm. Applying Lemma 2.4 we get
a(ui(0)) < &(uit(0)) +C
which yields

k+b < a(0%0)) <mC + a(o)

k-i—b;oz(a) <m.
We have kb a(o) )
+0—alo
> —_



Case 3. If O is any polynomially growing outer automorphism, then there
exists s > 1, bounded above by some ¢, ([BFH99b, Definition 3.10, Propo-
sition 3.5]) such that O° is a UPG automorphism. Then

1 1
0)=-7(0°)> —>0.
7(0) = -7(0) > &
In all three cases 7(O) is bounded away from zero:
Case 1. There is a constant ¢; > 1 such that A > ¢; ([BH92|). Therefore

7(0O) is bounded away from zero.
Case 2. T(O) > &, for a fixed C.

Case 3. Since s is bounded by c,, we get 7(0) > CLCZ > 0.
This completes the proof. O
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