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Imaging with power controlled source pairs

Patrick Bardsley† § ¶ and Fernando Guevara Vasquez‡ § ‖

Abstract. Scatterers in a homogeneous medium are imaged by probing the medium with two point sources
of waves modulated by correlated signals and by measuring only intensities at one single receiver.
For appropriately chosen source pairs, we show that full waveform array measurements can be
recovered from such intensity measurements by solving a linear least squares problem. The least
squares solution can be used to image with Kirchhoff migration, even if the solution is determined
only up to a known one-dimensional nullspace. The same imaging strategy can be used when the
medium is probed with point sources driven by correlated Gaussian processes and autocorrelations
are measured at a single location. Since autocorrelations are robust to noise, this can be used for
imaging when the probing wave is drowned in background noise.
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1. Introduction. Scatterers in a homogeneous medium can be imaged by probing the
medium with a wave emanating from a point source, and recording the reflected waves at one
or more receivers. An image of the scatterers can be generated by repeating this experiment
while varying the position of the source and/or receiver and using classic methods such as the
Kirchhoff (travel time) migration (see e.g. [1]) or MUSIC (see e.g. [6]). We are concerned
here with the case where only intensity measurements can be made at the receiver; destroying
phase information that migration and MUSIC need to image. Intensity measurements occur
e.g. when the response time of the receiver is larger than the typical wave period or when
it is more cost effective to measure intensities than the full waveform. This is typical in e.g.
optical coherence tomography [24, 23] and radar imaging [7]. Another situation is when the
wave sources are stochastic and the measurements consist of correlations of the signal recorded
at different points [27, 10]. In the special case of autocorrelations (i.e. correlating the signal
with itself), the Wiener-Khinchin theorem guarantees we are measuring power spectra (see
e.g. [18]), another form of intensity measurements.

The setup we analyze consists of an array of sources and one single receiver that can only
record power spectra, i.e. the intensity of the signal at certain frequency samples. A crucial
assumption for our method is that we can use source pairs, meaning we can send correlated
signals from two different locations. Thus we allow for known delays or attenuations between
the signals in a source pair. In acoustics, one way of achieving this would be to drive two
transducers in an array with the same signal. With light, one could use an incoherent plane
wave with wavefronts parallel to a configurable mask. The mask lets light through one or two
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small holes, whose locations can be controlled.

Our method can be used for imaging from both measurements of intensities (§1.1) and
autocorrelations (§1.2).

1.1. Intensity only measurements. One way to deal with intensity measurements is phase
retrieval, i.e. first recovering the phases from intensity measurements, and using this recon-
structed field to image. In diffraction tomography, intensity measurements at two different
planes can be used to recover phases [16, 29, 15]. If additional information is known (e.g.
the support of the scatterer), intensities at one single plane can be used [9, 20, 19]. Total or
partial knowledge of the incident field can also be exploited to image from intensities at one
single plane [8].

Chai et al. [4] take a compressed sensing approach to image a few point scatterers exactly.
With knowledge of the incident field, the location of the scatterers can be resolved in both
range and cross-range with monochromatic measurements. The same ideas can even be used to
deal with multiple scattering [5]. Novikov et al. [21] use the polarization identity 4Re(u∗v) =
‖u + v‖2 − ‖u − v‖2, u,v ∈ CN , and linear combinations of single source experiments to
recover dot products of two single source experiments from intensity data. MUSIC can then
be used to image with this quadratic functional of the full waveform data.

Here we do phase retrieval assuming knowledge of the intensity of the incident field. Our
illumination strategy using source pairs does not require direct manipulation of phases or
addition/subtraction of wave fields. We reduce the recovery of the total field to a linear sys-
tem with a one-dimensional nullspace which we can write explicitly in terms of the incident
field. There is one (very sparse) linear system per frequency sample to solve, and the lin-
ear system has size comparable to twice the number of source positions. Intuitively we are
recovering a field in CN from 2N (or more) real measurements. We show that vectors in
the one-dimensional nullspace do not affect Kirchhoff migration. Hence we can use, without
modification, Kirchhoff migration and its standard range and cross-range resolution estimates
(see e.g. [1]).

1.2. Correlation based methods. In seismic imaging, correlations of traces (or recordings)
at many receivers have been used to image the earth’s subsurface, especially when the wave
sources and their locations are not well known [25, 27, 26]. The idea is that correlations of the
signals at two different locations contain information about the Green’s function between the
two locations, and this information can be exploited to image the medium and any scatterers.
This principle can even be exploited to do opportunistic imaging with ambient noise [10, 11,
14]. Cross-correlations can also be used to image scatterers in a random medium [3, 12, 13]. In
radar imaging, the measurements are in fact correlations [7], and so even stochastic processes
can be used instead of deterministic signals [28, 30].

