

Cylinder

-- interval of circles

// Or maybe

Stack some intervals!

Cylinder

-- circle of intervals

Cylinder

Is a product of a circle and an interval

S¹ x **I**

(circle cross interval)

In coordinates:

 Any point P on the cylinder can be given as (x,y), where x is a point on the circle and y is a point on the interval

Problem

- Can you think of a closed surface that is a product?
 - Torus draw pictures
 - It is **S**¹ x **S**¹
- Is that the only CLOSED surface which is a product?
 - Why?

Exercises

Draw pictures whenever possible.

- What is **1** x **1**?
- What is **E¹** x **!**?
- What is $E^1 \times E^1$?
- What is **E**¹ x **S**¹ ?
- What is $D^2 \times S^1$?

- square
- infinite flat strip
- E1
- Infinite cylinder
- filled torus

Exercise

- Is the Möbius strip a product?
 - No.

• It is a circle of intervals

It is not an interval of circles.

Different products

Are these all products?

- They are all topological products
- But not geometric products

Geometric products

Is a geometric product because:

- all intervals have the same size
- all circles have the same size
- all intervals are perpendicular to all circles

Torus?

• Is this torus a geometric product?

Question

- Can you make a geometric product of two circles in our 3-space?
 - no we can make the geometric cylinder, but then we need to connect top and bottom circle
- What is a geometric S¹ x S¹?
 - flat torus all the circles in one direction have the same size, as do all the circles in the other direction, and those directions are perpendicular to each other

3-torus

- Is three torus a product?
- If so, what is it a product of?
- Explain in words and pictures write a little paragraph with accompanying pictures.

 T^3

- Are top and bottom square surfaces?
- What about each square between the those two?
- What is the red segment?

Circle of tori

 T^3

 T^3

Torus of circles

 $T^3 = T^2 \times S^1$

Flat 3-torus is a product of a flat 2-torus and a circle

Exercise

- Form a space by gluing the sides of a cube in the following manner:
 - Front to back with a side to side flip
 - Left to right normally
 - Top to bottom normally
- Of which spaces is this a product?