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Abstract
Convergence and stability results for the inverse Born series (Moskow and
Schotland 2008 Inverse Problems 24 065005) are generalized to mappings
between Banach spaces. We show that by restarting the inverse Born series
one obtains a class of iterative methods containing the Gauss–Newton and
Chebyshev–Halley methods. We use the generalized inverse Born series results
to show convergence of the inverse Born series for the Schrödinger problem
with discrete internal measurements. In this problem, the Schrödinger potential
is to be recovered from a few measurements of solutions to the Schrödinger
equation resulting from a few different source terms. An application of this
method to a problem related to transient hydraulic tomography is given, where
the source terms model injection and measurement wells.

Keywords: inverse Schrödinger problem, inverse Born series, transient
hydraulic tomography

(Some figures may appear in colour only in the online journal)

1. Introduction

We consider the problem of finding a Schrödinger potential q(x) (which may be complex)
from discrete internal measurements of the solution ui(x) to the Schrödinger equation{−�ui + qui = φi, for x ∈ �,

ui = 0, for x ∈ ∂�,
(1)

in a closed bounded set � ⊂ R
d for d � 2, and for different (known) source terms φi ∈ C∞(�),

i = 1, . . . , N. We further assume q ∈ L∞(�) is known in �\�̃, where �̃ is a closed subset of
� with a finite distance separating ∂�̃ and ∂�.
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The internal measurements we consider are of the form

Di, j =
∫

�

φ j(x)ui(x) dx, for i, j = 1, . . . , N. (2)

The measurement Di, j is a weighted average of the field ui resulting from the ith source term.
Although it is not necessary for our method to work, we assume for simplicity the same source
terms are used as weights for the averages.

A motivation for this inverse Schrödinger problem is transient hydraulic tomography (see
e.g. [4] for a review). The hydraulic pressure or head v(x, t) in an underground reservoir or
aquifer � resulting from a source ψ(x, t) (the injection well) satisfies the initial value problem⎧⎨⎩

Svt = ∇ · (σ∇v) − ψ, for x ∈ �, t > 0,

v(x, t) = 0, for x ∈ ∂�, t > 0,

v(x, 0) = g(x), for x ∈ �.

(3)

Here S(x) is the storage coefficient and σ (x) the hydraulic conductivity of the aquifer. The
inverse problem is to image both S(x) and σ (x) from a series of measurements made by fixing
a source term at one well, and measuring the resulting pressure response at the other wells.
We show in section 6 that the inverse problem of reconstructing S(x) and σ (x) from these
sparse (and discrete) internal pressure measurements, can be recast as an inverse Schrödinger
problem with discrete measurements as in (2).

The main tool we use here for solving the inverse Schrödinger problem is inverse Born
series. Inverse Born series have been used to solve inverse problems in different contexts such
as optical tomography [10–13], the Calderón or electrical impedance tomography problem [1]
and in inverse scattering for the wave equation [8].

In section 2 we generalize the inverse Born series convergence results of Moskow and
Schotland [12] and Arridge et al [1], to nonlinear mappings between Banach spaces. The
convergence results of inverse Born series in this generalized setting are given in section
2.3 and proved in the appendix, following the same pattern of the proofs in [1, 12]. This
new framework is applied in section 3 to a few problems that have been solved before with
inverse Born series. We also show that both forward and inverse Born series are closely related
to Taylor series. Since the cost of calculating the nth term in an inverse Born series grows
exponentially with n, we restart it after having computed a few k terms (i.e. we truncate the
series to k terms and iterate). We show in section 4 that restarting the inverse Born series gives
a class of iterative methods that includes the Gauss–Newton and Chebyshev–Halley methods.
For the discrete measurements Schrödinger problem, we prove that the necessary conditions
for convergence of the inverse Born series are satisfied (section 5). Then in section 6, we
explain how the transient hydraulic tomography problem can be transformed into a discrete
measurement Schrödinger problem. Finally in section 7 we present numerical experiments
comparing the performance of inverse Born series with other iterative methods and their
effectiveness for reconstructing the Schrödinger potential in (1) and for solving the transient
hydraulic tomography problem. We conclude in section 8 with a summary of our main results.

2. Forward and inverse Born series in Banach spaces

We start by extending the notion of Born series and inverse Born series [11, 12] to operators
between Banach spaces. The idea being to give a common framework for the convergence
proofs of the inverse Born series for diffuse waves [12], the Calderón problem [1] and the
discrete internal measurements Schrödinger problem. This generalization also highlights that
the inverse Born series are a systematic way of finding nonlinear approximate inverses for
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nonlinear mappings. The resulting approximate inverses are valid locally and have guaranteed
error estimates.

In sections 2.1 and 2.2 we define forward and inverse Born series for a mapping f from
a Banach space X (the parameter space) to another Banach space Y (the data space). Then in
section 2.3 we state local convergence results for inverse Born series in Banach spaces that
are valid under mild assumptions on the forward Born series. The proofs are included in the
appendix as they are patterned after the proofs in [1, 12]. Examples of forward and inverse
Born series are included in section 3.

2.1. Forward Born series

Let X and Y be Banach spaces and consider a mapping f : X → Y . In inverse problems
applications X is typically the parameter space and Y the data or measurements space. The
forward problem is to find the measurements y = f (x) from known parameters x. The inverse
problem is to estimate the parameters x knowing the measurements y.

Born series involve operators in L(X⊗n,Y ), i.e. bounded linear operators from X⊗n to Y .
Here we used the notation

X⊗n = X ⊗ · · · ⊗ X︸ ︷︷ ︸
n times

.

If M(Xn) is the space of n−linear forms acting on Xn, the (elementary) tensor product
x1 ⊗ . . . ⊗ xn ∈ X⊗n, with x j ∈ X , j = 1, . . . , n, is a linear form acting on M(Xn)

such that (x1 ⊗ . . . ⊗ xn)(u) = u(x1, . . . , xn), for u ∈ M(Xn). The tensor product space
X⊗n is the subspace of the dual of M(Xn) that is spanned by linear combinations of
elementary tensor products, i.e. any x ∈ X⊗n admits a (not necessarily unique) representation
x = ∑k

i=1 x(i)
1 ⊗ . . . ⊗ x(i)

n . In general, X⊗n is not a Banach space. In an abuse of notation we
also denote by X⊗n its completion under the projective norm:

‖x‖X⊗n = inf

{
k∑

i=1

‖x(i)
1 ‖X · · · ‖x(i)

n ‖X : x =
k∑

i=1

x(i)
1 ⊗ . . . ⊗ x(i)

n

}
, (4)

where the infimum is taken over all representations of x in terms of elementary tensors. Out
of all the norms on a tensor product space we choose the projective norm because it has the
properties (see e.g. [14, propositions 2.1, 2.3]):

(i) For xi in X , i = 1, . . . , n,

‖x1 ⊗ . . . ⊗ xn‖X⊗n = ‖x1‖X . . . ‖xn‖X .

(ii) If a ∈ L(X⊗m,Y ) and b ∈ L(X⊗n,Y ) then a ⊗ b ∈ L(X⊗(n+m),Y ⊗2) is defined by
(a ⊗ b)(u ⊗ v) = a(u) ⊗ b(v) for u ∈ X⊗m and v ∈ X⊗n. Moreover, when the projective
norm is used,

‖a ⊗ b‖L(X⊗(n+m),Y ⊗2) = ‖a‖L(X⊗m,Y )‖b‖L(X⊗n,Y ).

For the sake of clarity, and when there is no ambiguity, the norm subscripts are omitted.
Notice that a map a ∈ L(X⊗n,Y ) can be identified to a bounded multilinear (or n−linear)

map ã : Xn → Y defined by:

ã(x1, . . . , xn) = a(x1 ⊗ · · · ⊗ xn),

and that ‖ã‖ = ‖a‖, where

‖ã‖ = sup{‖ã(x1, . . . , xn)‖Y | ‖xi‖X � 1, i = 1, . . . , n}.
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Remark 1. The isometry ‖ã‖ = ‖a‖ is only valid when the projective norm is used. It may
be possible to extend the theory on forward and inverse Born series to other tensor product
norms such as the injective norm (see e.g. [14, section 3]) or even to reasonable crossnorms
(see e.g. [14, section 6]). However it is not clear to us if there is any advantage in doing so.
Therefore we focus only on the projective norm because it gives an isometric isomorphism
between bounded multilinear forms Xn → Y and L(X⊗n,Y ) (see e.g. [14, section 2.2]).

Forward Born series express the measurements for a parameter x + h ∈ X near a known
parameter x ∈ X , assuming knowledge of y = f (x).

Definition 1. A nonlinear map f : X → Y admits a Born series expansion at x ∈ X if there
are bounded linear operators an ∈ L(X⊗n,Y ) (possibly depending on x) such that

d(h) = f (x + h) − f (x) =
∞∑

n=1

an(h
⊗n), (5)

and the an satisfy the bound

‖an‖ � αμn for n = 0, 1, . . .. (6)

It follows from the bounds on the operators an, that the Born series converges locally, i.e.
when h is sufficiently small:

‖h‖ < 1/μ. (7)

This restriction on the size of the perturbation h can be thought of as the radius of
convergence of the expansion about the point x.

2.2. Inverse Born series

The purpose of inverse Born series is to recover h from knowing the difference in measurements
d(h) = f (x + h) − f (x) from a (known) reference combination of parameters x and
measurements y = f (x). The original idea in [11] is to write a power series of the data d,

g(d) =
∞∑

n=1

bn(d
⊗n), (8)

involving the operators bn ∈ L(Y ⊗n, X ), which are obtained by requiring (formally) that g is
the inverse of d(h), i.e. g(d(h)) = h. By equating operators L(X⊗n,Y ) with the same tensor
power n, the operators bn need to satisfy:

I = b1(a1)

0 = b1(a2) + b2(a1 ⊗ a1)

0 = b1(a3) + b2(a1 ⊗ a2) + b2(a2 ⊗ a1) + b3(a1 ⊗ a1 ⊗ a1)

...