The method we present here can also be used to image scatterers using autocorrelations.
We show it is possible to form an image by exploiting angular diversity in source pairs instead
of cross-correlations among different receivers. Just as in the intensity measurements case, we
are able to recover (up to a one dimensional nullspace) full waveform array measurements.
One advantage of using autocorrelations instead of cross-correlations is that the data acquisi-
tion at the (single) receiver is simpler. The drawback is that our illumination strategy requires
to illuminate with pairs of sources, but also with each of the sources in a pair on its own. To
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get the same full waveform data as an array with N sources, we need at least 3N different
experiments. Another advantage of using autocorrelations is that the measurements are ex-
tremely robust to noise. As an example, our numerical experiments show that it is possible to
image scatterers with an array that is sending noise from all possible source positions; the only
assumption about the noise being that all the sources are independent stochastic processes
except for two correlated sources whose positions we can control. Because of this robustness,
it may be possible to use our imaging method in situations where the medium is to be probed
in a non-intrusive way, i.e. active imaging with waves that are of the same magnitude as the
ambient noise.

1.3. Contents. The particular physical setup we consider is described in §2. The illumi-
nation strategy with source pairs is explained in §3, which leads to a phase retrieval problem
that can be formulated as a linear system (§4). The least squares solution to the linear sys-
tem is then used as data for imaging with Kirchhoff migration, and we show that this gives
essentially the same images as full waveform data (§5). The extension to stochastic source
pairs is given in §6. Then we show that our method is robust to additive noise when using
autocorrelations (§7). Numerical experiments illustrating our method are given in §8 and we
conclude with a discussion in §9.

2. Array imaging for full waveform measurements. Here we introduce the experimental
setup we consider (§2.1) and briefly recall the classic Kirchhoff migration imaging method
(§2.2).

2.1. Experimental setup. The physical setup is illustrated in figure 2.1. We probe a
homogeneous medium with waves originating from N point sources with locations ~xs ∈ A,
s = 1, 2, . . . , N . For simplicity we consider a linear array in 2D or a square array in 3D, i.e.
A = [−a/2, a/2]d−1 × {0}, where d = 2 or 3 is the dimension. Our imaging strategy imposes
only mild restrictions on the source positions, so other array shapes may be considered. Waves
are recorded at a single known receiver location ~xr.

The total field generated by the array (or incident field) can be written as

ûinc(~x, ω) = g0(~x, ω)Tf(ω), (2.1)

where

g0(~x, ω) =
[
Ĝ0(~x, ~x1, ω), Ĝ0(~x, ~x2, ω), . . . , Ĝ0(~x, ~xN , ω)

]T
∈ CN , (2.2)

and the source driving signals are f(ω) = [f̂1(ω), f̂2(ω), . . . , f̂N (ω)]T. Since we assume waves
propagate through a homogeneous medium, we used the outgoing free space Green function,

Ĝ0(~x, ~y, ω) =


ı
4H

(1)
0 (k|~x− ~y|), for d = 2,

exp[ık|~x− ~y|]
4π|~x− ~y| , for d = 3.

(2.3)

Here H
(1)
0 is the zeroth order Hankel function of the first kind, k = ω/c0 is the wavenumber,

ω is the angular frequency and c0 is a known constant background wave speed. For functions
of time, the Fourier transform convention we use is

f̂(ω) =

∫
f(t)eıωtdt, and f(t) =

1

2π

∫
f̂(ω)e−ıωtdω, where f ∈ L2(R). (2.4)
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Figure 2.1. Physical setup for array imaging with an array A of sources ~xs and a single receiver ~xr. The
scatterer is represented by a compactly supported reflectivity function ρ(~x).

The scatterers we want to image are represented by a compactly supported reflectivity
function ρ(~x). Under the weak scattering assumption (i.e. ρ � 1), we can use the Born
approximation to the total field at the receiver

û(~xr, ω) = (g0 + p)Tf , (2.5)

where the array response vector is

p(~x, ω) = k2

∫
d~yρ(~y)Ĝ0(~x, ~y, ω)g0(~y, ω). (2.6)

2.2. Kirchhoff migration. By e.g. using illuminations f(ω) = ei, i = 1, . . . , N corre-
sponding to the canonical basis vectors, it is possible to obtain the array response vector
p(~xr, ω) from the measurements (2.5). The scatterers can then be imaged using the Kirchhoff
migration functional (see e.g. [1]) which for a single frequency ω is

ΓKM[p, ω](~y) = Ĝ0(~y, ~xr, ω)g0(~y, ω)∗p(~xr, ω), (2.7)

where ~y represents a point in the image. This image has a Rayleigh or cross-range (i.e.
in the direction parallel to the array) resolution of λL/a, where L is the distance from the
array to the scatterer (see e.g. [1]). To get range (i.e. in the direction perpendicular to the
array) resolution we need to integrate ΓKM[p, ω](~y) for frequencies ω in some frequency band
B = [−ωmax,−ωmin] ∪ [ωmin, ωmax], the same frequency band of the signals f(ω). The range
resolution is then c0/(ωmax − ωmin) (see e.g. [1]). We discuss this imaging functional further
in section 5.

3. Intensity only measurements. We start in §3.1 by describing a source pair illumination
strategy for intensity measurements of the total field |û(~xr, ω)|2. With this strategy, the
problem of recovering the array response vector p can be formulated as a linear system (§3.2).

3.1. Illumination strategy. The data we use comes from probing the medium with Np

source pairs that are sending signals with known power and phase difference. Since the
number of distinct source pairs out of an array with N sources is N(N − 1)/2 we must
have Np ≤ N(N − 1)/2. We assume the power and phase differences remain the same for
all Np illuminations. The case where these quantities depend on the source pair is left for
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future studies. To be more precise, the illumination corresponding to the m−th source pair
(i(m), j(m)) ∈ {1, . . . , N}2 is

fm(ω) = Fm

[
α(ω)
β(ω)

]
, where Fm = [ei(m), ej(m)] ∈ RN×2. (3.1)

We emphasize that only |α|2, |β|2 and the phase difference φ(ω) ≡ arg(αβ) is assumed to be
known for the signals α and β. A particular case is when the same signal is sent from the
source pair, i.e. β = α and φ(ω) = 0.

The intensity of the field um arising from the source pair illumination fm is

|ûm(~xr, ω)|2 = gTfmf
T
mg = g∗Fm

[|α|2 αβ

βα |β|2
]
FTmg, (3.2)

where we used g = g0 + p. Note that since αβ = |α||β|eıφ, the inner 2× 2 Hermitian matrix
is uniquely determined by the magnitudes of α and β and their phase difference φ. By using
the single source reference illumination ei we additionally measure

|û0
i (~xr, ω)|2 = g∗eie

T
i g, for i = 1, . . . , N. (3.3)

The data we exploit to recover p is obtained by subtracting the appropriate reference illumi-
nations (3.3) from (3.2), that is

dm(~xr, ω) = |ûm|2 − |α|2|û0
i(m)|2 − |β|2|û0

j(m)|2

= g∗Fm

[
0 αβ

βα 0

]
FTmg.

3.2. Phase retrieval problem as a linear system. By recalling that g = g0 + p, the
measurements dm are

dm(~xr, ω) = (g0 + p)∗Fm

[
0 αβ

βα 0

]
FTm(g0 + p).

To make the following expressions concise, we denote by D the Hermitian matrix

D =

[
0 αβ

βα 0

]
. (3.4)

By the weak scattering assumption, we may neglect the quadratic terms in p and collect all
measurements for m = 1, . . . , Np as a single vector d ∈ RNp :

d1(~xr, ω)
d2(~xr, ω)

...
dNp(~xr, ω)

 ≈ d(~xr, ω) = Re




g∗0F1DF
T
1

g∗0F2DF
T
2

...
g∗0FNpDF

T
Np

 (g0 + 2p)


= M(~xr, ω)

[
Re(g0 + 2p)
Im(g0 + 2p)

]
,

(3.5)
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Figure 4.1. An example illustrating the strategy to choose the source pairs for N = 8 source positions.
Each source position is represented by a node in the graph, and source pairs are represented by edges. The first
5 source positions are in the circle.

where the Np × 2N real matrix M is given by

M(~xr, ω) =


Re(g∗0F1DF

T
1 ) −Im(g∗0F1DF

T
1 )

Re(g∗0F2DF
T
2 ) −Im(g∗0F2DF

T
2 )

...
...

Re(g∗0FNpDF
T
Np

) −Im(g∗0FNpDF
T
Np

)

 . (3.6)

Note that by construction, the matrix M has at most 4 non-zero elements per row, and is
thus a very sparse matrix for N large.

4. Analysis of the phase retrieval linear system. We now address the question of whether
there is enough information in the measurements d ∈ RNp to recover the array response vector
p ∈ CN . The main result of this section is Theorem 4.2, where we show that with appropriately
chosen pairs of sources, M†d (i.e. the Moore Penrose pseudoinverse of M times d) gives p up
to a complex scalar multiple of the vector g0, which is known a priori.

Let us first consider the case where we take measurements using all possible source pairs,
i.e. that Np = N(N − 1)/2. Clearly, we need N ≥ 5 to guarantee that Np ≥ 2N , i.e. that the
matrix M has more rows than columns and the system d = M[Re(g0 + 2p)T, Im(g0 + 2p)T]T

is overdetermined.

Instead of using all possible source pairs, we use the following strategy which for N ≥ 5,
guarantees Np = 2N .

Strategy to choose source pairs:

1. All 10 distinct source pairs between the source positions {1, . . . , 5}.
2. For source position s > 5, choose any two different source pairs of the form (s, i) and

(s, j) where i, j ∈ {1, . . . , 5}.
This strategy is illustrated in figure 4.1. More source pairs can be added without affecting
the recoverability of p (Theorem 4.2). We now make the following assumption on the first 5
source positions.

Assumption 1. We assume the receiver is located at a position ~xr such that for i, j =
1, . . . , 5, the vector g0 ≡ g0(~xr, ω) satisfies

Re
(
g0

)
i
6= 0, Im

(
g0

)
i
6= 0, and Re

(
g0

)
i
Im
(
g0

)
j
6= Re

(
g0

)
j
Im
(
g0

)
i
. (4.1)
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Additionally for one pair i, j ∈ [1, . . . , 5] we assume

cos(φ)
(

Re
(
g0

)
i
Im
(
g0

)
j
− Re

(
g0

)
j
Im
(
g0

)
i

)
6=

− sin(φ)
(

Re
(
g0)iRe

(
g0

)
j

+ Im
(
g0

)
i
Im
(
g0

)
j

)
.

(4.2)

This assumption is by no means necessary for the end result (Theorem 4.2) to hold, but it is
sufficient. If d = 3, condition (4.1) is equivalent to the geometric condition

|~xi − ~xr| /∈
λ

4
Z and |~xi − ~xr| − |~xj − ~xr| /∈

λ

2
Z for all i, j = 1, . . . , 5, (4.3)

while condition (4.2) implies for one pair i, j ∈ [1, . . . , 5] that

|~xr − ~xi| − |~xr − ~xj | /∈
λ

2
Z− λ

2π
φ. (4.4)

Here the set (λ/2)Z is the set of all integer multiples of λ/2, where λ = 2πc0/ω is the
wavelength. In d = 2, conditions similar to (4.3) and (4.4) are sufficient when the sources and
receivers are far apart because of the Hankel function asymptotic

H
(1)
0 (t) =

√
2

πt
exp[ı(t− (π/4))](1 +O(1/t)), as t→∞.

Lemma 4.1. Provided α 6= 0, β 6= 0, Re(αβ) 6= 0, the source pairs are chosen with the
above strategy and assumption 1 holds, the matrix M ≡ M(~xr, ω) satisfies

nullM = span

{[
−Im

(
g0(~xr, ω)

)
Re
(
g0(~xr, ω)

) ]} . (4.5)

Proof. For clarity of exposition, we adopt the notation

ai = Re
(
g0

)
i
, bi = Im

(
g0

)
i
,

for i = 1, . . . , N and with g0 ≡ g0(~xr, ω). The proposed vector spanning the nullspace is
[vT,wT]T = [−Im(g0)T,Re(g0)T]T and has components vi = −bi and wi = ai for i = 1, . . . , N .

The proof is by induction on the number of sources N . For the purpose of the induction
argument, we denote by M(N) the measurement matrix M( ~xr, ω) corresponding to N sources,
which if we use the strategy explained above, must be a 2N × 2N real matrix. For the base
case N = 5 of the induction, M(5) can be written as

M(5) =



A−2 A+
1 0 0 0 B+

2 B−1 0 0 0
A−3 0 A+

1 0 0 B+
3 0 B−1 0 0

A−4 0 0 A+
1 0 B+

4 0 0 B−1 0
A−5 0 0 0 A+

1 B+
5 0 0 0 B−1

0 A−3 A+
2 0 0 0 B+

3 B−2 0 0
0 A−4 0 A+

2 0 0 B+
4 0 B−2 0

0 A−5 0 0 A+
2 0 B+

5 0 0 B−2
0 0 A−4 A+

3 0 0 0 B+
4 B−3 0

0 0 A−5 0 A+
3 0 0 B+

5 0 B−3
0 0 0 A−5 A+

4 0 0 0 B+
5 B−4


,
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where we have used

A±i = |α||β|(cos(φ)ai ± sin(φ)bi), B±i = |α||β|(cos(φ)bi ± sin(φ)ai). (4.6)

Using the expressions (4.6), the leading principal 9× 9 minor of M(5) is

|M(5)
1:9,1:9| = −4|α|9|β|9 cos2(φ) (cos(φ)(b3a1 − b1a3) + sin(φ)(b3b1 + a3a1))×

a5(b3a2 − b2a3)(b2a1 − a2b1)(b5a4 − a5b4).

Therefore if assumption 1 holds and cosφ 6= 0 (which we get from Re(αβ) 6= 0), we must have
rankM(5) ≥ 9. By direct calculations, we have that

nullM(5) = span
{

[−b1, . . . ,−b5, a1, . . . , a5]T
}
.

Thus the base case N = 5 holds and rankM(5) = 9.
For the induction hypothesis we assume that N ≥ 5 and that

nullM(N) = span
{

[−bT,aT]T
}
,

where a = [a1, . . . , aN ]T and b = [b1, . . . , bN ]T. If the first 2N source pairs to construct
M(N+1) are chosen in exactly the same way as the source pairs to construct M(N), and the
last two source pairs are, e.g. (N + 1, 1) and (N + 1, 2) we must have for any v,w ∈ RN and
vN+1, wN+1 ∈ R that

M(N+1)


v

vN+1

w
wN+1

 =

 M(N)

[
v
w

]
A−N+1v1 +A+

1 vN+1 +B+
N+1w1 +B−1 wN+1

A−N+1v2 +A+
2 vN+1 +B+

N+1w2 +B−2 wN+1

 . (4.7)

Hence if [vT, vN+1,w
T, wN+1]T ∈ nullM(N+1), then we must have [vT,wT]T ∈ nullM(N), i.e.

there is some real k 6= 0 such that v = −kb and w = ka. Equating the last two components
of (4.7) to zero and using that vi = −kbi and wi = kai for i = 1, 2, one gets the linear system[

A+
1 B−1

A+
2 B−2

] [
vN+1

wN+1

]
=

[
kA−N+1b1 − kB+

N+1a1

kA−N+1b2 − kB+
N+1a2

]
.

Since A+
1 B
−
2 − A+

2 B
−
1 = |α|2|β|2(a1b2 − a2b1) 6= 0, the unique solution to this system is

vN+1 = −kbN+1 and wN+1 = kaN+1. Thus the desired result holds for any N ≥ 5.
In figure 4.2, we show the condition number of M(~xr, ω) (i.e. σ1/σ2N−1 the ratio of the

largest singular value to the smallest non-zero singular value ) over a frequency band. The
experimental setup is that given in §8 and corresponds to sending exactly the same signal
from both locations in a source pair (i.e. α = β and φ = 0). Figure 4.2(a) shows the condition
number of M with ~xr chosen so that assumption 1 is satisfied, while figure 4.2(b) shows the
condition number of M with ~xr chosen so that assumption 1 is violated for some frequencies.
In both cases, we see improved conditioning by using more than 2N source pair experiments.
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Figure 4.2. Condition number of M(~xr, ω) with receiver location ~xr chosen so that (a) assumption 1 is
satisfied, (b) assumption 1 is violated for some frequencies. The number of source pair experiments used is
Np = N(N − 1)/2 (in red) and Np = 2N (in blue).

We now tie M†d to the array response vector p.

Theorem 4.2. Under the assumptions of lemma 4.1 it is possible to recover p ≡ p(~xr, ω)
from the intensity data d up to a complex scalar multiple of g0 ≡ g0(~xr, ω), more precisely,
M†d determines the vector p + ζg0 where

ζ ≡ ζ(~xr, ω) =
1

2
− ıIm(g∗0p)

g∗0g0
. (4.8)

Proof. Recalling the form of our data we have

d = M

[
Re
(
g0 + 2p

)
Im
(
g0 + 2p

)] .
By lemma 4.1, the matrix M has a one dimensional nullspace therefore

M†d =

[
Re(g0 + 2p)
Im(g0 + 2p)

]
− ζ̃

[
−Im(g0)
Re(g0)

]
,

where ζ̃ ∈ R is found by enforcing orthogonality with [−Im(g0)T,Re(g0)T]T, i.e.

ζ̃ =
1

g∗0g0
[−Re(g0 + 2p)TIm(g0) + Im(g0 + 2p)TRe(g0)] =

2Im(g∗0p)

g∗0g0
.

Thus from M†d we can get the CN vector

1

2
[Re(g0 + 2p) + ζ̃Im(g0)] +

ı

2
[Im(g0 + 2p)− ζ̃Re(g0)] =

1

2
g0 + p− ı

2
ζ̃g0 = p + ζg0,

where the scalar ζ ≡ ζ(~xr, ω) ∈ C is given by (4.8).
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~y

~xs

A

W

Figure 5.1. Given an array A and a region W containing the scatterers to image, assumption 2 ensures the
receiver location ~xr is outside of the blue shaded region. This guarantees the Kirchhoff images using data p and
the recovered p+ζg0 are essentially the same. The positive ray in the direction ~xs−~y for particular ~xs ∈ A and
~y ∈ W is indicated in red. If ~xr is outside the blue shaded region, we have (~xs−~xr)/|~xs−~xr| 6= (~xs−~y)/|~xs−~y|
for all ~xs ∈ A and all ~y ∈ W.

5. Kirchhoff migration imaging. We now show that we can image with the reconstructed
field p+ζg0 instead of p by using Kirchhoff migration. This is because the Kirchhoff migration
image of ζg0 is negligible compared to the image of p for high frequencies. In order to show
that this nullspace vector does not affect the imaging, we need to make sure the receiver
satisfies the following condition.

Assumption 2 (Geometric imaging conditions). For a scattering potential with support con-
tained inside an image window W, we assume ~xr satisfies

~xs − ~xr
|~xs − ~xr|

6= ~xs − ~y
|~xs − ~y|

, (5.1)

for s = 1, . . . , N and ~y ∈ W.
One way to guarantee assumption 2 holds is to place the receiver at location ~xr outside

of the shaded region in figure 5.1.
Theorem 5.1. Provided assumption 2 holds, the image of the reconstructed array response

vector is
ΓKM[p + ζg0, ω](~y) ≈ ΓKM[p, ω](~y).

Proof. First we approximate the Kirchhoff imaging functional (2.7) by an integral over
the array A, i.e.

ΓKM[ζg0, ω](~y) = Ĝ(~xr, ~y, ω)g0(~y, ω)∗ζ(~xr, ω)g0(~xr, ω)

∼ ζ(~xr, ω)

∫
A
dxsC(xs) exp

(
ıωc−1

0

(
|~xs − ~xr| − |~xs − ~y| − |~y − ~xr|

))
,

(5.2)

where the symbol ∼ means equal up to a constant and C(xs) collects smooth geometric
spreading terms.

Let us first use the stationary phase method (see e.g. [1]) on the integral over A. In the
high frequency limit ω →∞, the dominant contribution comes from stationary points of the
phase, i.e. the points ~xs for which

∇~xs

(
|~xs − ~xr| − |~xs − ~y| − |~y − ~xr|

)
= 0.
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The stationary points must then satisfy

~xs − ~xr
|~xs − ~xr|

=
~xs − ~y
|~xs − ~y|

.

Thus by assumption 2, there are no stationary points in the phase of the integral over the
array A appearing in (5.2). Neglecting boundary effects, this integral goes to zero faster than
any polynomial in ω (see e.g. [2]).

We now show that in the high frequency limit ω →∞, we have ζ(~xr, ω)→ 1/2. Recalling
(4.8), we have

ζ(~xr, ω) =
1

2
+

g0(~xr, ω)∗p(~xr, ω)− p(~xr, ω)∗g0(~xr, ω)

g0(~xr, ω)∗g0(~xr, ω)

∼ 1

2
+
ω2

c2
0

∫
d~z

∫
A
dxsC(xs) exp

(
ıωc−1

0

(
|~xs − ~z|+ |~z − ~xr| − |~xs − ~xr|

))
− ω2

c2
0

∫
d~z

∫
A
dxsC(xs) exp

(
ıωc−1

0

(
|~xs − ~xr| − |~xs − ~z| − |~z − ~xr|

))
,

(5.3)

where C(~xs) collects geometric spreading terms and |g0(~xr, ω)|−2, which is actually indepen-
dent of the frequency ω. By assumption 2, the integrals over A in (5.3) do not have any
stationary points. Thus if we neglect boundary terms, these integrals must go to zero faster
than any polynomial in ω (see e.g. [2]), meaning that ζ(~xr, ω) → 1/2 as ω → ∞. Thus
ΓKM[ζg0, ω](~y)→ 0 as ω →∞.

6. Autocorrelation measurements. Up to this point we have assumed deterministic con-
trol over the source illuminations. In this section we relax this control by driving the array
with stochastic signals. We start in section 6.1 by recalling an ergodicity result of Garnier and
Papanicolaou [10] which guarantees that if Gaussian stochastic processes are used to drive the
sources, the realization average of the total field can be well approximated by time averages
of the total field. Then in section 6.2 we adapt the source pair illumination strategy to pairs
of sources driven by two correlated Gaussian processes, with (known) correlation identical for
different pairs. From these pairwise illuminations we measure empirical autocorrelations to
obtain intensity measurements that are essentially (up to ergodic averaging) the same as those
using the deterministic strategy of section 3.1.

6.1. Stochastic array illuminations. We consider array illuminations f(t) ∈ CN given by
a stationary Gaussian process with mean zero and with correlation the N×N matrix function

R(τ) = 〈f(t)fT(t+ τ)〉. (6.1)

Here 〈·〉 denotes the expectation with respect to realizations of f , and in an abuse of notation
we have denoted by f(t) the time domain vector of signals driving the array. Since Rs,s′(τ) =

〈fs(t)fs′(t + τ)〉 = 〈fs′(t+ τ)fs(t)〉 = Rs′,s(−τ) for s, s′ = 1, . . . , N , we have R(τ) = R∗(−τ)

and so R̂(ω) is a Hermitian N ×N matrix.
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The total field u at the receiver arising from the array illumination f is, in the time
domain,

u(~xr, t) =

N∑
s=1

∫
dt′G(~xr, ~xs, t− t′)fs(t′), (6.2)

where G is the Born approximation of the inhomogeneous Green function, i.e.

G(~xr, ~xs, t) =
1

2π

∫
dωe−ıωt

[
Ĝ0(~xr, ~xs, ω) + k2

∫
d~zρ(~z)Ĝ0(~xr, ~z, ω)Ĝ0(~z, ~xs, ω)

]
.

The empirical autocorrelation of u is

ψ(~xr, τ) =
1

2T

∫ T

−T
u(~xr, t)u(~xr, t+ τ)dt, (6.3)

where T is a known measurement time. Following Garnier and Papanicolaou [10], we formulate
proposition 6.1 regarding the statistical stability and ergodicity of (6.3). This proposition is
essentially the same as [10, Proposition 4.1], but we make small modifications to allow for
complex fields and more general correlations in space. We include it here for the sake of
completeness and the proof can be found in appendix A.

Proposition 6.1. Assume f satisfies (6.1). The expectation (w.r.t. realizations of f) of the
empirical autocorrelation (6.3) is independent of measurement time T :

〈ψ(~xr, τ)〉 = Ψ(~xr, τ), (6.4)

where

Ψ(~xr, τ) =

N∑
s,s′=1

∫
dt′
∫
dt′′G(~xr, ~xr,−t′)G(~xr, ~xs′ , τ − t′′)Rs,s′(t′′ − t′)

=
1

2π

∫
dωe−ıωτg(~xr, ω)∗R̂(ω)g(~xr, ω).

(6.5)

Furthermore, (6.3) is ergodic, i.e.

ψ(~xr, τ)
T→∞−−−−→ Ψ(~xr, τ). (6.6)

6.2. Pairwise stochastic illuminations. We make Np illuminations each corresponding to
using only two distinct sources (i(m), j(m)) ∈ {1, . . . , N}2, m = 1, . . . , Np. The correlation
matrix for the m−th experiment has the form

R̂m(ω) = FmC(ω)FTm, (6.7)

where Fm = [ei(m), ej(m)] ∈ RN×2 and C(ω) is a known 2× 2 Hermitian positive semidefinite
matrix that represents the correlation between the two sources and is assumed to be the same
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for all experiments. For instance, if we send the same signal with power spectrum F (ω) from
both sources in a pair, this correlation matrix is

C(ω) = F (ω)

[
1 1
1 1

]
.

By the ergodicity (6.6) of proposition 6.1, when we measure the empirical autocorrelation
ψm of um at the receiver ~xr for long enough time T , the empirical autocorrelation is close to
an intensity measurement, i.e.

Ψ̂m(~xr, ω) = g(~xr, ω)∗FmC(ω)FTmg(~xr, ω). (6.8)

By using appropriate single source illuminations driven by a signal with known correlation, it
is possible to measure

Ψ̂0
i (~xr, ω) = g∗(~xr, ω)eie

T
i g(~xr, ω). for i = 1, . . . , N . (6.9)

From (6.8) and (6.9) we obtain the m−th measurement

dm(~xr, ω) = Ψ̂m(~xr, ω)− C11(ω)Ψ̂0
i(m)(~xr, ω)− C22(ω)Ψ̂0

j(m)(~xr, ω)

= g(~xr, ω)∗FmD(ω)FTmg(~xr, ω),
(6.10)

where the matrix D is 2× 2, Hermitian with zero diagonal, i.e. precisely of the same form as
the matrix D we encountered in the intensity measurements case (3.4).

Proceeding analogously as in section 3.1 and recalling that g = g0 + p we have

dm(~xr, ω) =
(
g0 + p

)∗
FmD(ω)FTm(g0 + p

)
.

Collecting the measurements for m = 1, . . . , Np and neglecting the quadratic term in p we
have the approximate data

d1(~xr, ω)
d2(~xr, ω)

...
dNp(~xr, ω)

 ≈ d(~xr, ω) = M(~xr, ω)

[
Re
(
g0 + 2p

)
Im
(
g0 + 2p

)] , (6.11)

where the matrix M ∈ RNp×2N is again given by (3.6). Thus, the data (6.11) obtained
by measuring the empirical autocorrelation (6.3) and using correlated pair illuminations, is
essentially the same as the data obtained using deterministic source pairs (3.5). Hence the
analysis of the matrix M of §4 holds and we can use Kirchhoff migration as we did in §5 for
the intensity measurements case.

Remark 1 (Uncorrelated background illumination). The proposed illumination strategy is ro-
bust with respect to noise and even allows to send the same Gaussian signal from the m−th
source pair (i(m), j(m)) and independent Gaussian signals from all remaining sources on the
array. If the independent signals have the same spectral density F (ω) as the source pair signal,
the correlation matrix for the m−th experiment is

R̂m(ω) = F (ω)

(
I + Fm

[
0 1
1 0

]
FTm

)
, (6.12)
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where I is N × N identity matrix. By subtracting from the autocorrelation for the m−th
experiment, the autocorrelation for a reference illumination that sends independent Gaussian
signals with correlation matrix F (ω)I, it is possible to obtain m−th measurement (6.10) with

D(ω) = F (ω)

[
0 1
1 0

]
.

7. Additive noise. Here we discuss the effects of additive instrumental noise in autocor-
related measurements of the total field. The total field at ~xr resulting from illuminating with
the m−th pair and tainted with additive noise is um(~xr, t) + ξ(t). We assume the noise ξ is a
stationary Gaussian process with mean zero and spectral density

Ξ̂(ω) = exp

(−l2c (ω − ω0)2

4π

)
. (7.1)

Here lc represents the correlation time of the noise (i.e. Ξ(τ) = 〈ξ(t)ξ(t+ τ)〉 ≈ 0 for τ � lc)
and ω0 is the central angular frequency of the noise. If the noise ξ is independent of the signals
used to drive the source pairs, it can be shown using the techniques of appendix A that

1

2T

∫ T

−T
dt
(
um(~xr, t) + ξ(t)

)(
um(~xr, t+ τ) + ξ(t+ τ)

) T→∞−−−−→ Ψm(~xr, τ) + Ξ(τ),

where Ψm is given by (6.5).
Assuming the same form of instrumental noise in the single source reference measurements,

the m−th measurement dm(~xr, ω) is

dm(~xr, ω) =
(
g0 + p

)∗
FmD(ω)FTm

(
g0 + p

)
+ CΞ̂(ω).

for some C ∈ R. Neglecting the terms which are quadratic in p and going back to the time
domain we have

dm(~xr, τ) ≈ 1

2π

∫
dωe−ıωτ

[
g0(~xr, ω)∗FmD(ω)FTmg0(~xr, ω)

+g0(~xr, ω)∗FmD(ω)FTmp(~xr, ω)

+p(~xr, ω)∗FmD(ω)FTmg0(~xr, ω)
]

+ CΞ(τ),

with the slight abuse of notation of using dm for both time and frequency domain quantities.
The second and third terms in the integrand are incident-scattered field correlations and
contain the available information about the scattering potential ρ(~y).

For simplicity, we now focus on the case where the source pair signals have correlation
matrix

D(ω) = F (ω)

[
0 eıωφ

e−ıωφ 0

]
.

Such correlation corresponds to sending a signal from one of the sources in a pair and a copy
of the same signal delayed by φ from the other source. For a point scatterer at ~y, the incident-
scattered terms have peaks at delay times τ(~y) corresponding to differences between travel
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times of a reflected path and direct path, i.e. for the m−th experiment the peaks occur at
the four possible delays

τ(~y) =

{
±((|~xj(m) − ~y|+ |~y − ~xr| − |~xi(m) − ~xr|)/c0 + φ),

±((|~xi(m) − ~y|+ |~y − ~xr| − |~xj(m) − ~xr|)/c0 − φ).

Consider then the minimal delay time τmin(~y) given by

τmin(~y) = min
~xs,~xs′∈A

∣∣∣∣ |~xs − ~y|+ |~y − ~xr| − |~xs′ − ~xr|c0
± φ

∣∣∣∣ , (7.2)

that is the minimal delay time we expect the incident-scattered correlations to peak. If we
assume the additive noise decorrelates much faster than the first incident-scattered arrival
from ~y (i.e. lc � τmin(~y)), then the information of the scatterer ρ(~y) contained in dm(~xr, τ)
is essentially unchanged (up to ergodic averaging). Hence we can stably image using the
proposed method at ~y provided τmin(~y)� lc.

8. Numerical experiments. Here we include 2D numerical experiments of our proposed
imaging routine for scalings corresponding to acoustics (§8.1) and optics (§8.2). We demon-
strate the stochastic source pair illumination strategy for the acoustic regime, i.e. we compute
the autocorrelations for time domain data. In the optic regime this is an expensive calculation,
so we use instead power spectra (i.e. deterministic illuminations).

8.1. Acoustic regime. For imaging in an acoustic regime, our choice of physical param-
eters corresponds to ultrasound in water. We choose the background wave velocity to be
c0 = 1500 m/s. The central frequency for all signals (sources and additive noise) is 3 MHz,
which gives a central wavelength of λ0 = 0.5 mm. We center a source array A at the origin
consisting of 41 sources at coordinates ~xs = (0,−10λ0 + (s − 1)λ0/2) for s = 1, . . . , 41. A
single receiver is located at the coordinate ~xr = (−20λ0,−20λ0) (see figure 2.1).

We generate a stationary Gaussian time signal f(t) with mean zero and correlation function

F (τ) = exp

(
−πτ

2

t2c

)
,

using the Wiener-Khinchin theorem. The correlation time tc ≈ 1.25 µs which gives the signal
an effective frequency band [1, 5] MHz. We generate time signals of length 2T for T ≈ 260 µs
with 8001 uniformly spaced samples. This sampling is enough to resolve the frequencies in
the angular frequency band B, while T is sufficient to observe ergodic averaging (see §6). By
placing the same realization of this signal f̂(ω) at the locations ~xi(m) and ~xj(m) we generate the

pair illumination fm(ω) = f̂(ω)(ei(m)+ej(m)). Similarly, by placing an independent realization

of f̂(ω) at location ~xi we generate the single source reference illumination f0
i (ω) = f̂(ω)ei.

For all experiments, synthetic data is generated in the frequency domain using the Born
approximation. We assume 3D wave propagation for simplicity so that G0 is given by (2.3)
for d = 3. The m−th measurement is obtained through the formula

dm(~xr, ω) = Ψ̂m(~xr, ω)− Ψ̂0
i(m)(~xr, ω)− Ψ̂0

j(m)(~xr, ω),
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where

Ψ̂m(~xr, ω) =
∣∣∣(g0(~xr, ω) + p(~xr, ω)

)T
fm(ω)

∣∣∣2,
Ψ̂0
i (~xr, ω) =

∣∣∣(g0(~xr, ω) + p(~xr, ω)
)T

f0
i (ω)

∣∣∣2,
with g0 and p defined by (2.2) and (2.6) respectively.

For these simulations we use the full set of pair illuminations, which for N = 41 source
locations, generates a measurement matrix M(~xr, ω) ∈ R820×82. We use the Moore Penrose
pseudoinverse M† to recover p + ζg0 for each ω ∈ B. When the number of sources N and
thus the dimension of M is large (recall M ∈ RN(N−1)/2×N ), the pseudoinverse could become
computationally expensive. However, the system is sparse as it contains only 4 non-zero
elements per row, so linear least square solvers that exploit sparsity (e.g. CGLS [17]) may be
more efficient than our approach. Furthermore, as discussed in §4 we can reduce the size of M
to 2N × 2N while keeping the nullspace of M one-dimensional by using an appropriate subset
of source pairs.

We form an image at ~y ