Homework 1

Due: Friday, 1/16/2004

- 1. Let G be a group. Prove that $H \subset G$ is a subgroup if and only if $h_1 h_2^{-1} \in H$, $\forall h_1, h_2 \in H$.
- 2. Let $f: G \to H$ be a homomorphism of two groups. Prove the following
 - (a) $Kerf \triangleleft G$ and Imf < H.
- (b) $G/Kerf \cong Imf$ aka Isomorphism Theorem
- 3. Let $\gamma: G \to Aut(G)$ be a homomorphism given by $\gamma(g) = f_g$, where f_g is conjugation by $g \in G$. Show that $Ker\gamma$ is the center of G (subgroup of G consisting of all elements that commute with every other element of G). Also show that $Im\gamma = Inn(G) \triangleleft Aut(G)$.
- 4. Show that each equivalence class [w] of words in alphabet X contains exactly one reduced word. Hint: assume there are two and that you have a sequence of words that lead from one to the other (by inserting and deleting subwords of the form xx^{-1}) so that the sum of the lengths of those words is minimal possible.
- 5. Using Tietze transformations show that the cyclic group $\mathbb{Z}_6 = \langle a|a^6 \rangle$ is the direct product of \mathbb{Z}_2 and \mathbb{Z}_3 , $\langle b,c|b^2,c^3,[b,c] \rangle$. Explain how this presentation relates to the usual description of the direct product of \mathbb{Z}_2 and \mathbb{Z}_3 .
- 6. If G acts on X and Y show that g(x,y) = (gx,gy) defines an action of G on $X \times Y$. We call this diagonal action of G on $X \times Y$. What is the stabilizer of a point $(x,y) \in X \times Y$? If G acts transitively on both X and Y, is the diagonal action necessarily transitive?