0 =
n∑

m=1

∑
s1+···+sm=n

bm(as1 ⊗ · · · ⊗ asm ) (9)

where I is the identity in the parameter space X . The requirement that b1a1 = I is quite strong
and may not be possible, for example when the measurement space Y is finite dimensional
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and X is infinite dimensional. Nevertheless if we assume that b1 is both a right and left inverse
of a1 we can express the operators bn in terms of the operators an and b1:

b2 = −b1a2(b1 ⊗ b1)

b3 = −(b1a3 + b2(a1 ⊗ a2) + b2(a2 ⊗ a1))(b1 ⊗ b1 ⊗ b1)

...

bn = −
(

n−1∑
m=1

∑
s1+···+sm=n

bm(as1 ⊗ · · · ⊗ asm )

)
(b⊗n

1 ). (10)

Since an inverse of a1 is not necessarily available, the key is to choose b1 ∈ L(Y, X ) as a
regularized pseudoinverse of a1 so that b1a1 is close to the identity, at least in some subspace.
This allows to define the inverse Born series.

Definition 2. Assume f : X → Y admits a Born series (definition 1) and let b1 ∈ L(Y, X ). The
inverse Born series for f using b1 is the power series g(d) given by (8) where the operators
bn ∈ L(Y ⊗n, X ) are defined for n � 2 by (10). Here again we note the dependence of the
operators bn, n � 2, on the expansion point x ∈ X and the operator b1.

We now state results that guarantee convergence of the inverse Born series, and give an
error estimate between the limit of the inverse Born series and the true parameter perturbation
h. The error estimate involves ‖(I − b1a1)h‖, that is how well the operator b1a1 approximates
the identity for h. These results require that both h and d(h) = f (x+h)− f (x) are sufficiently
small.

2.3. Inverse Born series local convergence

Convergence and stability for the forward and inverse Born series were established by Moskow
and Schotland [12] for an inverse scattering problem for diffuse waves (see also section 3.3).
Specifically they obtained bounds on the operators an in (27) similar to the bounds (6). With
these bounds, it is possible to show convergence and stability of the inverse Born series and
even give a reconstruction error bound [12].

The convergence and stability proofs in [12] for the diffuse wave problem carry out
without major modifications to the general Banach space setting. We give in this section a
summary of results analogous to those in [12]. The proofs are deferred to the appendix, as
they closely follow the proof pattern in [12].

The following lemma shows that if the forward Born operators satisfy the bounds (6), the
operators bn are also bounded under a smallness condition on the linear operator b1 that is
used to prime the inverse Born series.

Lemma 1. Assume f : X → Y admits a Born series and that

‖b1‖ <
1

(1 + α)μ
, (11)

where α and μ are as in definition (1). Then the coefficients (10) of the inverse Born series
satisfy the estimate

‖bn‖ � β((1 + α)μ‖b1‖)n, for n � 2 (12)

where

β = ‖b1‖ exp

(
1

1 − (1 + α)μ‖b1‖
)

. (13)
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Convergence of the inverse Born series follows from the bounds in lemma 1 and a
smallness condition on the data d.

Theorem 1 (Convergence of inverse Born series). The inverse Born series (8) induced by b1

and associated with the forward Born series (5) converges if

‖b1‖ <
1

(1 + α)μ
(14)

and the data is sufficiently small

‖d‖ <
1

(1 + α)μ‖b1‖ . (15)

If h∗ is the limit of the series, one can estimate the error due to truncating the series by∥∥∥∥∥h∗ −
N∑

n=1

bn(d
⊗n)

∥∥∥∥∥ � β
((1 + α)μ‖b1‖‖d‖)N+1

1 − (1 + α)μ‖b1‖‖d‖ .

Stability also follows using essentially the same proof as in [12].

Theorem 2 (Stability of inverse Born series). Assume ‖b1‖ < ((1 + α)μ)−1 and that we have
two data d1 and d2 satisfying M = max(‖d1‖, ‖d2‖) < ((1 + α)μ‖b1‖)−1. Let hi = g(di)

for i = 1, 2 (i.e. the limit of the inverse Born series). Then the reconstructions are stable with
respect to perturbations in the data in the sense that:

‖h1 − h2‖ < C‖d1 − d2‖, (16)

where the constant C depends on M, α, μ, and ‖b1‖.

Theorem 1 guarantees convergence of the forward and inverse Born series:

d =
∞∑

n=1

an(h
⊗n) and h∗ =

∞∑
n=1

bn(d
⊗n). (17)

The limit h∗ of the inverse Born series is, in general, different from the true parameter
perturbation h. The following theorem provides an estimate of the error ‖h − h∗‖.

Theorem 3 (Error estimate). Assuming that ‖h‖ � M, ‖b1a1h‖ � M with

M <
1

(1 + α)μ
,

and that the hypothesis of theorem 1 hold, i.e.

‖b1‖ � 1

(1 + α)μ
and ‖d‖ � 1

(1 + α)μ‖b1‖ ,

we have the following error estimate for the reconstruction error of the inverse Born series:∥∥∥∥∥h −
∞∑

n=1

bn(d
⊗n)

∥∥∥∥∥ � C‖(I − b1a1)h‖, (18)

where the constant C depends only on M, α, β and μ and ‖b1‖.

The proofs of lemma 1, theorems 1, 2, and 3 can be found in the appendix.

Remark 2. To invoke theorems 1–3 for a specific mapping f , it is necessary to show the forward
Born operators an satisfy certain bounds (6). By the bounded linear extension theorem (see e.g.
[9, section 2.7]), it is sufficient to show the bound for elements of X⊗n before completing the
tensor product space with the projective norm. In other words, we only need to check that the
bound ‖an(x)‖ � αμn‖x‖ holds for x that are finite linear combinations of elementary tensor
products, i.e. for x = ∑k

i=1 x(i)
1 ⊗· · ·⊗x(i)

n where x(i)
j ∈ X for all i = 1, . . . , k and j = 1, . . . , n.

Since we use the projective norm for tensor product spaces, another way of showing the bound
(6) is to show it is satisfied by the associated multilinear operator ãn : Xn → Y (see remark 1).

6



Inverse Problems 30 (2014) 045014 P Bardsley and F Guevara Vasquez

3. Examples of forward and inverse Born series

We write examples of forward and inverse Born series in the framework of section 2. We start
by showing in section 3.1 that forward and inverse Born series are intimately related to Taylor
series. Another example is that of Neumann series (section 3.2). We also include the forward
and inverse Born series from [1, 12], namely those for the diffuse waves for optical tomography
(section 3.3) and the electrical impedance tomography problem (section 3.4). We finish the
examples with the discrete internal measurements Schrödinger problem (section 3.5), which
is the main application of inverse Born series that we are concerned with here.

3.1. Taylor series

• Parameter space: X = Banach space
• Measurement space: Y = X (for simplicity)
• Forward map: f analytic (see e.g. [15])
• Forward Born series coefficients: About x ∈ X , the coefficients an can be any operators

in L(X⊗n, X ) agreeing with f (n)(x)/n! on the diagonal i.e. for any h ∈ X ,

an(h
⊗n) = 1

n!
f (n)(x)(h⊗n).

Here f (n) is the nth Fréchet derivative of f , see e.g. [16, section 4.5] for a definition.

Here we use the theory of analytic functions between Banach spaces (see e.g. [15]) which
assumes that the function f is C∞ and that the Taylor series of the function

f (x + h) =
∞∑

n=0

1

n!
f (n)(x)(h⊗n) (19)

converges absolutely and uniformly for h small enough. If in addition we assume that f admits
a Born series expansion at x, then we have

d(h) = f (x + h) − f (x) =
∞∑

n=1

1

n!
f (n)(x)(h⊗n) =

∞∑
n=1

an(h
⊗n).

That is the Taylor series and Born series coefficients, f (n)(x)/n! and an respectively, agree at
the diagonal h⊗n.

Since f is C∞, the Fréchet derivatives f (n) are symmetric in the sense that for any
permutation π of {1, . . . , n} we have that

f (n)(h1 ⊗ · · · ⊗ hn) = f (n)(hπ(1) ⊗ · · · ⊗ hπ(n)).

The Born series coefficients an in general do not satisfy this property, however we can consider
their symmetrization ãn : X⊗n → Y defined by

ãn(h1 ⊗ · · · ⊗ hn) = 1

n!

∑
π

an(hπ(1) ⊗ · · · ⊗ hπ(n)) (20)

where the summation is taken over all permutations π of {1, . . . , n}.
Clearly we have that

ãn(h
⊗n) = 1

n!

∑
π

an(h
⊗n) = an(h

⊗n),

and so we have the following equality:

d(h) = f (x + h) − f (x) =
∞∑

n=1

1

n!
f (n)(x)(h⊗n) =

∞∑
n=1

ãn(h
⊗n).

7



Inverse Problems 30 (2014) 045014 P Bardsley and F Guevara Vasquez

We then have two analytic functions that are equal for h sufficiently small, therefore the
symmetric operators 1

n! f (n)(x) and ãn must be identical (see [15]). Therefore the Born series
and Taylor series coefficients are essentially the same, up to a symmetrization.

If a1 = f (1)(x) is invertible (this is where the assumption X = Y is used), we can apply
the implicit function theorem (see e.g. [15] or [16, section 4.6]) to guarantee the existence
of f −1 in a neighborhood of x. Moreover the inverse is analytic [15] in a neighborhood of
y = f (x) and admits a Taylor series near y

f −1(y + d) =
∞∑

n=0

1

n!
( f −1)(n)(y)(d⊗n). (21)

On the other hand, if b1 = a−1
1 we can define an inverse Born series for f as in

(8). By the error estimate for the inverse Born series (theorem 3) we can guarantee that
h = g(d(h)) = g( f (x + h) − f (x)) for h and d(h) sufficiently small. Since f is invertible in
a neighborhood of y we can also write g in terms f −1

g(d) = f −1(y + d) − f −1(y) = f −1(y + d) − x.

Using the Taylor series (21) for f −1 we can write

g(d) =
∞∑

n=1

bn(d
⊗n) =

∞∑
n=1

1

n!
( f −1)(n)(y)(d⊗n). (22)

As is the case for the forward Born operators an, the inverse Born operators bn are in general
not symmetric. If we consider their symmetrization b̃n (as in (20)), then we find that the
symmetric operators b̃n and 1

n! ( f −1)(n)(y) are the same. Therefore inverse Born series is a way
of calculating (up to a symmetrization) the Taylor series for f −1 from the Taylor series for f .

3.2. Neumann series

• Parameter space: X = R
N

• Measurement space: Y = R
n×n

• Forward map: f (x) = MT (L − diag(x))−1M, where L ∈ R
N×N is invertible and

M ∈ R
N×n.

• Forward Born series coefficients: About 0, the coefficients are an(h) =
MT (L−1diag(h))nL−1M.

The forward Born series in this is example comes from the Neumann series for the inverse
of L − diag(h), when it exists. Indeed if for some matrix induced norm ‖L−1diag(h)‖ < 1,
this inverse exists and is given by the Neumann series

(L − diag(h))−1 =
( ∞∑

n=0

(L−1diag(h))n

)
L−1. (23)

The forward Born series is then

f (h) − f (0) = MT (L − diag(h))−1M − MT L−1M

=
∞∑

n=1

MT (L−1diag(h))nL−1M. (24)

The inverse Born series can be defined by using as b1 a regularized pseudoinverse of
the linear map a1(h) = MT L−1diag(h)L−1M. By the convergence results of section 2.3, the
inverse Born series converges under smallness conditions for h, f (h) − f (0) and b1.

8
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This problem is motivated by a discretization of the Schrödinger equation �u − qu = φ

with finite differences. The matrix L is the finite difference discretization of the Laplacian
and h is the Schrödinger potential at the discretization nodes. The matrix M corresponds to
different source terms φ, which are also used to measure u (collocated sources and receiver
setup as the one we use for the Schrödinger problem with discrete internal measurements in
section 3.5). This example can be easily modified when the discretization of the qu term in the
Schrödinger equation is not a diagonal matrix (as is often the case for finite elements). The
collocated sources and receivers setup can be changed as well by using a matrix other than
MT in the definition of f (x).

3.3. Optical tomography with diffuse waves model [12]

In the diffuse waves approximation for optical tomography (see e.g. [2] for a review), the
energy density Gq(x, y) resulting from a point source y ∈ � satisfies a Schrödinger type
equation: {−�xGq(x, y) + q(x)Gq(x, y) = −δ(x − y), for x ∈ �,

Gq(x, y) + �n(x) · ∇xGq(x, y) = 0, for x ∈ ∂�,
(25)

where the domain � ⊂ R
d , d � 2 has a smooth boundary ∂�, and q(x) � 0 is the absorption

coefficient. The � � 0 in the Robin boundary condition is given and, as usual, n(x) denotes
the unit outward pointing normal vector to ∂� at x. The inverse problem here is to recover the
absorption coefficient q(x) from knowledge of Gq(x, y) on ∂� × ∂�. This data amounts to
taking measurements of the energy density at all x ∈ ∂� for all source locations y ∈ ∂� or to
knowing the Robin-to-Dirichlet map for q. If the difference between the absorption coefficient
q(x) and a known reference coefficient q0(x) is supported in some �̃ ⊂ � (with ∂� and
∂�̃ separated by a finite distance), then Gq satisfies the Lippmann–Schwinger type integral
equation:

Gq(x, y) = Gq0 (x, y) +
∫

�̃

dz Gq0 (x, z)(q(z) − q0(z))Gq(z, y). (26)

Moskow and Schotland [12] show that the forward Born or scattering series for this problem
can be defined as follows.

• Parameter space: X = Lp(�̃) for 2 � p � ∞.
• Measurement space: Y = Lp(∂� × ∂�).
• Forward map: f : q → Gq(x, y)|∂�×∂�.
• Forward Born series coefficients: For η1, . . . , ηn ∈ Lp(�̃) and x1, x2 ∈ ∂�, the

coefficient for the Born series expansion about q = q0 is

(an(η1 ⊗ · · · ⊗ ηn))(x1, x2)

=
∫

�̃n

Gq0 (x1, y1)Gq0 (y1, y2) . . . Gq0 (yn−1, yn)Gq0 (yn, x2)η1(y1) . . . ηn(yn)dy1 . . . dyn.

(27)

In particular, the results of Moskow and Schotland [12] show that the operators an satisfy
bounds similar to (6) assuming q0 is constant and that q is sufficiently close to q0. The authors
formulate bounds on an in the context of multilinear operators an : Lp(�̃n) → Lp(∂� × ∂�),
but with minor modifications, the bounds also hold in the context of linear operators
an : (Lp(�̃))⊗n → Lp(∂� × ∂�). Therefore one can define an inverse Born series through
the procedure (10), and this series converges under appropriate conditions (see [12] and
section 2.3).
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3.4. The Calderón or electrical impedance tomography problem [1]

The electric potential inside a domain � with positive conductivity σ (x) ∈ L∞(�) resulting
from a point source located at y ∈ � satisfies the equation{∇x · [σ (x)∇xGσ (x, y)] = −δ(x − y), for x ∈ �

Gσ (x, y) + zσn(x) · ∇xGσ (x, y) = 0, for x ∈ ∂�.
(28)

Here, we assume the contact impedance z � 0 is known and that σ is constant on ∂�.
The domain � is also assumed to be in R

d , d � 2 and with smooth boundary. The electric
impedance tomography (EIT) problem consists in recovering the conductivity σ from the
Robin-to-Dirichlet map, i.e. from knowledge of Gσ (x, y) on ∂�×∂� (see e.g. [3] for a review
of EIT). If the difference between σ and a known reference conductivity σ0 is supported in
�̃ ⊂ � (with ∂�̃ at a finite distance from ∂�), Gσ satisfies the integral equation

Gσ (x, y) = Gσ0 (x, y) +
∫

�̃

dz Gσ0 (x, z)∇z · [(σ (z) − σ0(z))∇zGσ (z, y)]. (29)

Integrating by parts and using that σ = σ0 on ∂�, Gσ obeys a Lippmann–Schwinger type
equation:

Gσ (x, y) = Gσ0 (x, y) −
∫

�̃

dz (σ (x) − σ0(x))∇zGσ0 (x, z) · ∇zGσ (z, y). (30)

As shown by Arridge et al [1], one can then define a forward Born series that can be summarized
as follows.

• Parameter Space: X = L∞(�̃).
• Measurement space: Y = L∞(∂� × ∂�).
• Forward map: f : σ → Gσ (x, y)|∂�×∂�.
• Forward Born series coefficients: For η1, . . . , ηn ∈ L∞(�̃) and x1, x2 ∈ ∂�, the

coefficient for the Born series expansion about σ = σ0 is

an(η1 ⊗ · · · ⊗ ηn)(x1, x2)

= (−1)n
∫

�̃

dy1 η1(y1)∇y1 Gσ0 (y1, x1) · ∇y1

∫
�̃

dy2 η2(y2)∇y2 Gσ0 (y2, y1)

· · · · ∇yn−1

∫
�̃

dyn ηn(yn)∇yn Gσ0 (yn, yn−1) · ∇yn Gσ0 (yn, x2). (31)

Arridge et al [1] show that for σ0 constant, the operators an satisfy bounds similar to (6)
and so an inverse Born series can be defined following the procedure (10). As in section 3.3,
Arridge et al [1] establish bounds on an as multilinear operators an : L∞(�̃n) → L∞(∂�×∂�),
but with minor modifications, the bounds also hold for linear operators an : (L∞(�̃))⊗n →
L∞(∂� × ∂�). The convergence of this series is established in [1] and can also be shown
using the generalization in section 2.3.

3.5. The Schrödinger problem with discrete internal measurements

Instead of having infinitely many measurements as in the optical tomography inverse
Schrödinger problem (outlined in section 3.3), we consider here the case where we only
have access to finitely many internal measurements Di, j (see equation (2)) of the fields ui,
i = 1, . . . , N, satisfying (1). We also allow the Schrödinger potential in (1) to be complex
(as discussed in section 6, this is useful when solving the transient hydraulic tomography
problem).

10
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The Green function Gq(x, y) for the problem (1) satisfies (25) with homogeneous Dirichlet
boundary conditions (instead of homogeneous Robin boundary conditions). The fields ui can
be expressed in terms of the Green function Gq as

ui(x) = −
∫

�

dy Gq(x, y)φi(y), i = 1, . . . , N. (32)

If the difference between the Schrödinger potential q(x) and known reference q0(x) is
supported in �̃ ⊂ � (with ∂�̃ and ∂� separated by a finite distance), Gq and Gq0 are
still related by the Lippmann–Schwinger type equation (26). By a fixed point procedure we
can define a forward Born series as follows.

• Parameter Space: X = L∞(�̃).
• Measurement Space: Y = C

N×N , with norm ‖A‖ = maxi, j=1,...N |Ai, j|.
• Forward map: Owing to (32), the data D in (2) becomes:

f : q → D = −
[∫

�2
dx dy φi(y)φ j(x)Gq(x, y)

]
i, j=1...N

.

• Forward Born series coefficients: For η1, . . . , ηn ∈ L∞(�̃) the coefficient for the Born
series expansion about q0 is

[an(η1 ⊗ · · · ⊗ ηn)]i, j

= (−1)n
∫

�̃n+2
Gq0 (x, y1)Gq0 (y1, y2) · · · Gq0 (yn−1, yn)Gq0 (yn, z)

· η1(y1) · · · ηn(yn)φi(z)φ j(x) dz dy1 · · · dyn dx, (33)

for i, j = 1, . . . , N. Note that we have assumed suppφi ⊂ �̃ so that instead of integrating
over �̃n × �2 integrate over �̃n+2.

We show in section 5 that the operators an satisfy the bounds (6) (with q0 not necessarily
constant), so it is possible to show convergence of the corresponding inverse Born series by
the results of section 2.3.

4. Inverse Born series and iterative methods

The main goal of this section is to show that inverse Born series can be used to design
superlinear1 iterative methods converging to an approximation x∗ of the true parameter xtrue

from knowing measurements ymeas = f (xtrue) and the forward map f : X → Y . The iterative
methods we study here are of the form{

x0 = given,

xn+1 = Tn(xn), for n � 0,

where Tn : X → X . Of course, for such an iterative method to be useful, the iterates xn need
to converge to x∗ as n → ∞ (with an a priori rate of convergence) and one should be able
to estimate the error ‖xtrue − x∗‖ between the desired parameter xtrue and the limit x∗. Our
results are in some sense a generalization of the result by Markel et al [11] that shows that the
limits of inverse Born series and the Newton–Kantorovich method are the same. The Newton–
Kantorovich method is a ‘frozen’ Gauss–Newton method, i.e. the Gauss–Newton method
(which we recall in section 4.2), modified so that the pseudoinverse of the linearization of the
forward map is found once and for all for the first iterate and used as is in subsequent iterates.

1 We recall that superlinear convergence of xn to x∗ means that ‖xn+1 − x∗‖ � εn‖xn − x∗‖, where εn → 0 as
n → ∞.
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4.1. Inverse Born series as an iterative method

We start by reformulating the results of section 2.3 in the context of iterative methods. Let us
assume that we have a good guess x0 for xtrue, and that we know the forward Born series about
x0, i.e. we know the coefficients a j[x0] ∈ L(X⊗ j,Y ) so that

f (x) − f (x0) =
∞∑
j=1

a j[x0](x − x0)
⊗ j.

Theorem 1 means that for an appropriate choice of b1[x0], if ‖x0 − xtrue‖ and ‖ f (x0) − ymeas‖
are sufficiently small then the inverse Born series

xn − x0 =
n∑

j=1

b j[x0](ymeas − f (x0))
⊗ j, (34)

converges linearly2 to some x∗ ∈ X as n → ∞. Here we write explicitly the dependence of
the inverse Born operators bn[x0] (defined recursively as in (10)) on the reference parameter
x0. Notice that the inverse Born series (34) can be written as the iterative method,{

x0 = given,

xn+1 = xn + bn+1[x0](ymeas − f (x0))
⊗(n+1), for n � 0.

(35)

The error estimate of theorem 3 quantifies how close the limit x∗ of the iterative method (35)
is to the true parameter xtrue, i.e. there is some C > 0 such that

‖x∗ − xtrue‖ � C‖(I − b1[x0]a1[x0])(x0 − xtrue)‖. (36)

Unfortunately this is an expensive method to implement as the computational cost of
each term bn[x0] in the inverse Born series (see (10)) increases exponentially with n. Indeed if
applying the forward Born operator an[x0] requires n forward problem solves (as is the case for
the Schrödinger problem), an application of the inverse Born operator bn[x0] involves 2n−1 −1
forward problem solves.

Remark 3. We emphasize that the inverse Born series (34) and (35) does not require evaluating
the forward map f at any other point than the initial iterate x0. In inverse problems, this means
the inverse Born series needs only solutions to the background problem, which may be less
expensive to compute, perhaps because it corresponds to a homogeneous medium or a medium
with other symmetries. In contrast, Gauss–Newton type methods and the restarted inverse Born
series introduced in section 4.2 need to evaluate the forward map f (and its linearization) at
every iterate xn.

4.2. Restarted inverse Born series (RIBS)

A natural idea to reduce the cost of inverse Born series is to use the kth iterate of the inverse
Born series (35) as the starting guess for a fresh run of inverse Born series. This gives rise to
the following class of iterative methods:{

x0 = given,

xn+1 = xn + ∑k
j=1 b j[xn](ymeas − f (xn))

⊗ j, for n � 0,
(37)

which we denote by RIBS(k).

2 We recall that linear convergence rate of xn to x∗ means that there is some 0 < C < 1 such that ‖xn+1 − x∗‖ �
C‖xn − x∗‖.
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If f is a differentiable mapping and we choose b1[xn] = ( f ′(xn))
† (where the sign † stands

for a regularized pseudoinverse of f ′(xn)), the RIBS(1) method is in fact the Gauss–Newton
method: {

x0 = given,

xn+1 = xn + f ′(xn)
†(ymeas − f (xn)), for n � 0,

(38)

and is quadratically convergent in a neighborhood of xtrue under fairly mild conditions on f
(for X and Y finite dimensional, see e.g. [5]).

If in addition to choosing b1[xn] = ( f ′(xn))
† we have a2[xn] = f ′′(xn)/2, the RIBS(2)

method can be written as{
x0 = given,

xn+1 = xn − f ′(xn)
†
[
rn − 1

2 f ′′(xn)( f ′(xn)
†rn, f ′(xn)

†rn)
]
, for n � 0,

(39)

where rn ≡ ymeas − f (xn). This is the so called Chebyshev–Halley method, which has been
studied before by Hettlich and Rundell [7] in the context of inverse problems. This method is
guaranteed to converge cubically when f ′′ is Lipschitz continuous [7].

Remark 4. Although the inverse Born series, and the Gauss–Newton and Chebyshev–Halley
methods are guaranteed to converge (under appropriate assumptions), the limits may be
different.

4.3. Numerical experiments on a Neumann series toy problem

Here we compare the performance of inverse Born series, Gauss–Newton and Chebyshev–
Halley on the Neumann series problem discussed in section 3.2. We used for discrete Laplacian
L the matrix

L =

⎡⎢⎢⎢⎢⎣
−3 1
1 −3 1

· · ·
1 −3 1

1 −3

⎤⎥⎥⎥⎥⎦ ∈ R
256×256.

The true parameter is a vector with zero mean, independent, normal distributed entries and
standard deviation 0.1. The measurement operator M is a 256 × 8 matrix with zero mean,
independent, normal distributed entries and standard deviation 1. For the inverse Born series,
b1 is a pseudoinverse of the Jacobian of the forward problem, where the singular values
smaller than 10−6 times the largest singular value (of the Jacobian) are treated as zeroes. The
same pseudoinverse is applied to the Jacobian matrices involved in the Gauss–Newton and
Chebyshev–Halley methods. The initial guess for all the methods is x0 = 0. For each method
we display in figure 1(a) the quantity ‖xn − x∗‖. Since we do not have access to the limiting
iterate, we simply took one more step of each method and used it instead of x∗. The residual
terms ‖ f (xn) − f (xtrue)‖ are shown in figure 1(b). As expected, we see linear convergence
for the iterates and the residuals from the truncated inverse Born series method. Also the
first Gauss–Newton (resp. Chebyshev–Halley) iterate error and residual matches that of the
first (resp. second) inverse Born series iterate. The Gauss–Newton method has the expected
quadratic convergence of the error, while the Chebyshev–Halley exhibits super-quadratic
convergence of the error.

5. Forward and inverse Born series for the Schrödinger problem with discrete
internal measurements

Recall from section 2.3 that local convergence of the forward and inverse Born series follows
from showing that the forward Born operators an satisfy bounds of the type (6). We show

13
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Figure 1. Convergence of (a) iterates ‖xn − x∗‖ and (b) residuals ‖ f (xn) − f (xtrue)‖,
for the inverse Born series (∗), Gauss–Newton (◦) and Chebyshev–Halley () methods.
These methods are applied to the Neumann series problem of section 3.2.

in section 5.1 that bounds of the type (6) hold for the operators an for the Schrödinger
problem with discrete internal measurements (defined in (33)). Then we report in section 5.2
a numerical approximation to the convergence radius of inverse Born series, in a setup related
to the hydraulic tomography application of section 6.

5.1. Bounds on the forward Born operators

We recall from section 3.5 that the parameter space for this problem is X = L∞(�̃) where
�̃ ⊂ � and the distance between ∂� and ∂�̃ is positive. The difference between the unknown
and the reference Schrödinger potentials is assumed to be supported in �̃. The measurements
space is Y = C

N×N where N is the number of sources used and the norm is the entry-wise �∞
norm of a matrix in C

N×N .
The proof of lemma 2 below follows a pattern similar to [12]. There are two main

differences. The first is that we work with finitely many measurements. The second is that we
allow the (possibly complex) reference Schrödinger potential q0 to be in L∞(�), whereas in
[12] the reference potential is assumed to be constant and real. The bound (6) immediately
gives a smallness condition that is sufficient for convergence of the forward Born series. The
smallness condition we obtain is identical to that in [12]. This is to be expected because the
underlying equation is the same and only the measurements differ.

To prove lemma 2, we need that the reference Schrödinger potential q0(x) ∈ L∞(�) is
such that the only solution to{−�u + q0u = 0, in �,

u = 0, on ∂�,
(40)

is u = 0. Such q0 are sometimes called ‘non-resonant’ and we assume that all the Schrödinger
potentials that we deal with in what follows are non-resonant. We also need two properties for
the Green function Gq0 (x, y) for the Schrödinger equation (as defined in section 3.5):

(i) The function x �→ Gq0 (x, y) is in L1(�) for all y ∈ �.
(ii) The function y �→ ‖Gq0 (·, y)‖L1(�) is in L∞(�).

These properties can be easily verified in both R
2 and R

3 for G0 (i.e. when q0 ≡ 0)
and hold for general bounded q0. Indeed, we have (� + q0)(Gq0 − G0) = −q0G0. Since the
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right hand side belongs to L2(�), the difference Gq0 − G0 must be in H2
loc(�) by standard

elliptic regularity estimates (see e.g. [6]) and therefore continuous (by Sobolev embeddings).
This argument shows that (Gq0 − G0)(x, y) is continuous as function of x and for all y. By
reciprocity Gq0 − G0 is continuous on � × �. Therefore Gq0 satisfies the desired properties.

We can now show boundedness of the operators an for the Schrödinger equation with
discrete measurements. The proof of the following lemma is similar to that in [12].

Lemma 2. Let q0(x) be a (possibly complex) non-resonant Schrödinger potential. Then the
operators an defined in (33) satisfy the bounds

‖an‖ � αμn, (41)

with α = ν/μ, and where ν and μ are constants depending on � and q0 only (see equations
(43) and (44) below for their definition). The norm on an is the operator norm in L(X⊗n,Y ),
with parameter space X and data space Y as in section 3.5.

Proof. Following remark 2, we first establish the bound on the space of finite linear
combinations of elementary tensor products of L∞(�̃). Let η ∈ (L∞(�̃))⊗n with
representation η = ∑N

k=1 η
(k)

1 ⊗ · · · ⊗ η(k)
n where η

(k)
j ∈ L∞(�̃), j = 1, . . . , n, k = 1, . . . , N,

and observe

‖an(η)‖ = sup
i, j

∣∣∣∣∣∣
(

N∑
k=1

an
(
η

(k)

1 ⊗ · · · ⊗ η(k)
n

))
i, j

∣∣∣∣∣∣
�

N∑
k=1

sup
i, j

∫
�̃n+2

∣∣Gq0 (x, y1) · · · Gq0 (yn−1, yn) ·

· · · Gq0 (yn, z)η
(k)

1 (y1) · · · η(k)
n (yn)φi(z)φ j(x)

∣∣dz dy1 · · · dyn dx

�
N∑

k=1

‖η(k)

1 ‖L∞(�̃) · · · ‖η(k)
n ‖L∞(�̃) sup

i, j

∫
�̃n+2

∣∣Gq0 (x, y1) ·

· · · Gq0 (yn−1, yn)Gq0 (yn, z)φi(z)φ j(x)
∣∣dz dy1 · · · dyn dx. (42)

Since this bound holds for all representations of η, it must hold for the infimum over all the
representations of η, which gives the projective norm (4). Therefore the operator an is bounded
on the space of finite linear combinations of elementary tensor products and

‖an(η)‖ � ‖η‖(L∞(�̃))⊗n sup
i, j

∫
�̃n+2

∣∣Gq0 (x, y1) · · · Gq0 (yn−1, yn) ·

· · · Gq0 (yn, z)φi(z)φ j(x)
∣∣dz dy1 · · · dyn dx.

By the bounded extension theorem (see e.g. [9, section 2.7]) this also gives an (identical) upper
bound for the extension of an to the completion of (L∞(�̃))⊗n under the projective norm.

Hence we can estimate the operator norm ‖a1‖ by

‖a1‖ � sup
i, j

∫
�̃×�̃×�̃

∣∣Gq0 (x, y1)Gq0 (y1, z)φi(z)φ j(x)
∣∣dz dy1 dx

� sup
i, j

∫
�̃

∫
�̃

∣∣Gq0 (y1, z)φi(z)
∣∣dz

∫
�̃

∣∣Gq0 (x, y1)φ j(x)
∣∣dx dy1

� sup
i

(
sup
x∈�̃

∫
�̃

∣∣Gq0 (x, y)φi(y)
∣∣dy

)2

|�|.

15



Inverse Problems 30 (2014) 045014 P Bardsley and F Guevara Vasquez

Since q0 is assumed to be non-resonant and using that φi ∈ L∞(�), the quantity

ν =
(

sup
i

sup
x∈�̃

∫
�̃

∣∣Gq0 (x, y)φi(y)
∣∣dy

)2

|�| (43)

is bounded. We have established that ‖a1‖ � ν.
For the remaining Born operators, we proceed recursively. Considering again (42) for

n � 2, we have

‖an‖ � sup
i, j

∫
�̃n+2

∣∣Gq0 (x, y1)Gq0 (y1, y2) ·

· · · Gq0 (yn−1, yn)Gq0 (yn, z)φi(z)φ j(x)
∣∣dz dy1 · · · dyn dx

� sup
i, j

(
sup
y1∈�̃

∫
�̃

∣∣Gq0 (x, y1)φ j(x)
∣∣dx

)(
sup
yn∈�̃

∫
�̃

∣∣Gq0 (yn, z)φi(z)
∣∣dz

)
·
∫

�̃n

∣∣Gq0 (y1, y2) · · · Gq0 (yn−1, yn)
∣∣dy1 · · · dyn

�
(

sup
i

sup
x∈�̃

∫
�̃

∣∣Gq0 (x, y)φi(y)
∣∣dy

)2

In−1

where

In−1 =
∫

�̃n

∣∣Gq0 (y1, y2) · · · Gq0 (yn−1, yn)
∣∣dy1 · · · dyn.

Estimating In−1 we find that

In−1 � sup
yn−1∈�̃

∫
�̃

∣∣Gq0 (yn−1, yn)
∣∣dyn ·

∫
�̃n−1

∣∣Gq0 (y1, y2) · · · Gq0 (yn−2, yn−1)
∣∣dy1 · · · dyn−1

� μIn−2,

where the quantity

μ = sup
x∈�̃

‖Gq0 (x, ·)‖L1(�̃) (44)

is finite by the properties that Gq0 satisfies. Finally, noting that

I1 =
∫

�̃×�̃

∣∣Gq0 (y1, y2)
∣∣dy1dy2

� μ|�|,
it follows that

In−1 � |�|μn−1,

and thus

‖an‖ �
(

sup
i

sup
x∈�̃

‖Gq0 (x, ·)‖L1(Bρ (xi))

)2

|�|μn−1 = αμn.

�

Remark 5 (Lp Bounds).Bounds similar to those in lemma 2 can be proven when the parameter
space is X = L2(�) and the data space is Y = C

N×N , endowed with the Frobenius norm. Once
we have bounds for the ∞ and 2 norms, it is possible to invoke the Riesz–Thorin theorem
(as in [12]) to show bounds for 2 � p � ∞ by interpolation. In this case the data space is
X = Lp(�) and the parameter space is Y = C

N×N , endowed with the entry-wise p−norm (i.e.
the p−norm of the C

N2
vector obtained by stacking the columns of a matrix in C

N×N).
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Figure 2. Setup for the numerical experiments with the Schrödinger problem with
internal measurements. The domain � is the unit square. The domain �̃ where the
Schrödinger potential is unknown is in dotted line and its boundary ∂�̃ is at a distance
ε from ∂�. The supports of the functions used as source terms/measurements are the
red circle.

Having established norm bounds on the operators an for the discrete measurements
Schrödinger problem, we can apply the results from section 2.3 to establish local convergence
of the forward Born series, local convergence of the inverse Born series (provided the linear
operator b1 used to prime the series has sufficiently small norm, see theorem 1), stability of
the inverse Born series (theorem 2) and even an error estimate (theorem 3). The actual choice
of b1 is discussed in section 7.

5.2. Numerical illustration

Applying theorem 1 to the Schrödinger problem with discrete measurements, we can expect
the inverse Born series to converge when the difference d between the data for the unknown
and reference Schrödinger potentials satisfies

‖d‖ � 1

(1 + α)μ‖b1‖ ,

where the constants α = ν/μ and μ are constants defined by (43) and (44) and the norms are
as in section 3.5.

In preparation for the application to hydraulic tomography, we consider the setup depicted
in figure 2 with computational domain � = [0, 1]2. The distance between � and �̃ is
ε ∈ [0, 1/4] and the sources φi are supported in disks of radius 0.05 with centers (0.2k, 0.2l),
for k, l = 1, . . . , 4. The sources are φi(x) = φ(x − xi) where xi is the center of the disk
support and φ is an infinitely smooth function with 0 � φ(x) � 1. Although theorem 1 allows
for the supports of the sources to overlap, we take them to be disjoint as this is the case in the
hydraulic tomography application.

The constants μ and ν are approximated by solving appropriate (forward) Schrödinger
problems with q0 = 0. The grid we use for this purpose is uniform and consists of the nodes
(kh, lh) for k, l = 0, . . . , 400 and h = 1/400. We display in figure 3 the radius of convergence
of the inverse Born series predicted by theorem 1, assuming ‖b1‖ = 1. We observe that
the radius of convergence increases as ε increases, or in other words, the larger the region
where we assume the Schrödinger potential is known, the larger the perturbations in the data
the method can handle.
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Figure 3. Numerical approximation of the radius of convergence for the inverse Born
series for the Schrödinger problem with discrete internal measurements and assuming
‖b1‖ � 1. The reference Schrödinger potential is q0 = 0 and the setup is that given in
figure 2.

6. Application to transient hydraulic tomography

Consider an underground aquifer confined in a bounded domain �. The head or hydraulic
pressure ui(x, t) in the aquifer due to injecting water in the ith well satisfies the equation⎧⎪⎨⎪⎩

S
∂ui

∂t
= ∇ · (σ∇ui) − φi, for x ∈ �, t > 0,

ui(x, t) = 0, for x ∈ ∂�, t > 0,

ui(x, 0) = g(x), for x ∈ �,

(45)

where i = 1, . . . , N. Here we assume there are no sources or leaks of water in the aquifer,
other than those prescribed at the wells. Hence the source term φi(x, t) is supported at the i-th
well and represents the water injected at the ith well. The physical properties of the aquifer
are modeled by the storage coefficient S(x) and the hydraulic conductivity σ (x). The initial
head (at t = 0) is given by g(x).

The inverse problem of hydraulic tomography that we consider here, is to determine the
coefficients σ and S from knowledge of the discrete internal measurements

Mi, j(t) =
∫

�

φ j(x, t) ∗ ui(x, t)dx, i, j = 1, . . . , N, (46)

where the convolution is in time. Physically these measurements correspond to time domain
measurements at the jth well of a spatial average of the hydraulic pressure ui generated by
injecting in the ith well. Here for simplicity, we use for the impulse response (in time) of
the jth measurement well the function φ j(x, t). In a more general setup, the injection and
measurement ‘well functions’ can be different.

6.1. Reformulation as a discrete internal measurements Schrödinger problem

The frequency domain version of problem (45) is{∇ · (σ∇ûi) − ıωSûi = φ̂i, for x ∈ �,

ûi = 0, for x ∈ ∂�,
(47)
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where the hat denotes Fourier transform in time, i.e.

ûi(x, ω) =
∫

R

ui(x, t)e−ıωtdt and φ̂i(x, ω) =
∫

R

φi(x, t) e−ıωtdt.

The inverse problem is now to recover σ and S from the discrete internal measurements

M̂i, j(ω) =
∫

�

φ̂ j(x, ω)ûi(x, ω) dx, (48)

which is the Fourier transform in time of the discrete internal measurements for the time
domain problem (46).

Next we use the Liouville transformation by defining vi = σ 1/2ûi. If ûi satisfies (47) then
vi must satisfy the Schrödinger equation⎧⎨⎩�vi −

(
�σ 1/2

σ 1/2
+ ıωS

σ

)
vi = φ̂i

σ 1/2 , for x ∈ �,

vi = 0, for x ∈ ∂�.

(49)

The internal measurements M̂i, j(ω) can now be expressed in terms of vi as

M̂i, j(ω) =
∫

�

φ̂ j(x, ω)ûi(x, ω) dx =
∫

�

φ̂ j(x, ω)

σ 1/2(x)
vi(x, ω) dx.

Hence the measurements M̂i, j(ω) are of the form defined in (2) with test functions φ̂i/σ
1/2

(modeling both injection and measurement).
If we do have access to the inside of the wells (i.e. supp φ̂i), it is reasonable to assume that

σ is known in supp φ̂i. Hence the test functions φ̂i/σ
1/2 are known and we can use any method

for solving the inverse Schrödinger problem with discrete data to obtain an approximation to
the complex Schrödinger potential

Q(x;ω) = �σ 1/2

σ 1/2
+ ıωS

σ
, for x ∈ �. (50)

Remark 6. A limitation of transforming the hydraulic tomography problem into an inverse
Schrödinger problem is that the conductivity σ appears as �σ 1/2/σ 1/2 in the Schrödinger
potential. Therefore any high (spatial) frequency components in σ 1/2 are magnified. The
resulting Schrödinger potential can easily fall outside of the radius of convergence of the
inverse Born series. It may be possible to overcome this limitation if we apply the inverse
Born series to the hydraulic tomography problem directly (i.e. without doing the Liouville
transform).

6.2. Recovery of S and σ from one frequency

Once we have approximated Q(x;ω) for a single (known) frequency ω, the real part of
Q(x;ω) can be used to estimate the hydraulic conductivity σ . This can be achieved by solving
for σ 1/2(x) in the equation

�σ 1/2 − Re(Q(x;ω))σ 1/2 = 0,

on the aquifer without the wells, i.e.

�′ ≡ �\
n⋃

i=1

supp φ̂i,

and with Dirichlet boundary conditions at ∂�′ determined from the (assumed) knowledge of σ

at the measurement wells and at ∂�. An estimate of the storage coefficient S from Im(Q(x;ω))

and σ (x) follows since

S(x) = σ (x)Im(Q(x;ω))/ω.
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In principle, measurements M̂i, j(ω) for one single frequency are enough to find both
parameters σ (x) and S(x). Unfortunately, this procedure seems to be much more sensitive to
changes in σ than to changes in S. This is due to �σ 1/2 appearing in the expression of Q(x;ω)

(see remark 6). We deal with this problem by using data for two frequencies as is explained
below.

6.3. Recovery of S and σ from two frequencies

Here the data we have is M̂i, j(ω1) and M̂i, j(ω2) for two frequencies ω1 �= ω2 and we use
it to solve two discrete measurements Schrödinger problems for Q(x;ω1) and Q(x;ω2), for
x ∈ �. A good rule of thumb is to choose the frequencies so that ω1 is sufficiently low to make
Re(Q(x;ω1)) the largest term in Q(x;ω1) and ω2 is sufficiently large to make Im(Q(x;ω2))

the largest term in Q(x;ω2). For each point x in �′ (the domain without the wells), we solve
for r1(x) and r2(x) in the 2 × 2 system:[

1 ıω1

1 ıω2

][
r1(x)

r2(x)

]
=

[
Q(x;ω1)

Q(x;ω2)

]
. (51)

Then to estimate the conductivity we solve for σ 1/2 in the equation:

�σ 1/2 − r1(x)σ 1/2 = 0, for x ∈ �′, (52)

with Dirichlet boundary condition given by the knowledge of σ on ∂�′. Once we know σ , the
storage coefficient S can be easily obtained from r2, indeed:

S(x) = σ (x)r2(x). (53)

7. Numerical experiments

We now present numerical experiments comparing inverse Born series with the Gauss–Newton
and Chebyshev–Halley methods for both the discrete internal measurements Schrödinger
problem (section 7.1) and an application to transient hydraulic tomography (section 7.2).

7.1. Schrödinger potential reconstructions from discrete internal measurements

As discussed in section 3.5, our objective is to recover an unknown Schrödinger potential q
from the measurements f (q) = D, where the entries Di, j of the N × N matrix D are given
by (2).

We discretize the computational domain � = [0, 1]2 with a uniform grid consisting of
the nodes (kh, lh), for k, l = 0, . . . , 400 and h = 1/400. We use a total of 16 measurement
functions φ j, which are smooth and satisfy: ‖φ j‖L∞(�) = 1 for j = 1, . . . , 16; φ j is compactly
supported on a circle of radius ρ = 0.05; and the centers of the wells are uniformly
spaced in the domain at the points (0.2m, 0.2n) for m, n = 1, . . . , 4. The Laplacian in
the Schrödinger equation is discretized with the usual five point finite differences stencil
and the true Schrödinger potential is simply evaluated at the grid nodes. The measurements
Di, j = 〈φ j, ui〉L2(�) involve integrals that are approximated by the trapezoidal rule on the grid.
Measurements f (q0) for the reference potential q0 are computed in the same grid. The data
that we use for the reconstructions is f (q) − f (q0).

The reconstructions are performed on a different (coarser) grid consisting of the nodes
(khc, lhc) for k, l = 0, . . . , 80 and hc = 1/80. We compare the results obtained from
a truncated inverse Born series of order 5, and 10 iterations of the Gauss–Newton and
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Figure 4. Comparison of reconstructions of a smooth (top) and piecewise constant
(bottom) Schrödinger potential from discrete internal data at 16 locations and with no
noise. The color scale is identical for all images in a row.

Chebyshev–Halley methods. These three reconstructions are applied to F , a coarse grid version
of the map f . For instance, the reconstructions for the inverse Born series are

k∑
n=1

Bn(( f (q) − f (q0))
⊗n),

where the coefficients Bn are the inverse Born series coefficients for the coarse grid F (rather
than those for the fine grid f , which would be an inverse crime). For the inverse Born series, the
operator B1 is a regularized pseudoinverse of A1 (i.e. the linearization of the coarse grid forward
map F) where the singular values of A1 which are less than 0.01 times the largest singular
value (of A1) are treated as zero. The same regularization is used for the Jacobians involved in
the Gauss–Newton and Chebyshev–Halley methods. We use q0 = 0 as the reference potential
for the inverse Born series as well as the initial guess for the iterative Gauss–Newton and
Chebyshev–Halley methods.

Figure 4 shows the reconstructions of a real smooth Schrödinger potential −14 � q(x) �
4 and a real piecewise constant potential with −6 � q(x) � 12. In both cases, the potential and
the generated data are small enough to satisfy the hypotheses of theorem 3. Figure 5 displays
the reconstructions of the same potentials from noisy data. The noisy data is obtained by first
generating the true data f (q) − f (q0) as above, and then perturbing it with 1% zero mean
additive Gaussian noise, i.e. with standard deviation 0.01 maxi, j |( f (q)− f (q0))i, j|. Similarly,
figure 6 displays the reconstructions with 5% additive Gaussian noise, i.e. with zero mean
and standard deviation 0.05 maxi, j |( f (q) − f (q0))i, j|. In the experiments with noise present,
the pseudoinverses of the Jacobians have been additionally regularized to compensate for the
noise level (i.e. only singular values above 0.02 (resp. 0.06) times the largest singular value
are retained for inversion for 1% (resp. 5%) noise).

7.2. Transient hydraulic tomography

In the frequency domain hydraulic tomography problem (see section 6), the objective is to
estimate the hydraulic conductivity σ (x) and the storage coefficient S(x) from the frequency
dependent measurements M̂i, j(ω) defined in (48).

21



Inverse Problems 30 (2014) 045014 P Bardsley and F Guevara Vasquez

True Potential Inverse Born Series Gauss-Newton Chebyshev-Halley
sm

o
ot

h

-15

0

5

p
cw

s.
co

n
st

.

-5

0

10

Figure 5. Comparison of reconstructions of a smooth (top) and piecewise constant
(bottom) Schrödinger potential from discrete internal data at 16 locations and with 1%
additive Gaussian noise. The color scale is identical for all images in a row.
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Figure 6. Comparison of reconstructions of a smooth (top) and piecewise constant
(bottom) Schrödinger potential from discrete internal data at 16 locations and with 5%
additive Gaussian noise. The color scale is identical for all images in a row.

As before, the computational domain � = [0, 1]2 is discretized with a uniform grid with
nodes (kh, lh) for k, l = 0, . . . 400 and h = 1/400. The true storage coefficient S is evaluated
on this grid. The discretization of the term ∇ · [σ∇u] is done through the stencil

(∇ · [σ∇u])(kh, lh) ≈ σk+1/2,l
uk+1,l − uk,l

h2
+ σk−1/2,l

uk−1,l − uk,l

h2

+ σk,l+1/2
uk,l+1 − uk,l

h2
+ σk,l−1/2

uk,l−1 − uk,l

h2
,

where uk,l ≈ u(kh, lh) and similarly for σ . This means that the true conductivity is evaluated
at the midpoints of the horizontal and vertical edges of the grid. The boundary points have a
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Figure 7. Hydraulic tomography reconstructions of the hydraulic conductivity σ (x)
(top) and the storage coefficient S(x) (bottom) for noiseless data and different methods.

different stencil that takes into account the homogeneous Dirichlet boundary conditions, and
that we do not include here for the sake of clarity.

The frequency domain measurement functions φ̂i(x, ω) we use are, for simplicity,
independent of the frequency ω and are given in x by the same 16 compactly supported
smooth functions described in section 7.1. The measurements M̂i, j(ω) = 〈φ̂ j, ûi〉L2(�) involve
integrals over � that are evaluated by using the trapezoidal rule on the same grid that is used
for the forward simulations. Recalling section 6.1, the measurements M̂i, j(ω) can also be
viewed as discrete internal measurements of a Schrödinger field vi (see (49)) associated with
the potential Q(x;ω) defined in (50) i.e. M̂(ω) = f (Q(x;ω)) with well functions φ̂i/σ

1/2.
We also compute measurements for the reference potential Q0 = 0 on this grid using the
well functions φ̂i/σ

1/2 (this corresponds to S = 0 and σ = 1). The measurements we use for
reconstructions are f (Q(x;ω)) − f (Q0) (for two different frequencies).

Reconstructions are again performed on the coarse grid consisting of the nodes (khc, lhc)

for k, l = 0, . . . , 80 and hc = 1/80. For each method (inverse Born series order 5, Gauss–
Newton, and Chebyshev–Halley), an approximation of the complex Schrödinger potential
Q(x;ω) is found from the frequency domain data f (Q(x;ω)) − f (Q0) for ω = 1, 10.
The parameters S and σ are then estimated with the procedure of section 6.3. The grid
used for solving the problems (52) for the conductivity is the same coarse grid used for the
reconstructions (to avoid an inverse crime). The boundary conditions for (52) are obtained
from the true conductivity evaluated at appropriate points.

Figure 7 shows the reconstructions of the hydraulic conductivity σ and storage coefficient
S when data has no noise. The conductivity σ is smooth and |1 − σ | < 0.8. The storage
coefficient S is also smooth and −5 � S � 3. We use the true conductivity σ inside the wells
but the storage coefficient S inside the wells is computed, as in the rest of the domain, from
(53). Reconstructions with 1% additive zero mean Gaussian noise are included in figure 8.
As before this means the noise has standard deviation 0.01 maxi, j |[ f (Q(x;ω)) − f (Q0)]i, j|,
which is different for the two frequencies we use. Similarly, figure 9 displays reconstructions
with 5% additive zero mean Gaussian noise.

Remark 7. In our experiments, the parameters σ and S are chosen so that the corresponding
Schrödinger potential Q(x;ω) and the generated data are small enough to satisfy the hypotheses
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Figure 8. Hydraulic tomography reconstructions of the hydraulic conductivity σ (x)
(top) and the storage coefficient S(x) (bottom) for data with 1% additive Gaussian noise
and different methods.
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Figure 9. Hydraulic tomography reconstructions of the hydraulic conductivity σ (x)
(top) and the storage coefficient S(x) (bottom) for data with 5% additive Gaussian noise
and different methods.

of theorem 3 (for ω = 1, 10). This makes the contrasts in σ (especially) and S too small to
represent a realistic problem (see e.g. [4]). As noted before in remark 6, it may be possible to
overcome this by using the inverse Born series on the hydraulic tomography problem directly.

8. Discussion

We show here that with little modification, the inverse Born series convergence results of
Moskow and Schotland [12] can be generalized to mappings between Banach spaces. With
this abstraction, we only need to show that the forward Born operators are bounded as in (6)
to obtain convergence, stability and error estimates for the inverse Born series. Such results

24



Inverse Problems 30 (2014) 045014 P Bardsley and F Guevara Vasquez

are then proven for the problem of finding the Schrödinger potential from discrete internal
measurements. A nice byproduct of our approach is that we can relate forward and inverse
Born series coefficients (up to a symmetrization) to the Taylor series coefficients of an analytic
map and its inverse (provided it exists).

Since the cost of computing the nth term of the inverse Born series increases exponentially
in n, we also consider the iterative method obtained by restarting the inverse Born series
after summing the first k terms. We obtain a class of methods that we call RIBS(k) and
that includes the well-known Gauss–Newton and Chebyshev–Halley iterative methods. Our
numerical results show these methods give reconstructions comparable to those obtained with
the inverse Born series.

Among the future directions of this work would be to show the RIBS(k) method is
convergent. We conjecture that the convergence rate of RIBS(k) is of order k. The RIBS(k)
method is only locally convergent, meaning that we need to be already close to the solution for
the method to converge. Globalization strategies that keep, when possible, this higher order
convergence rate are needed.

The application we use to illustrate our method is a problem related to transient hydraulic
tomography. Since we convert this problem to the problem of finding a Schrödinger potential
and all the methods we use here are locally convergent, the contrasts that we can deal with
are far from realistic ones. We believe that a proper globalization strategy will allow us to
deal with higher contrasts. Another important question that we have not dealt with here is
that of regularization. The only regularization that we consider here is the choice of the linear
operator that primes the inverse Born series. By analogy with what can be done with the
Gauss–Newton method, we believe it is possible to include specific a priori information about
the true parameters by formulating the problem as minimizing the misfit plus a penalty term
that takes into account the a priori information.
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Appendix. Inverse Born series in Banach spaces

The proofs in this appendix are an adaptation of the proofs by Moskow and Schotland [12] to
inverse Born series in Banach spaces. The results are stated in section 2.3.

A.1. Proof of bounds for inverse Born series coefficients (lemma 1)

Proof. Since ‖an‖ � αμn, we can estimate for n � 2:

‖bn‖ �
n−1∑
m=1

∑
s1+···+sm=n

‖bm‖‖as1‖ · · · ‖asm‖‖b1‖n

� ‖b1‖n
n−1∑
m=1

‖bm‖
∑

s1+···+sm=n

(αμs1 ) . . . (αμsm )

= ‖b1‖nμn
n−1∑
m=1

‖bm‖αm
∑

s1+···+sm=n

1. (A.1)
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The last sum is the number of partitions of the integer n into m ordered parts. Hence for n � 2,
we get

‖bn‖ � (μ‖b1‖)n
n−1∑
m=1

‖bm‖αm

(
n − 1

m − 1

)

� (μ‖b1‖)n

(
n−1∑
m=1

‖bm‖
)(

n−1∑
m=1

αm

(
n − 1

m − 1

))

� (μ‖b1‖(α + 1))n
n−1∑
m=1

‖bm‖. (A.2)

To get the last inequality we used that

n−1∑
m=1

αm

(
n − 1

m − 1

)
=

n−2∑
m=0

αm+1

(
n − 1

m

)
� α

n−1∑
m=0

αm+1

(
n − 1

m

)
= α(1 + α)n−1 � (1 + α)n.

Following [12] we can estimate the coefficients in the inverse Born series by

‖bn‖ � Cn(μ‖b1‖(α + 1))n‖b1‖, for n � 2, (A.3)

where the constants Cn are defined recursively by

C2 = 1 and Cn+1 = 1 + ((α + 1)μ‖b1‖)nfor n � 2. (A.4)

The constants Cn are then

Cn =
n−1∏
m=2

(1 + ((α + 1)μ‖b1‖)m) � exp

(
1

1 − (α + 1)μ‖b1‖
)

, (A.5)

where the bound for Cn can be derived as in [12] and is valid when (α + 1)μ‖b1‖ < 1, which
is one of the hypothesis. The result follows from the bounds (A.3) and (A.5). �

A.2. Proof of local convergence of inverse Born series (theorem 1)

Proof. Using the estimate of lemma 1, we can dominate the term of the inverse Born series
by a geometric series as follows

‖bn(d
⊗n)‖ � β((α + 1)μ‖b1‖‖d‖)n. (A.6)

Therefore the Born series is absolutely convergent when (α + 1)μ‖b1‖‖d‖ < 1, which is one
of the assumptions of this theorem. The tail of the series with terms the absolute values of the
inverse Born series terms, can be estimated by noticing that:

∞∑
N+1

β((α + 1)μ‖b1‖‖d‖)n = β
((α + 1)μ‖b1‖‖d‖)N+1

1 − (α + 1)μ‖b1‖‖d‖ . (A.7)

�
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A.3. Proof of stability of inverse Born series (theorem 2)

Proof. We use an identity on tensor products to conclude that

‖h1 − h2‖ �
∞∑

n=1

‖bn
(
d⊗n

1 − d⊗n
2

)‖
=

∞∑
n=1

∥∥∥∥∥bn

(
n−1∑
k=0

d⊗k
1 ⊗ (d1 − d2) ⊗ d⊗(n−k−1)

2

)∥∥∥∥∥
�

∞∑
n=1

nMn−1‖bn‖‖d1 − d2‖. (A.8)

The desired estimate follows from applying the estimate for the ‖bn‖ in lemma 1,

‖h1 − h2‖ � ‖d1 − d2‖
∞∑

n=1

nMn−1β((α + 1)μ‖b1‖)n (A.9)

� ‖d1 − d2‖ β

M

1

(1 − M(α + 1)μ‖b1‖)2
, (A.9)

since we assumed that M(α + 1)μ‖b1‖ < 1. Here we used the following inequality:

β

∞∑
n=1

nMn−1δn = β

M

∞∑
n=1

n(Mδ)n � β

M

∞∑
n=0

(n + 1)(Mδ)n = β

M

1

(1 − Mδ)2

where δ ≡ (α + 1)μ‖b1‖. �

A.4. Proof of inverse Born series error estimate (theorem 3)

Proof. Taking the expression for d in (17) and replacing in the expression for h∗ in (17) we
get:

h∗ =
∞∑

n=1

cn(h
⊗n), (A.10)

where

c1 = b1a1,

cn =
(

n−1∑
m=1

bm

( ∑
s1+···sm=n

as1 ⊗ · · · ⊗ asm

))
+ bn(a

⊗n
1 ), for n � 2. (A.11)

Using the expression (10) of bn in terms of bm, 1 � m � n − 1, we get for n � 2 that

cn =
n−1∑
m=1

bm

( ∑
s1+···sm=n

as1 ⊗ · · · ⊗ asm

) (
I − (b1a1)

⊗n
)
. (A.12)

Hence the reconstruction error is

h − h∗ = (h − b1a1h) −
∞∑

n=2

n−1∑
m=1

bm

( ∑
s1+···sm=n

as1 ⊗ · · · ⊗ asm

) (
h⊗n − (b1a1h)⊗n

)
. (A.13)

We now estimate the error:

‖h − h∗‖ � ‖h − b1a1h‖ +
∞∑

n=2

n−1∑
m=1

∑
s1+···sm=n

‖bm‖‖as1‖ · · · ‖asm‖ ∥∥h⊗n − (b1a1h)⊗n
∥∥ . (A.14)
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For n � 1 we can estimate:

‖h⊗n − (b1a1h)⊗n‖ =
∥∥∥∥∥

n−1∑
k=0

h⊗k ⊗ (h − b1a1h) ⊗ (b1a1h)⊗(n−k−1)

∥∥∥∥∥
� nMn−1‖h − b1a1h‖, (A.15)

where we used the hypothesis ‖h‖ � M, ‖b1a1h‖ � M. Since we assumed the Born series
coefficients satisfy ‖an‖ � αμn we get:

‖h − h∗‖ � ‖h − b1a1h‖
(

1 +
∞∑

n=2

n−1∑
m=1

∑
s1+···sm=n

‖bm‖(αμs1 ) · · · (αμsm )nMn−1

)

= ‖h − b1a1h‖
(

1 +
∞∑

n=2

n−1∑
m=1

‖bm‖αmnμnMn−1

(
n − 1

m − 1

))
. (A.16)

Here we have used again the fact that the number of ordered partitions of n into m integers is:∑
s1+···sm=n

1 =
(

n − 1

m − 1

)
.

Clearly we have that:

‖h − h∗‖ � ‖h − b1a1h‖
(

1 +
∞∑

n=2

nμnMn−1

(
n−1∑
m=1

‖bm‖
)(

n−1∑
m=1

αm

(
n − 1

m − 1

)))
. (A.17)

Now using the two facts:
n−1∑
m=1

‖bm‖ � β

n−1∑
m=1

((α + 1)μ‖b1‖)m(lemma 1),

n−1∑
m=1

αm

(
n − 1

m − 1

)
� (1 + α)n(as in(A.2)), (A.18)

we get the inequality

‖h − h∗‖ � ‖h − b1a1h‖
(

1 +
∞∑

n=2

n

M
(μM(1 + α))nβ

n−1∑
m=1

((α + 1)μ‖b1‖)m

)
. (A.19)

Adding the m = 0 term to the geometric series over m and summing we get:

‖h − h∗‖ � ‖h − b1a1h‖
(

1 + β

M

∞∑
n=1

n(μM(1 + α))n 1 − ((α + 1)μ‖b1‖)n

1 − (α + 1)μ‖b1‖

)
. (A.20)

The hypothesis μM(α + 1) < 1 and μ(α + 1)‖b1‖ < 1 imply the quantity in parenthesis is
bounded and depends only on M, α, β and μ and ‖b1‖. �

References

[1] Arridge S, Moskow S and Schotland J C 2012 Inverse Born series for the Calderon problem Inverse
Problems 28 035003

[2] Arridge S R 1999 Optical tomography in medical imaging Inverse Problems 15 R41
[3] Borcea L 2002 Electrical impedance tomography Inverse Problems 18 R99–R136 (Topical Review)
[4] Cardiff M and Barrash W 2011 3-D transient hydraulic tomography in unconfined aquifers with

fast drainage response Water Resour. Res. 47 W12518
[5] Deuflhard P 2011 Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive

Algorithms (Springer Series in Computational Mathematics vol 35) (Heidelberg: Springer)

28

http://dx.doi.org/10.1088/0266-5611/28/3/035003
http://dx.doi.org/10.1088/0266-5611/15/2/022
http://dx.doi.org/10.1088/0266-5611/18/6/201
http://dx.doi.org/10.1029/2010WR010367
http://dx.doi.org/10.1007/978-3-642-23899-4


Inverse Problems 30 (2014) 045014 P Bardsley and F Guevara Vasquez

[6] Evans L 2010 Partial Differential Equations 2nd edn (Providence, RI: American Mathematical
Society)

[7] Hettlich F and Rundell W 2000 A second degree method for nonlinear inverse problems SIAM J.
Numer. Anal. 37 587–620

[8] Kilgore K, Moskow S and Schotland J C 2012 Inverse Born series for scalar waves J. Comput.
Math. 30 601–14

[9] Kreyszig E 1989 Introductory Functional Analysis with applications Wiley Classics Library (New
York: Wiley)

[10] Markel V A and Schotland J C 2007 On the convergence of the Born series in optical tomography
with diffuse light Inverse Problems 23 1445–65

[11] Markel V A, O’Sullivan J A and Schotland J C 2003 Inverse problem in optical diffusion
tomography: iv. Nonlinear inversion formulas J. Opt. Soc. Am. A 20 903–12

[12] Moskow S and Schotland J C 2008 Convergence and stability of the inverse scattering series for
diffuse waves Inverse Problems 24 065005

[13] Moskow S and Schotland J C 2009 Numerical studies of the inverse Born series for diffuse waves
Inverse Problems 25 095007

[14] Ryan R A 2002 Introduction to Tensor Products of Banach Spaces Springer Monographs in
Mathematics (London: Springer)

[15] Whittlesey E F 1965 Analytic functions in Banach spaces Proc. Amer. Math. Soc. 16 1077–83
[16] Zeidler E 1986 Fixed-points theorems Nonlinear Functional Analysis and its Applications. I

(New York: Springer)

29

http://dx.doi.org/10.1137/S0036142998341246
http://dx.doi.org/10.4208/jcm.1205-m3935
http://dx.doi.org/10.1088/0266-5611/23/4/006
http://dx.doi.org/10.1364/JOSAA.20.000903
http://dx.doi.org/10.1088/0266-5611/24/6/065005
http://dx.doi.org/10.1088/0266-5611/25/9/095007
http://dx.doi.org/10.1007/978-1-4471-3903-4
http://dx.doi.org/10.1090/S0002-9939-1965-0184092-2
http://dx.doi.org/10.1007/978-1-4612-4838-5

	1. Introduction
	2. Forward and inverse Born series in Banach spaces
	2.1. Forward Born series
	2.2. Inverse Born series
	2.3. Inverse Born series local convergence

	3. Examples of forward and inverse Born series
	3.1. Taylor series
	3.2. Neumann series
	3.3. Optical tomography with diffuse waves model [12]
	3.4. The Calderón or electrical impedance tomography problem [1]
	3.5. The Schrödinger problem with discrete internal measurements

	4. Inverse Born series and iterative methods
	4.1. Inverse Born series as an iterative method
	4.2. Restarted inverse Born series (RIBS)
	4.3. Numerical experiments on a Neumann series toy problem

	5. Forward and inverse Born series for the Schrödinger problem with discrete internal measurements
	5.1. Bounds on the forward Born operators
	5.2. Numerical illustration

	6. Application to transient hydraulic tomography
	6.1. Reformulation as a discrete internal measurements Schrödinger problem
	6.2. Recovery of
	6.3. Recovery of

	7. Numerical experiments
	7.1. Schrödinger potential reconstructions from discrete internal measurements
	7.2. Transient hydraulic tomography

	8. Discussion
	Acknowledgments
	Appendix. Inverse Born series in Banach spaces
	A.1. Proof of bounds for inverse Born series coefficients (lemma 1)
	A.2. Proof of local convergence of inverse Born series (theorem 1)
	A.3. Proof of stability of inverse Born series (theorem 2)
	A.4. Proof of inverse Born series error estimate (theorem 3)

	References

