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Abstract

Convergence and stability results for the inverse Born series (Moskow and
Schotland 2008 Inverse Problems 24 065005) are generalized to mappings
between Banach spaces. We show that by restarting the inverse Born series
one obtains a class of iterative methods containing the Gauss—Newton and
Chebyshev—Halley methods. We use the generalized inverse Born series results
to show convergence of the inverse Born series for the Schrodinger problem
with discrete internal measurements. In this problem, the Schrodinger potential
is to be recovered from a few measurements of solutions to the Schrodinger
equation resulting from a few different source terms. An application of this
method to a problem related to transient hydraulic tomography is given, where

the source terms model injection and measurement wells.

Keywords: inverse Schrodinger problem, inverse Born series, transient

hydraulic tomography

(Some figures may appear in colour only in the online journal)

1. Introduction

We consider the problem of finding a Schrodinger potential g(x) (which may be complex)
from discrete internal measurements of the solution u; (x) to the Schrodinger equation

—Au; + qu; = ¢;, forx e Q,
u; =0, for x € 092,

)

in a closed bounded set Q@ C R? ford > 2, and for different (known) source terms ¢; € C*(£2),
i=1,...,N. We further assume g eNLOO(Q) is known in 2\ €2, where €2 is a closed subset of

2 with a finite distance separating d<2 and 9€2.

0266-5611/14/045014+29$33.00 © 2014 IOP Publishing Ltd Printed in the UK


http://dx.doi.org/10.1088/0266-5611/30/4/045014
mailto:bardsley@math.utah.edu
mailto:fguevara@math.utah.edu

Inverse Problems 30 (2014) 045014 P Bardsley and F Guevara Vasquez

The internal measurements we consider are of the form
D,-,j=/¢j(x)ui(x)dx, fori,j=1,...,N. (2)
Q

The measurement D; ; is a weighted average of the field u; resulting from the ith source term.
Although it is not necessary for our method to work, we assume for simplicity the same source
terms are used as weights for the averages.

A motivation for this inverse Schrodinger problem is transient hydraulic tomography (see
e.g. [4] for a review). The hydraulic pressure or head v (X, ¢) in an underground reservoir or
aquifer €2 resulting from a source ¥ (X, ¢) (the injection well) satisfies the initial value problem

Sv, =V - (cVv) — 1, forx e Q,1r > 0,
v(x,t) =0, forx € 02, > 0, 3)
v(x,0) = g(x), forx € Q.

Here S(x) is the storage coefficient and o (x) the hydraulic conductivity of the aquifer. The
inverse problem is to image both S(x) and o (x) from a series of measurements made by fixing
a source term at one well, and measuring the resulting pressure response at the other wells.
We show in section 6 that the inverse problem of reconstructing S(x) and o (x) from these
sparse (and discrete) internal pressure measurements, can be recast as an inverse Schrodinger
problem with discrete measurements as in (2).

The main tool we use here for solving the inverse Schrodinger problem is inverse Born
series. Inverse Born series have been used to solve inverse problems in different contexts such
as optical tomography [10—13], the Calderén or electrical impedance tomography problem [1]
and in inverse scattering for the wave equation [8].

In section 2 we generalize the inverse Born series convergence results of Moskow and
Schotland [12] and Arridge et al [1], to nonlinear mappings between Banach spaces. The
convergence results of inverse Born series in this generalized setting are given in section
2.3 and proved in the appendix, following the same pattern of the proofs in [1, 12]. This
new framework is applied in section 3 to a few problems that have been solved before with
inverse Born series. We also show that both forward and inverse Born series are closely related
to Taylor series. Since the cost of calculating the nth term in an inverse Born series grows
exponentially with n, we restart it after having computed a few k terms (i.e. we truncate the
series to k terms and iterate). We show in section 4 that restarting the inverse Born series gives
a class of iterative methods that includes the Gauss—Newton and Chebyshev—Halley methods.
For the discrete measurements Schrodinger problem, we prove that the necessary conditions
for convergence of the inverse Born series are satisfied (section 5). Then in section 6, we
explain how the transient hydraulic tomography problem can be transformed into a discrete
measurement Schrodinger problem. Finally in section 7 we present numerical experiments
comparing the performance of inverse Born series with other iterative methods and their
effectiveness for reconstructing the Schrodinger potential in (1) and for solving the transient
hydraulic tomography problem. We conclude in section 8 with a summary of our main results.

2. Forward and inverse Born series in Banach spaces

We start by extending the notion of Born series and inverse Born series [11, 12] to operators
between Banach spaces. The idea being to give a common framework for the convergence
proofs of the inverse Born series for diffuse waves [12], the Calder6n problem [1] and the
discrete internal measurements Schrodinger problem. This generalization also highlights that
the inverse Born series are a systematic way of finding nonlinear approximate inverses for
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nonlinear mappings. The resulting approximate inverses are valid locally and have guaranteed
error estimates.

In sections 2.1 and 2.2 we define forward and inverse Born series for a mapping f from
a Banach space X (the parameter space) to another Banach space Y (the data space). Then in
section 2.3 we state local convergence results for inverse Born series in Banach spaces that
are valid under mild assumptions on the forward Born series. The proofs are included in the
appendix as they are patterned after the proofs in [1, 12]. Examples of forward and inverse
Born series are included in section 3.

2.1. Forward Born series

Let X and Y be Banach spaces and consider a mapping f : X — Y. In inverse problems
applications X is typically the parameter space and Y the data or measurements space. The
forward problem is to find the measurements y = f(x) from known parameters x. The inverse
problem is to estimate the parameters x knowing the measurements y.

Born series involve operators in £(X®”",Y), i.e. bounded linear operators from X®" to Y.
Here we used the notation

X'=X® - --QX.
N —

n times
If M(X") is the space of n—linear forms acting on X", the (elementary) tensor product
X ®...0x, € X¥, with x; € X, j = 1,...,n, is a linear form acting on M(X")
such that (x; ® ... ® x,) () = u(xy,...,x,), for u € M(X™). The tensor product space

X®" is the subspace of the dual of M(X") that is spanned by linear combinations of
elementary tensor products, i.e. any x € X®" admits a (not necessarily unique) representation
X = Zf.;] xi’) ®...®x". In general, X®" is not a Banach space. In an abuse of notation we
also denote by X®" its completion under the projective norm:

k k
xllxen = inf £ " x?lx- xPlx x =D 2’ @ @ b, (4)
i=1 i=1

where the infimum is taken over all representations of x in terms of elementary tensors. Out
of all the norms on a tensor product space we choose the projective norm because it has the
properties (see e.g. [14, propositions 2.1, 2.3]):

(i) Forx;inX,i=1,...,n,

v ® ... & Xullxer = llx1llx - .- [[xallx-

() Ifa € LX®",Y)and b € L(X®,Y) then a @ b € L(X®"+™ Y®2) is defined by
(@a®b)(u®v) =a(u) @ b(v) foru € X®" and v € X®"*. Moreover, when the projective
norm is used,

la ® bll cxewsm yer, = llall caxsm vy 1Bl cxen vy -

For the sake of clarity, and when there is no ambiguity, the norm subscripts are omitted.
Notice that amap a € £(X®", Y) can be identified to a bounded multilinear (or n—linear)
map a : X" — Y defined by:
axy, ..., x) =a(x Q- ® xp),
and that ||@|| = ||a||, where

lall = sup{llaCxr, ..., x)lly | Ixillx < Li=1,...,n}
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Remark 1. The isometry ||a|| = ||la|| is only valid when the projective norm is used. It may
be possible to extend the theory on forward and inverse Born series to other tensor product
norms such as the injective norm (see e.g. [14, section 3]) or even to reasonable crossnorms
(see e.g. [14, section 6]). However it is not clear to us if there is any advantage in doing so.
Therefore we focus only on the projective norm because it gives an isometric isomorphism
between bounded multilinear forms X" — Y and £(X®", Y) (see e.g. [14, section 2.2]).

Forward Born series express the measurements for a parameter x + 7 € X near a known
parameter x € X, assuming knowledge of y = f(x).

Definition 1. A nonlinear map f : X — Y admits a Born series expansion at x € X if there
are bounded linear operators a, € L(X®",Y) (possibly depending on x) such that

d(h) = fOx+h) = f(x) =) an(h®), (5)

n=1

and the a, satisfy the bound

lanll < op forn=0,1,.... (6)

It follows from the bounds on the operators a,, that the Born series converges locally, i.e.
when /£ is sufficiently small:

Al < 1/p. (7)

This restriction on the size of the perturbation /4 can be thought of as the radius of
convergence of the expansion about the point x.

2.2. Inverse Born series

The purpose of inverse Born series is to recover 4 from knowing the difference in measurements
d(h) = f(x + h) — f(x) from a (known) reference combination of parameters x and
measurements y = f(x). The original idea in [11] is to write a power series of the data d,

g(d) =) by(d®"), ®)

n=1
involving the operators b, € L(Y®", X), which are obtained by requiring (formally) that g is
the inverse of d(h), i.e. g(d(h)) = h. By equating operators £(X®",Y) with the same tensor
power n, the operators b,, need to satisfy:
I =bi(ar)
0="5bi(ax) + by(a; ® ar)
0=0bi(az) + br(a1 ® ar) + by(a, ® a1) + bz (a1 @ a1 ® ay)

0= Z Z bm(asl - asm) 9)

m=1 S1+--+sp=n

where [ is the identity in the parameter space X. The requirement that b;a; = I is quite strong
and may not be possible, for example when the measurement space Y is finite dimensional
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and X is infinite dimensional. Nevertheless if we assume that b, is both a right and left inverse
of a; we can express the operators b, in terms of the operators a, and b;:

by = —biay (b ® by)
by = —(biaz + by(a; @ az) + ba(a; ® a1)) (b ® by ® by)

: n—1
bn = — (Z Z bM(an & & as”,)> (b?n) (10)

m=1 s1+--+su=n

Since an inverse of @, is not necessarily available, the key is to choose b; € L(Y, X) as a
regularized pseudoinverse of a; so that b;a; is close to the identity, at least in some subspace.
This allows to define the inverse Born series.

Definition 2. Assume f : X — Y admits a Born series (definition 1) and let by € L(Y, X). The
inverse Born series for f using by is the power series g(d) given by (8) where the operators
b, € L(Y®" X) are defined for n > 2 by (10). Here again we note the dependence of the
operators b,, n > 2, on the expansion point x € X and the operator b;.

We now state results that guarantee convergence of the inverse Born series, and give an
error estimate between the limit of the inverse Born series and the true parameter perturbation
h. The error estimate involves || (I — bya;)h||, that is how well the operator b a; approximates
the identity for 4. These results require that both 4 and d (k) = f(x+ h) — f(x) are sufficiently
small.

2.3. Inverse Born series local convergence

Convergence and stability for the forward and inverse Born series were established by Moskow
and Schotland [12] for an inverse scattering problem for diffuse waves (see also section 3.3).
Specifically they obtained bounds on the operators a, in (27) similar to the bounds (6). With
these bounds, it is possible to show convergence and stability of the inverse Born series and
even give a reconstruction error bound [12].

The convergence and stability proofs in [12] for the diffuse wave problem carry out
without major modifications to the general Banach space setting. We give in this section a
summary of results analogous to those in [12]. The proofs are deferred to the appendix, as
they closely follow the proof pattern in [12].

The following lemma shows that if the forward Born operators satisfy the bounds (6), the
operators b, are also bounded under a smallness condition on the linear operator b; that is
used to prime the inverse Born series.

Lemma 1. Assume f : X — Y admits a Born series and that

611l < T (11)

where o and o are as in definition (1). Then the coefficients (10) of the inverse Born series
satisfy the estimate

ball < B + )by, forn = 2 12)

where

1
p=lbl exp(l— <1+a)u||b1||)' (>
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Convergence of the inverse Born series follows from the bounds in lemma 1 and a
smallness condition on the data d.

Theorem 1 (Convergence of inverse Born series). The inverse Born series (8) induced by by
and associated with the forward Born series (5) converges if

1
bh|| < —— 14
o1l dtan (14)
and the data is sufficiently small
ldll < —————. (15)
(I +a)ullbyl

If hy is the limit of the series, one can estimate the error due to truncating the series by

. N+1
=) bu(d®") ((L+a)ulibrlllidll)

<B .
£ T= (I +a)ullbi 1]

Stability also follows using essentially the same proof as in [12].

Theorem 2 (Stability of inverse Born series). Assume || b, || < ((1+a)u)~" and that we have
two data dy and d» satisfying M = max(||d1 ]|, |d2]) < (1 + «)pllbi|)~". Let h; = g(d;)
fori=1,2 (i.e. the limit of the inverse Born series). Then the reconstructions are stable with
respect to perturbations in the data in the sense that:

lh1 = h2ll < Clldi — da |, (16)
where the constant C depends on M, «, |, and ||by]|.
Theorem 1 guarantees convergence of the forward and inverse Born series:

d=Y"a,(h®") and h, =Y b,(d®"). (17)

n=1 n=1
The limit &, of the inverse Born series is, in general, different from the true parameter
perturbation 4. The following theorem provides an estimate of the error ||z — h,||.

Theorem 3 (Error estimate). Assuming that ||h| < M, ||biaih| < M with
M<—,
I+ao)u
and that the hypothesis of theorem 1 hold, i.e.
1
61l € ——— and ||d|| <

I+ (14 o) pullby |’
we have the following error estimate for the reconstruction error of the inverse Born series:

h—) " by(d®")
n=1

where the constant C depends only on M, o, B and p and ||by]|.

< Clld = biaphl, (18)

The proofs of lemma 1, theorems 1, 2, and 3 can be found in the appendix.

Remark 2. To invoke theorems 1-3 for a specific mapping f, it is necessary to show the forward
Born operators a, satisfy certain bounds (6). By the bounded linear extension theorem (see e.g.
[9, section 2.7]), it is sufficient to show the bound for elements of X®" before completing the
tensor product space with the projective norm. In other words, we only need to check that the
bound [|la,(x)|| < aun”|x|| holds for x that are finite linear combinations of elementary tensor
products, i.e. for x = Zlexi')(@- S @xW Wherex;') e Xforalli=1,...,kandj=1,...,n.
Since we use the projective norm for tensor product spaces, another way of showing the bound
(6) is to show it is satisfied by the associated multilinear operator @, : X" — Y (see remark 1).

6
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3. Examples of forward and inverse Born series

We write examples of forward and inverse Born series in the framework of section 2. We start
by showing in section 3.1 that forward and inverse Born series are intimately related to Taylor
series. Another example is that of Neumann series (section 3.2). We also include the forward
and inverse Born series from [1, 12], namely those for the diffuse waves for optical tomography
(section 3.3) and the electrical impedance tomography problem (section 3.4). We finish the
examples with the discrete internal measurements Schrodinger problem (section 3.5), which
is the main application of inverse Born series that we are concerned with here.

3.1. Taylor series

e Parameter space: X = Banach space

e Measurement space: Y = X (for simplicity)

e Forward map: f analytic (see e.g. [15])

e Forward Born series coefficients: About x € X, the coefficients a, can be any operators
in £(X®", X) agreeing with £ (x)/n! on the diagonal i.e. for any & € X,

1
ap(h®") = —f" (@) (h®").
n!
Here f @ is the nth Fréchet derivative of f, see e.g. [16, section 4.5] for a definition.

Here we use the theory of analytic functions between Banach spaces (see e.g. [15]) which
assumes that the function f is C* and that the Taylor series of the function

=1
fat+hy =3 — @0 (19)
n=0

converges absolutely and uniformly for 4 small enough. If in addition we assume that f admits
a Born series expansion at x, then we have

[o.¢] o0
1 n n n
() = far+h) = f) =) — PG =Y at®™).

n=1 n=I
That is the Taylor series and Born series coefficients, ™ (x)/n! and a, respectively, agree at
the diagonal h®".

Since f is C*°, the Fréchet derivatives f” are symmetric in the sense that for any

permutation  of {1, ..., n} we have that

FOh @ @) = " (hey ® -+ ® b))

The Born series coefficients a, in general do not satisfy this property, however we can consider
their symmetrization @, : X®* — Y defined by

~ 1
Gy ® -+ @ hn) = — 3 an(hat) @+ @ i) (20)

where the summation is taken over all permutations & of {1, ..., n}.
Clearly we have that

1
~ ®ny __ ®ny __ ®n
Gn(h") = — % Tan(h®") = an ("),
/g
and so we have the following equality:

00 1 %) _
dh) = fa+h) = @) =Y —fP WG = Y @0,
n=1

n=1

7
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We then have two analytic functions that are equal for 4 sufficiently small, therefore the
symmetric operators % £ (x) and @, must be identical (see [15]). Therefore the Born series
and Taylor series coefficients are essentially the same, up to a symmetrization.

If a; = £ (x) is invertible (this is where the assumption X = Y is used), we can apply
the implicit function theorem (see e.g. [15] or [16, section 4.6]) to guarantee the existence
of £~! in a neighborhood of x. Moreover the inverse is analytic [15] in a neighborhood of
y = f(x) and admits a Taylor series near y

o0
— 1 — n n
o+ d) =) = H" 0@ @1)
—n!
On the other hand, if b; = al_l we can define an inverse Born series for f as in

(8). By the error estimate for the inverse Born series (theorem 3) we can guarantee that
h=g(d(h)) =g(f(x+ h) — f(x)) for h and d(h) sufficiently small. Since f is invertible in
a neighborhood of y we can also write g in terms f~!

gd)=flo+d - =r"o+d —x

Using the Taylor series (21) for f~! we can write

o0 o0
1
_ Qny __ () ®n
gd) = by@®) =3 —(FTH @™, (22)
n=1 n=1
As is the case for the forward Born operators a,, the inverse Born operators b, are in general
not symmetric. If we consider their symmetrization b, (as in (20)), then we find that the
symmetric operators b, and % (f~1™ (y) are the same. Therefore inverse Born series is a way
of calculating (up to a symmetrization) the Taylor series for f~! from the Taylor series for f.

3.2. Neumann series

o Parameter space: X = R"

e Measurement space: Y = R"*”

e Forward map: f(x) = M’ (L — diag(x))"'M, where L € R"*V is invertible and
M e RV*,

e Forward Born series coefficients: About 0, the coefficients are a,(h) =
M7 (L~'diag(h))"L~'M.

The forward Born series in this is example comes from the Neumann series for the inverse
of L — diag(h), when it exists. Indeed if for some matrix induced norm ||L~'diag(h)| < 1,
this inverse exists and is given by the Neumann series

(L — diag(h))~! = <Z(L1diag(h))"> L. (23)

n=0
The forward Born series is then

f(h) — £(0) = M’ (L — diag(h))"'M - M'L~'M

= Z M7 (L~ 'diag(h))"L~'M. (24)

n=1

The inverse Born series can be defined by using as b; a regularized pseudoinverse of
the linear map a; (h) = M”L~'diag(h)L~'M. By the convergence results of section 2.3, the
inverse Born series converges under smallness conditions for h, f(h) — f(0) and b.

8
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This problem is motivated by a discretization of the Schrodinger equation Au — qu = ¢
with finite differences. The matrix L is the finite difference discretization of the Laplacian
and h is the Schrodinger potential at the discretization nodes. The matrix M corresponds to
different source terms ¢, which are also used to measure u (collocated sources and receiver
setup as the one we use for the Schrodinger problem with discrete internal measurements in
section 3.5). This example can be easily modified when the discretization of the qu term in the
Schrodinger equation is not a diagonal matrix (as is often the case for finite elements). The
collocated sources and receivers setup can be changed as well by using a matrix other than
M7 in the definition of f(x).

3.3. Optical tomography with diffuse waves model [12]

In the diffuse waves approximation for optical tomography (see e.g. [2] for a review), the
energy density G,(x,y) resulting from a point source y € 2 satisfies a Schrodinger type
equation:

{—Aqu(x, Y) +q(x)Gy(x,y) = —8(x—y), forxeg, (25)

G,(x,y) +{n(x) - VxG,(x,y) =0, forx € 092,

where the domain  C R?, d > 2 has a smooth boundary 9€2, and g(x) > 0 is the absorption
coefficient. The £ > 0 in the Robin boundary condition is given and, as usual, n(x) denotes
the unit outward pointing normal vector to €2 at x. The inverse problem here is to recover the
absorption coefficient g(x) from knowledge of G,(x,y) on 92 x 9€2. This data amounts to
taking measurements of the energy density at all x € 9<2 for all source locations y € €2 or to
knowing the Robin-to-Dirichlet map for g. If the difference between the absorption coefficient
g(x) and a known reference coefficient go(x) is supported in some € C €2 (with d$2 and
0<2 separated by a finite distance), then G, satisfies the Lippmann—Schwinger type integral
equation:

Gy(x,y) = Gy (X, y) + /S~2 dz Gy, (x,2)(q(2) — q0(2))G,(z,y). (26)

Moskow and Schotland [12] show that the forward Born or scattering series for this problem
can be defined as follows.

e Parameter space: X = LP(Q) for2 < p < o0.

e Measurement space: Y = L” (02 x 92).

e Forward map: [ : g — G,(x,Y)|sexsq- ~

e Forward Born series coefficients: For 7n;,...,n, € LP(2) and x;,X, € 9%, the
coefficient for the Born series expansion about g = ¢y is

(an(nl Q- ® ﬂn))(Xh XZ)

=/~ G (X1, YD) Ggo (1, ¥2) - - Gy (V=15 Yu) Ggo (Y, X2)N1 (Y1) - - . 1 (¥n)dy1 . . . dy,.
Qn
27)

In particular, the results of Moskow and Schotland [12] show that the operators a,, satisfy
bounds similar to (6) assuming g is constant and that ¢ is sufficiently close to go. The authors
formulate bounds on a, in the context of multilinear operators a,, : L (2") — L7 (92 x 02),
but with ~rninor modifications, the bounds also hold in the context of linear operators
a, : (LP(2)®" — LP(92 x 992). Therefore one can define an inverse Born series through
the procedure (10), and this series converges under appropriate conditions (see [12] and
section 2.3).
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3.4. The Calderon or electrical impedance tomography problem [1]

The electric potential inside a domain €2 with positive conductivity o (x) € L*(2) resulting
from a point source located aty € 2 satisfies the equation

Vi - [0 (X)VxGy (X, y)] = —8(x —y), forxe Q
Gy, (x,y) +zon(x) - VxG,(x,y) =0, forx € 9.

Here, we assume the contact impedance z > 0 is known and that ¢ is constant on 9€2.
The domain € is also assumed to be in R9, d > 2 and with smooth boundary. The electric
impedance tomography (EIT) problem consists in recovering the conductivity o from the
Robin-to-Dirichlet map, i.e. from knowledge of G, (X, y) on 92 x 92 (see e.g. [3] for areview
of EIT). If the difference between o and a known reference conductivity oy is supported in
Q C Q2 (with 92 at a finite distance from 0S2), G, satisfies the integral equation

(28)

Go(X,y) = Go (X, y) + /~ dz Gy, (X, 2)V, - [(0(2) — 00(2)) V,Gs (2, ¥)]. (29)
Q

Integrating by parts and using that o = op on 92, G, obeys a Lippmann—Schwinger type
equation:

Go(X,y) = G (X, y) — /ﬁdl (0 (x) = 00(x))V,Go, (X, 2) - V2G5 (2,y). (30)

As shown by Arridge ef al [1], one can then define a forward Born series that can be summarized
as follows.

e Parameter Space: X = L°°(S~2).

e Measurement space: ¥ = L™ (02 x 0L2).

e Forward map: f : 0 — G, (X,¥)|saxse-

e Forward Born series coefficients: For n,,...,n, € LOC(EZ) and xi,X, € 0%, the
coefficient for the Born series expansion about o = oy is

a,(m ® - ®n,)(X1,X2)
= (—1)”/~dy1 n1(y1)Vy, Go, (¥1, X1) - Vy, deyz 12(¥2) Vy, G, (¥2, Y1)
Q Q

e Vy,,,l /fz dYn un (yn)vy/, G(Io (yna yn—l) : Vy,x Gao (Yna X2)~ (31)

Arridge et al [1] show that for o constant, the operators a, satisfy bounds similar to (6)
and so an inverse Born series can be defined following the procedure (10). As in section 3.3,
Arridge et al [1] establish bounds on a,, as multilinear operators a,, : L™ (ﬁ") — L*® (QV Qx0Q),
but with minor modifications, the bounds also hold for linear operators a, : (L*(2))®" —
L>* (02 x a2). The convergence of this series is established in [1] and can also be shown
using the generalization in section 2.3.

3.5. The Schrbdinger problem with discrete internal measurements

Instead of having infinitely many measurements as in the optical tomography inverse
Schrodinger problem (outlined in section 3.3), we consider here the case where we only
have access to finitely many internal measurements D; ; (see equation (2)) of the fields u;,
i=1,...,N, satisfying (1). We also allow the Schrodinger potential in (1) to be complex
(as discussed in section 6, this is useful when solving the transient hydraulic tomography
problem).
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The Green function G, (X, y) for the problem (1) satisfies (25) with homogeneous Dirichlet
boundary conditions (instead of homogeneous Robin boundary conditions). The fields u; can
be expressed in terms of the Green function G, as

ui(x) = —/ dy G,(x,y)¢:i(y), i=1,...,N. (32)
Q

If the differen~ce between the ~Schrtidinger potential g(x) and known reference go(x) is
supported in  C € (with 92 and 9$2 separated by a finite distance), G, and G, are
still related by the Lippmann—Schwinger type equation (26). By a fixed point procedure we
can define a forward Born series as follows.

e Parameter Space: X = L°°(§).
e Measurement Space: Y = C"*V, with norm ||A| = max; j—__v |A; .
e Forward map: Owing to (32), the data D in (2) becomes:

fiqg—>D=— [/Qz dxdy ¢i(y)¢;(x)Gy(x, y)}

ij=1.N

e Forward Born series coefficients: For 1, ...,n, € L* (5) the coefficient for the Born
series expansion about gy is

[an(nl R 7711)]i,_j
= (_])n /; qu (x, yl)qu Y1, ¥2) -+ qu Yn-1, Yn)qu (¥n, z)
Qn+2

(Y1) - 0 (¥a)9i(2)9;(x) dzdy; - - - dy, dx, (33)

fori, j=1,..., N. Note that we have assumed supp¢; C € so that instead of integrating
over " x Q7 integrate over Q2.

We show in section 5 that the operators a,, satisfy the bounds (6) (with g not necessarily
constant), so it is possible to show convergence of the corresponding inverse Born series by
the results of section 2.3.

4. Inverse Born series and iterative methods

The main goal of this section is to show that inverse Born series can be used to design
superlinear' iterative methods converging to an approximation x, of the true parameter Xue
from knowing measurements yyeas = f (Xirye) and the forward map f : X — Y. The iterative
methods we study here are of the form
Xo = given,
{xn+l =T,(x,), forn >0,

where T, : X — X. Of course, for such an iterative method to be useful, the iterates x,, need
to converge to x, as n — oo (with an a priori rate of convergence) and one should be able
to estimate the error ||xqye — X«| between the desired parameter xy,e and the limit x,. Our
results are in some sense a generalization of the result by Markel et al [11] that shows that the
limits of inverse Born series and the Newton—Kantorovich method are the same. The Newton—
Kantorovich method is a ‘frozen’ Gauss—Newton method, i.e. the Gauss—Newton method
(which we recall in section 4.2), modified so that the pseudoinverse of the linearization of the
forward map is found once and for all for the first iterate and used as is in subsequent iterates.

! 'We recall that superlinear convergence of x, to x, means that ||x,.; — x4 < €]lx; — x|, where ¢, — 0 as
n— oo.
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4.1. Inverse Born series as an iterative method

We start by reformulating the results of section 2.3 in the context of iterative methods. Let us
assume that we have a good guess xy for xie, and that we know the forward Born series about
Xo, i.e. we know the coefficients a;[xo] € L(X®/,Y) so that

[o¢]
fE) = fxo) = a;lxol (x — x0)®.
j=1
Theorem 1 means that for an appropriate choice of by [xo], if ||[Xo — Xtuell @and || f (X0) — Ymeas |l
are sufficiently small then the inverse Born series

Xy = %0 =Y bilx0] meas —  (x0))®, (34)

J=1

converges linearly® to some x, € X as n — oo. Here we write explicitly the dependence of
the inverse Born operators b, [xy] (defined recursively as in (10)) on the reference parameter
Xo. Notice that the inverse Born series (34) can be written as the iterative method,

Xo = given, (35)
Xpt1 = Xp + bn+1[x0](ymeas - f(xo))®("+l), forn > 0.

The error estimate of theorem 3 quantifies how close the limit x, of the iterative method (35)

is to the true parameter Xy, i.€. there is some C > 0 such that

”x* - xtrue” < C” (I - bl [x()]al [)C()])()C() - xlrue)” . (36)

Unfortunately this is an expensive method to implement as the computational cost of
each term b, [xp] in the inverse Born series (see (10)) increases exponentially with n. Indeed if
applying the forward Born operator a, [xo] requires n forward problem solves (as is the case for
the Schrodinger problem), an application of the inverse Born operator b,[x,] involves 2~! — 1
forward problem solves.

Remark 3. We emphasize that the inverse Born series (34) and (35) does not require evaluating
the forward map f at any other point than the initial iterate x. In inverse problems, this means
the inverse Born series needs only solutions to the background problem, which may be less
expensive to compute, perhaps because it corresponds to a homogeneous medium or a medium
with other symmetries. In contrast, Gauss—Newton type methods and the restarted inverse Born
series introduced in section 4.2 need to evaluate the forward map f (and its linearization) at
every iterate x;,.

4.2. Restarted inverse Born series (RIBS)

A natural idea to reduce the cost of inverse Born series is to use the kth iterate of the inverse
Born series (35) as the starting guess for a fresh run of inverse Born series. This gives rise to
the following class of iterative methods:

{xo = given, 37)

it =X+ Y5_y biln] Oimeas — £ ()@, forn > 0,
which we denote by RIBS(k).

2 We recall that linear convergence rate of x, to x, means that there is some 0 < C < 1 such that ||x,4; — x| <
Cllxy — x*|.



Inverse Problems 30 (2014) 045014 P Bardsley and F Guevara Vasquez

If f is a differentiable mapping and we choose b;[x,] = (f ()T (where the sign { stands
for a regularized pseudoinverse of f’(x,)), the RIBS(1) method is in fact the Gauss—Newton
method:

{ Xo = given, o (38)
Xnp1 = Xn + 1 (00)" Omeas — f(xn)), forn =0,
and is quadratically convergent in a neighborhood of x,. under fairly mild conditions on f
(for X and Y finite dimensional, see e.g. [5]).

If in addition to choosing b;[x,] = (f'(x,))" we have a;[x,] = f”(x,)/2, the RIBS(2)

method can be written as

{xo = given, ) (39)
st = %0 = [ [ = 3" o) (' @) s fOe) )], forn >0,

where 1, = Ymeas — f (x,). This is the so called Chebyshev—Halley method, which has been

studied before by Hettlich and Rundell [7] in the context of inverse problems. This method is

guaranteed to converge cubically when f” is Lipschitz continuous [7].

Remark 4. Although the inverse Born series, and the Gauss—Newton and Chebyshev—Halley
methods are guaranteed to converge (under appropriate assumptions), the limits may be
different.

4.3. Numerical experiments on a Neumann series toy problem

Here we compare the performance of inverse Born series, Gauss—Newton and Chebyshev—
Halley on the Neumann series problem discussed in section 3.2. We used for discrete Laplacian
L the matrix

L= . c R256X256

The true parameter is a vector with zero mean, independent, normal distributed entries and
standard deviation 0.1. The measurement operator M is a 256 x 8 matrix with zero mean,
independent, normal distributed entries and standard deviation 1. For the inverse Born series,
b, is a pseudoinverse of the Jacobian of the forward problem, where the singular values
smaller than 10~ times the largest singular value (of the Jacobian) are treated as zeroes. The
same pseudoinverse is applied to the Jacobian matrices involved in the Gauss—Newton and
Chebyshev—Halley methods. The initial guess for all the methods is xo = 0. For each method
we display in figure 1(a) the quantity ||x,, — X,||. Since we do not have access to the limiting
iterate, we simply took one more step of each method and used it instead of x,. The residual
terms || f(X,) — f(Xuue)|| are shown in figure 1(b). As expected, we see linear convergence
for the iterates and the residuals from the truncated inverse Born series method. Also the
first Gauss—Newton (resp. Chebyshev—Halley) iterate error and residual matches that of the
first (resp. second) inverse Born series iterate. The Gauss—Newton method has the expected
quadratic convergence of the error, while the Chebyshev—Halley exhibits super-quadratic
convergence of the error.

5. Forward and inverse Born series for the Schrédinger problem with discrete
internal measurements

Recall from section 2.3 that local convergence of the forward and inverse Born series follows
from showing that the forward Born operators a, satisfy bounds of the type (6). We show

13
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Figure 1. Convergence of (a) iterates ||x, — X. || and (b) residuals || f(x,) — fXgue) |l
for the inverse Born series (), Gauss—Newton (o) and Chebyshev—Halley (A) methods.
These methods are applied to the Neumann series problem of section 3.2.

in section 5.1 that bounds of the type (6) hold for the operators a, for the Schrodinger
problem with discrete internal measurements (defined in (33)). Then we report in section 5.2
a numerical approximation to the convergence radius of inverse Born series, in a setup related
to the hydraulic tomography application of section 6.

5.1. Bounds on the forward Born operators

We recall from section 3.5 that the parameter space for this problem is X = L‘X’(Q) where
Q C Q and the distance between 9 and 9< is positive. The difference between the unknown
and the reference Schrodinger potentials is assumed to be supported in €. The measurements
space is ¥ = CV*N where N is the number of sources used and the norm is the entry-wise £
norm of a matrix in CN>*V,

The proof of lemma 2 below follows a pattern similar to [12]. There are two main
differences. The first is that we work with finitely many measurements. The second is that we
allow the (possibly complex) reference Schrodinger potential g to be in L*°(£2), whereas in
[12] the reference potential is assumed to be constant and real. The bound (6) immediately
gives a smallness condition that is sufficient for convergence of the forward Born series. The
smallness condition we obtain is identical to that in [12]. This is to be expected because the
underlying equation is the same and only the measurements differ.

To prove lemma 2, we need that the reference Schrodinger potential ¢y (x) € L*(L2) is
such that the only solution to

—Au+qou =0, 1in €2,
{u =0, on 9€2, (40)
is u = 0. Such g are sometimes called ‘non-resonant’ and we assume that all the Schrodinger
potentials that we deal with in what follows are non-resonant. We also need two properties for

the Green function G, (X, y) for the Schrodinger equation (as defined in section 3.5):

(i) The function x = G, (X,y) is in LY(Q) forally € Q.
(ii) The functiony = [|Gy, (-, ) ll1(g) is in L>(2).

These properties can be easily verified in both R? and R? for Gy (i.e. when ¢y = 0)
and hold for general bounded ¢go. Indeed, we have (A + go)(G4, — Go) = —qoGo. Since the

14
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right hand side belongs to [%(Q), the difference G4, — Go must be in H, 10C(Q) by standard
elliptic regularity estimates (see e.g. [6]) and therefore continuous (by Sobolev embeddings).
This argument shows that (G,, — Go)(x, y) is continuous as function of x and for all y. By
reciprocity G4, — Gy is continuous on 2 x 2. Therefore G,, satisfies the desired properties.

We can now show boundedness of the operators a, for the Schrodinger equation with
discrete measurements. The proof of the following lemma is similar to that in [12].

Lemma 2. Let gy (x) be a (possibly complex) non-resonant Schrodinger potential. Then the
operators a, defined in (33) satisfy the bounds

lla,ll < ap”, (41)

with « = v/u, and where v and |1 are constants depending on 2 and qq only (see equations
(43) and (44) below for their definition). The norm on a,, is the operator norm in L(X®",Y),
with parameter space X and data space Y as in section 3.5.

Proof. Following remark 2, we first establish the bound on the space of finite linear
combinations of elementary tensor products of L°°(Q) Let n € (L°°(SZ))®" W1th
representation n = Zk | n(k) ® - ®@n® where n(k) € L°°(Q) j=1...,nk=1,.

and observe

N
llan ()|l = sup (Zan Ve ®n(")))
L ..
ij

k=1

Zsupf |Gy (%, ¥1) Gy (Y1 ¥n) -

=1 "/

- Gy (¥ 20 (1) - - n® (y) i (2)¢0; (%) |dz dy; - - - dy, dx
N

k k
<Y P lls@y 10N~ @) S}lp/ﬁ L 1Gu oy -
ij 4

k=1
-+ Gy (Y1, Yn)Ggo (¥n. 2)$i(2)¢; (x)|dz dy - - - dy, dx. (42)

Since this bound holds for all representations of 1, it must hold for the infimum over all the
representations of 1, which gives the projective norm (4). Therefore the operator a,, is bounded
on the space of finite linear combinations of elementary tensor products and

la,(mM| < ||77||(Loo(g~z))®n sup/~ , |qu X, y1):-- qu (Yn—1,Y¥n) -
i,j Qnt

- Gy (Vu, 2)0i () (x)|dzdy, - - - dy, dx.

By the bounded extension theorem (see e.g. [9, section 2.7]) this also gives an (identical) upper
bound for the extension of a, to the completion of (L (£2))®" under the projective norm.
Hence we can estimate the operator norm ||a; || by

laill < sup / |G (%, ¥1)Gyy (31, 2)i (2) ¢ (x)|dz dy; dx
QXQX

ij

suP// |qu(YI7Z)¢z(Z)|dZ/ |Gy (x, ¥1)6; (x)|dx dy,

i xeQ

2
< sup (sug/; |Gy (x, Y)d’i(Y)’dY) 1€2].

15
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Since g is assumed to be non-resonant and using that ¢; € L>(2), the quantity

2
v = (supsug/Ez |Gy (x, Y)¢i(Y)|dY> |€2] (43)

i xeQ
is bounded. We have established that |ja;] < v.
For the remaining Born operators, we proceed recursively. Considering again (42) for
n > 2, we have

”an” < Sup‘[‘ 5 |qu(x9 YI)qu(YI, yZ) N
Qnt

ij

e qu (Yn—lv yn)qu (Yn’ Z)d)i(z)qu (X) ’dZ dyl to dyn dx

<sup(sug f |Gy (x, yl)¢j(X)|dX><sug / |Gq0<yn,z>¢>i(z>|dz)
Li \yieQv/Q ya€Q Y82

/; |Gq0(yl’y2).“G40(yﬂ*11 Yn)|dy1 "'dYn
er

2
< <supsu1~)/~ |Gy (x, Y)¢i(Y)’dY> I
; ol

L xeQ

where
Lo =/~ |Gy (¥1.¥2) + +* Gy (¥u—1, ¥a) |y - - - dy,.
er

Estimating [,,_; we find that

Ly < sup~/~ !qu(yn_l,yn)|dyn-/~ ]’qu(y1,y2)"'GqO(Yn—Z,Yn—l)’dYI <o dyp
Q Q-

Yn-1€Q
< MI}’!*Z,
where the quantity

= sup |Gy, (x. ) @) (44)

xeQ

is finite by the properties that G, satisfies. Finally, noting that

I =/~ |Gy (1. y2) |dyidya
QxQ
< €2,
it follows that
Loy < |Qu,
and thus

2
lanll < (sqpsug 1Gy, (x, ')||L‘(Bp(x,))> 1QIu"" = ap.

I xeQ

O

Remark 5 (L” Bounds).Bounds similar to those in lemma 2 can be proven when the parameter
space is X = L?(2) and the data space is Y = CV*V, endowed with the Frobenius norm. Once
we have bounds for the co and 2 norms, it is possible to invoke the Riesz—Thorin theorem
(as in [12]) to show bounds for 2 < p < oo by interpolation. In this case the data space is
X = LP(R) and the parameter space is ¥ = CV*V, endowed with the entry-wise p—norm (i.e.
the p—norm of the CV’ vector obtained by stacking the columns of a matrix in C¥>*V),

16
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0 1

Figure 2. Setup for the numerical experiments with the Schrddinger problem with
internal measurements. The domain  is the unit square. The domain Q2 where the
Schrddinger potential is unknown is in dotted line and its boundary 9€2 is at a distance
€ from 9€2. The supports of the functions used as source terms/measurements are the
red circle.

Having established norm bounds on the operators a, for the discrete measurements
Schrédinger problem, we can apply the results from section 2.3 to establish local convergence
of the forward Born series, local convergence of the inverse Born series (provided the linear
operator b; used to prime the series has sufficiently small norm, see theorem 1), stability of
the inverse Born series (theorem 2) and even an error estimate (theorem 3). The actual choice
of by is discussed in section 7.

5.2. Numerical illustration

Applying theorem 1 to the Schrodinger problem with discrete measurements, we can expect
the inverse Born series to converge when the difference d between the data for the unknown
and reference Schrodinger potentials satisfies

ldll < m————7—>
(I +o)pllby ]

where the constants ¢ = v/u and p are constants defined by (43) and (44) and the norms are
as in section 3.5.

In preparation for the application to hydraulic tomography, we consider the setup depicted
in figure 2 with computational domain Q = [0, 1]>. The distance between Q and Q is
€ € [0, 1/4] and the sources ¢; are supported in disks of radius 0.05 with centers (0.2k, 0.2]),
for k,I = 1,...,4. The sources are ¢;(x) = ¢(x — x;) where X; is the center of the disk
support and ¢ is an infinitely smooth function with 0 < ¢ (x) < 1. Although theorem 1 allows
for the supports of the sources to overlap, we take them to be disjoint as this is the case in the
hydraulic tomography application.

The constants o and v are approximated by solving appropriate (forward) Schrédinger
problems with go = 0. The grid we use for this purpose is uniform and consists of the nodes
(kh, lh) fork,l =0, ...,400and h = 1/400. We display in figure 3 the radius of convergence
of the inverse Born series predicted by theorem 1, assuming ||b;|| = 1. We observe that
the radius of convergence increases as € increases, or in other words, the larger the region
where we assume the Schrodinger potential is known, the larger the perturbations in the data
the method can handle.
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Figure 3. Numerical approximation of the radius of convergence for the inverse Born
series for the Schrodinger problem with discrete internal measurements and assuming
IIb1|] > 1. The reference Schrodinger potential is go = 0 and the setup is that given in
figure 2.

6. Application to transient hydraulic tomography

Consider an underground aquifer confined in a bounded domain 2. The head or hydraulic
pressure u; (X, t) in the aquifer due to injecting water in the ith well satisfies the equation

ou;
STV oV —¢i,  forxe Q1> 0,
ui(x,1) =0, forx € 9Q,t > 0,
u;i(x,0) = g(x), forx € ,
where i = 1, ..., N. Here we assume there are no sources or leaks of water in the aquifer,

other than those prescribed at the wells. Hence the source term ¢; (X, ) is supported at the i-th
well and represents the water injected at the ith well. The physical properties of the aquifer
are modeled by the storage coefficient S(x) and the hydraulic conductivity o (x). The initial
head (at ¢+ = 0) is given by g(x).

The inverse problem of hydraulic tomography that we consider here, is to determine the
coefficients o and S from knowledge of the discrete internal measurements

M; () = / o;ix, ) xui(x,1)dx, i,j=1,...,N, (46)
Q

where the convolution is in time. Physically these measurements correspond to time domain
measurements at the jth well of a spatial average of the hydraulic pressure u; generated by
injecting in the ith well. Here for simplicity, we use for the impulse response (in time) of
the jth measurement well the function ¢;(x,t). In a more general setup, the injection and
measurement ‘well functions’ can be different.

6.1. Reformulation as a discrete internal measurements Schrédinger problem

The frequency domain version of problem (45) is

V. (oVii) — 10Sh; = ¢;,  forx € £, @
u; =0, forx € 992,
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where the hat denotes Fourier transform in time, i.e.
WX, w) = f wi(x, e dr and  ¢i(x, w) = / bi(x, 1) e dr.
R R

The inverse problem is now to recover o and S from the discrete internal measurements

Wi () = / 35, ) (x, w) dx. (48)
Q
which is the Fourier transform in time of the discrete internal measurements for the time
domain problem (46).

Next we use the Liouville transformation by defining v; = o 1/23;. 1f w; satisfies (47) then
v; must satisfy the Schrodinger equation

Ac'? S &
Avi— | —5 +— Jvi= 7 forxeq,
/ o

ol
v, =0, forx € 9€2.

The internal measurements M; ;(w) can now be expressed in terms of v; as

(49)

M (o) = f $;(x, )i (x, ) dx = / ¢’l(/§(w)) vi(X, @) dx.

Hence the measurements M,;j (w) are of the form defined in (2) with test functions 5, Jo!/?
(modeling both injection and measurement).

If we do have access to the inside of the wells (i.e. supp ¢,) it is reasonable to assume that
o is known in supp ¢>, Hence the test functions ¢, /o '/% are known and we can use any method
for solving the inverse Schrodinger problem with discrete data to obtain an approximation to
the complex Schrodinger potential

o2 WS

A
ox; w) = i + - forx € Q. (50)

Remark 6. A limitation of transforming the hydraulic tomography problem into an inverse
Schrodinger problem is that the conductivity o appears as Ao''/?/a'/? in the Schrodinger
potential. Therefore any high (spatial) frequency components in o!/? are magnified. The
resulting Schrodinger potential can easily fall outside of the radius of convergence of the
inverse Born series. It may be possible to overcome this limitation if we apply the inverse
Born series to the hydraulic tomography problem directly (i.e. without doing the Liouville
transform).

6.2. Recovery of S and o from one frequency

Once we have approximated Q(x; w) for a single (known) frequency w, the real part of
Q(x; w) can be used to estimate the hydraulic conductivity o. This can be achieved by solving
for o'/?(x) in the equation

Ac'? —Re(Q(x; w))o'/? =

on the aquifer without the wells, i.e.

Q' =\ | supp .
i=1
and with Dirichlet boundary conditions at 92" determined from the (assumed) knowledge of o
at the measurement wells and at 9$2. An estimate of the storage coefficient S from Im(Q(x; w))
and o (x) follows since

S(x) =0 (x)Im(Q(x; w))/w.
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In principle, measurements AZV_/ (w) for one single frequency are enough to find both
parameters o (x) and S(x). Unfortunately, this procedure seems to be much more sensitive to
changes in o than to changes in S. This is due to Ao''/? appearing in the expression of Q(x; )
(see remark 6). We deal with this problem by using data for two frequencies as is explained
below.

6.3. Recovery of S and o from two frequencies

Here the data we have is M,-,_,-(wl) and 1\’/7,-, j(@y) for two frequencies w; # w; and we use
it to solve two discrete measurements Schrodinger problems for Q(x; w;) and Q(X; w,), for
x € Q. A good rule of thumb is to choose the frequencies so that w is sufficiently low to make
Re(Q(x; w)) the largest term in Q(X; w;) and w, is sufficiently large to make Im(Q(X; w))
the largest term in Q(X; w,). For each point x in Q' (the domain without the wells), we solve
for ri (x) and r,(x) in the 2 x 2 system:

I || n®x) | _ QK wr) 51)
1 1wy || (%) O(x; w2) |
Then to estimate the conductivity we solve for o!/? in the equation:
Ac'? — ri(x)0'? =0, forx € &, (52)

with Dirichlet boundary condition given by the knowledge of o on 3%2". Once we know o, the
storage coefficient S can be easily obtained from r,, indeed:

S(x) = o (X)rz(x). (53)

7. Numerical experiments

We now present numerical experiments comparing inverse Born series with the Gauss—Newton
and Chebyshev—Halley methods for both the discrete internal measurements Schrodinger
problem (section 7.1) and an application to transient hydraulic tomography (section 7.2).

7.1. Schrédinger potential reconstructions from discrete internal measurements

As discussed in section 3.5, our objective is to recover an unknown Schrédinger potential g
from the measurements f(g) = D, where the entries D; ; of the N x N matrix D are given
by (2).

We discretize the computational domain € = [0, 1]*> with a uniform grid consisting of
the nodes (kh, lh), for k,1 = 0,...,400 and A = 1/400. We use a total of 16 measurement

functions ¢;, which are smooth and satisfy: ||¢;|l;~q) = 1for j =1, ..., 16; ¢; is compactly
supported on a circle of radius p = 0.05; and the centers of the wells are uniformly
spaced in the domain at the points (0.2m, 0.2n) for m,n = 1,...,4. The Laplacian in

the Schrodinger equation is discretized with the usual five point finite differences stencil
and the true Schrodinger potential is simply evaluated at the grid nodes. The measurements
D; ;j = (¢}, ui)2(q) involve integrals that are approximated by the trapezoidal rule on the grid.
Measurements f(go) for the reference potential gy are computed in the same grid. The data
that we use for the reconstructions is f(q) — f(qo)-

The reconstructions are performed on a different (coarser) grid consisting of the nodes
(kh¢, lh.) for k,1 = 0,...,80 and h, = 1/80. We compare the results obtained from
a truncated inverse Born series of order 5, and 10 iterations of the Gauss—Newton and
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Figure 4. Comparison of reconstructions of a smooth (top) and piecewise constant
(bottom) Schrodinger potential from discrete internal data at 16 locations and with no
noise. The color scale is identical for all images in a row.
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Chebyshev—Halley methods. These three reconstructions are applied to F', a coarse grid version
of the map f. For instance, the reconstructions for the inverse Born series are

k
> Bu((f(@) — ()™,
n=1

where the coefficients B, are the inverse Born series coefficients for the coarse grid F (rather
than those for the fine grid f, which would be an inverse crime). For the inverse Born series, the
operator B is aregularized pseudoinverse of A; (i.e. the linearization of the coarse grid forward
map F) where the singular values of A; which are less than 0.01 times the largest singular
value (of A|) are treated as zero. The same regularization is used for the Jacobians involved in
the Gauss—Newton and Chebyshev—Halley methods. We use gy = 0 as the reference potential
for the inverse Born series as well as the initial guess for the iterative Gauss—Newton and
Chebyshev—Halley methods.

Figure 4 shows the reconstructions of a real smooth Schrodinger potential —14 < g(x) <
4 and a real piecewise constant potential with —6 < g(x) < 12. In both cases, the potential and
the generated data are small enough to satisfy the hypotheses of theorem 3. Figure 5 displays
the reconstructions of the same potentials from noisy data. The noisy data is obtained by first
generating the true data f(q) — f(qo) as above, and then perturbing it with 1% zero mean
additive Gaussian noise, i.e. with standard deviation 0.01 max; ; | (f(q) — f(qo));,;|. Similarly,
figure 6 displays the reconstructions with 5% additive Gaussian noise, i.e. with zero mean
and standard deviation 0.05 max; ; |(f(q) — f(qgo))i,j|. In the experiments with noise present,
the pseudoinverses of the Jacobians have been additionally regularized to compensate for the
noise level (i.e. only singular values above 0.02 (resp. 0.06) times the largest singular value
are retained for inversion for 1% (resp. 5%) noise).

7.2. Transient hydraulic tomography

In the frequency domain hydraulic tomography problem (see section 6), the objective is to
estimate the hydraulic conductivity o (x) and the storage coefficient S(x) from the frequency
dependent measurements M, ;(w) defined in (48).
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Inverse Born Series Gauss-Newton Chebyshev-Halley

True Potential

Figure 5. Comparison of reconstructions of a smooth (top) and piecewise constant
(bottom) Schrodinger potential from discrete internal data at 16 locations and with 1%
additive Gaussian noise. The color scale is identical for all images in a row.
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Figure 6. Comparison of reconstructions of a smooth (top) and piecewise constant
(bottom) Schrodinger potential from discrete internal data at 16 locations and with 5%
additive Gaussian noise. The color scale is identical for all images in a row.

As before, the computational domain € = [0, 1]? is discretized with a uniform grid with
nodes (kh, [h) for k, 1 =0, ...400 and & = 1/400. The true storage coefficient S is evaluated
on this grid. The discretization of the term V - [0 V] is done through the stencil
Up1,0 — Ug,l Up—1,1 — Ug,1
;e + Ok-1/2,1 e

Uedl — Ukl U, -1 — Ut
% ki—1/2 % )

where uy ; ~ u(kh, lh) and similarly for . This means that the true conductivity is evaluated
at the midpoints of the horizontal and vertical edges of the grid. The boundary points have a

(V- [oVul)(kh, lh) = 04124

+ Ok1+1/2
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Figure 7. Hydraulic tomography reconstructions of the hydraulic conductivity o (x)
(top) and the storage coefficient S(x) (bottom) for noiseless data and different methods.
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different stencil that takes into account the homogeneous Dirichlet boundary conditions, and
that we do not include here for the sake of clarity.

The frequency domain measurement functions (/ﬁ;(x, w) we use are, for simplicity,
independent of the frequency w and are given in x by the same 16 compactly supported
smooth functions described in section 7.1. The measurements M,-, j(w) = (q’ﬁ\j, u;)2(q) involve
integrals over €2 that are evaluated by using the trapezoidal rule on the same grid that is used
for the forward simulations. Recalling section 6.1, the measurements M; ;(w) can also be
viewed as discrete internal measurements of a Schrodinger field v; (see (49)) assocmted with
the potential Q(x; w) defined in (50) i.e. M(a)) = f(Q(x; w)) with well functions ¢; /01/2
We also compute measurements for the reference potential Oy = 0 on this grid using the
well functions ¢;/o /% (this corresponds to S = 0 and o = 1). The measurements we use for
reconstructions are f(Q(x; w)) — f(Qo) (for two different frequencies).

Reconstructions are again performed on the coarse grid consisting of the nodes (kh,, lh,)
fork,l = 0,...,80 and h. = 1/80. For each method (inverse Born series order 5, Gauss—
Newton, and Chebyshev—Halley), an approximation of the complex Schrodinger potential
QO(x; w) is found from the frequency domain data f(Q(x; w)) — f(Qp) for v = 1, 10.
The parameters S and o are then estimated with the procedure of section 6.3. The grid
used for solving the problems (52) for the conductivity is the same coarse grid used for the
reconstructions (to avoid an inverse crime). The boundary conditions for (52) are obtained
from the true conductivity evaluated at appropriate points.

Figure 7 shows the reconstructions of the hydraulic conductivity o and storage coefficient
S when data has no noise. The conductivity ¢ is smooth and |l — o| < 0.8. The storage
coefficient S is also smooth and —5 < S < 3. We use the true conductivity o inside the wells
but the storage coefficient S inside the wells is computed, as in the rest of the domain, from
(53). Reconstructions with 1% additive zero mean Gaussian noise are included in figure 8.
As before this means the noise has standard deviation 0.01 max; ; [[f(Q(x; @) — f(Qo)li
which is different for the two frequencies we use. Similarly, figure 9 displays reconstructions
with 5% additive zero mean Gaussian noise.

Remark 7. In our experiments, the parameters ¢ and S are chosen so that the corresponding
Schrodinger potential Q(x; w) and the generated data are small enough to satisfy the hypotheses
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Figure 8. Hydraulic tomography reconstructions of the hydraulic conductivity o (x)
(top) and the storage coefficient S(x) (bottom) for data with 1% additive Gaussian noise
and different methods.
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Figure 9. Hydraulic tomography reconstructions of the hydraulic conductivity o (x)
(top) and the storage coefficient S(x) (bottom) for data with 5% additive Gaussian noise
and different methods.

of theorem 3 (for w = 1, 10). This makes the contrasts in o (especially) and S too small to
represent a realistic problem (see e.g. [4]). As noted before in remark 6, it may be possible to
overcome this by using the inverse Born series on the hydraulic tomography problem directly.

8. Discussion

We show here that with little modification, the inverse Born series convergence results of
Moskow and Schotland [12] can be generalized to mappings between Banach spaces. With
this abstraction, we only need to show that the forward Born operators are bounded as in (6)
to obtain convergence, stability and error estimates for the inverse Born series. Such results
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are then proven for the problem of finding the Schrodinger potential from discrete internal
measurements. A nice byproduct of our approach is that we can relate forward and inverse
Born series coefficients (up to a symmetrization) to the Taylor series coefficients of an analytic
map and its inverse (provided it exists).

Since the cost of computing the nth term of the inverse Born series increases exponentially
in n, we also consider the iterative method obtained by restarting the inverse Born series
after summing the first £ terms. We obtain a class of methods that we call RIBS(k) and
that includes the well-known Gauss—Newton and Chebyshev—Halley iterative methods. Our
numerical results show these methods give reconstructions comparable to those obtained with
the inverse Born series.

Among the future directions of this work would be to show the RIBS(k) method is
convergent. We conjecture that the convergence rate of RIBS(k) is of order k. The RIBS(k)
method is only locally convergent, meaning that we need to be already close to the solution for
the method to converge. Globalization strategies that keep, when possible, this higher order
convergence rate are needed.

The application we use to illustrate our method is a problem related to transient hydraulic
tomography. Since we convert this problem to the problem of finding a Schrodinger potential
and all the methods we use here are locally convergent, the contrasts that we can deal with
are far from realistic ones. We believe that a proper globalization strategy will allow us to
deal with higher contrasts. Another important question that we have not dealt with here is
that of regularization. The only regularization that we consider here is the choice of the linear
operator that primes the inverse Born series. By analogy with what can be done with the
Gauss—Newton method, we believe it is possible to include specific a priori information about
the true parameters by formulating the problem as minimizing the misfit plus a penalty term
that takes into account the a priori information.
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Appendix. Inverse Born series in Banach spaces

The proofs in this appendix are an adaptation of the proofs by Moskow and Schotland [12] to
inverse Born series in Banach spaces. The results are stated in section 2.3.

A.1. Proof of bounds for inverse Born series coefficients (lemma 1)

Proof. Since ||a,| < an”, we can estimate for n > 2:

n—1
1Bl <Y D Nbwllllas |-+ lag, 11511

m=1 s1+--+su=n

n—1
<UBA™ Y Mbull D (™). (ap™)
m=1

Siteetsm=n
n—1
=15 1"w" Y Mbwlle™ D 1. (A1)
m=1 S|+ tSy=n
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The last sum is the number of partitions of the integer » into m ordered parts. Hence forn > 2,
we get

n—1

n—1
IBall < GellbalD™ ) ||bm||a’"(m ~ 1)
m=1

< (ullbaly" (Zl “bm“) (Zl "‘m<:1: 11))

m=1 m=1

n—1

< (ulibrllCe + 1)y [1bwll. (A2)

m=1

To get the last inequality we used that

n—1 n 1 n—2 n 1 n—1 n 1
m - _ m+1 - m+1 - _ n—1 n
E_la <m_1>—g o ( - )gag o ( - )—a(l—i-ot) <d+a).

m=0 m=0

Following [12] we can estimate the coefficients in the inverse Born series by

1Dall < Co(pellbrll (e + 1) ||B1 ]I, forn > 2, (A.3)
where the constants C,, are defined recursively by

G =1land Cpy; =1+ ((a + Dpllby]|)*forn > 2. (A4)

The constants C,, are then

n—1 . 1
Co= H(l + ((@ + DulbiID™) < exp (] . 1)M|Ib1ll>’ (A.5)

m=2

where the bound for C, can be derived as in [12] and is valid when (o + 1)u||b1]| < 1, which
is one of the hypothesis. The result follows from the bounds (A.3) and (A.5). O

A.2. Proof of local convergence of inverse Born series (theorem 1)

Proof. Using the estimate of lemma 1, we can dominate the term of the inverse Born series
by a geometric series as follows

12, (@)1l < B (e + DpelibrlldID" (A.6)

Therefore the Born series is absolutely convergent when (o + 1) t||b]|||d]] < 1, which is one
of the assumptions of this theorem. The tail of the series with terms the absolute values of the
inverse Born series terms, can be estimated by noticing that:

((a + Dbl DN
1= (a+ Dullbrlllidl -

> B+ Dulbillld)" = B

N+1

(A7)
O
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A.3. Proof of stability of inverse Born series (theorem 2)

Proof. We use an identity on tensor products to conclude that

oo

lhy = hall <Y 1B (A" — d$™) |

1
n—1
by (Z AP ® (di — dy) ® dg@("-"-”) H

n

M

n=1 k=0
o0
<Y M bylllldy — dall. (A3)
n=1
The desired estimate follows from applying the estimate for the ||b, || in lemma 1,
o0
iy — kol < lldy = dall Y nM" = B(( + Dby ]))" (A9)
n=1
B 1
< lldi — dall— (A.9)

M (1 —M(a+ Dplbi )
since we assumed that M (o + 1)u||b;|| < 1. Here we used the following inequality:

- n—1lgeon __ E - n E - n__ E 1
ﬁ;nM 8" = M;n(M(S) < M;(n—}—l)(Mé) =N a
where § = (o + D) u||b1]l. O

A.4. Proof of inverse Born series error estimate (theorem 3)

Proof. Taking the expression for d in (17) and replacing in the expression for 4, in (17) we
get:

he = culh®), (A.10)
n=1
where
c1 = bay,
n—1
= (Z by, ( Z as, ® - -+ ®asm>> + by(a™), forn > 2. (A.11)
m=1 S|4 S=n

Using the expression (10) of b, in terms of b, | < m < n— 1, we get for n > 2 that

n—1
Ccp = me < Z a5, @+ ® asm> (I — (b1a1)®”) . (A.12)

m=1 S1+Sy=n

Hence the reconstruction error is

oo n—1
h—hy = (h—biath) =Y by, < Y o4 ®---® a) (h®" — (hrah)®") . (A.13)

n=2 m=1 S+ Sm=n

We now estimate the error:

oo n—1

Ilh = hll < Wb =brarhl + > D" > Abwlllas |- llag, | |2 = (brai)®"| . (A.14)

n=2 m=1 s1+--sp=n
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For n > 1 we can estimate:

n—1
1R = (bra)®" || = | Db @ (h = biaih) @ (brah)®" "
k=0
< nM"'\|\h = bya,h|], (A.15)

where we used the hypothesis ||h|| < M, ||bija k|| < M. Since we assumed the Born series
coefficients satisfy ||a,| < au” we get:

oo n—1
I — hyll < 1A — braih]| (1 + Z Z Z 1Bl Corpa®y - - (auf”‘)nM”_l>

n=2 m=1s1+--s=n

oo n—l1

n—1
— = brayh (1 15 9) BN COT ( 1)) . (A.16

n=2 m=1

Here we have used again the fact that the number of ordered partitions of » into m integers is:

(n _ 1)
E 1= .
m—1
Speesm=n

Clearly we have that:

00 n—1 n—1 _1
7 = el < llh = brayh] (1 + ) M (Z ||bm||> (Z o (,’; B 1) L@l

n=2 m=1 m=1

Now using the two facts:

n—1 n—1
D lbull < B (@ + Dpliby])™ (lemma 1),
m=1

m=1
" n—1
Za’"( ) < (1 +a)*(asin(A.2)), (A.18)
— m—1

we get the inequality

[} n—1
Il = hall < WV = brarh] (1 +) A%(uM(l +a)"B Y ((a+ Dpllby ||)'") : (A.19)
n=2 m=1

Adding the m = 0 term to the geometric series over m and summing we get:

B < 21— (e + Dpllby )"
I — hill < |k — brashl] (”MZ (UM (1 + ) = e+ Dalbl )

n=1
The hypothesis uM (e + 1) < 1 and u(x + 1)||b1]| < 1 imply the quantity in parenthesis is
bounded and depends only on M, «, 8 and u and | by ||. O

(A.20)
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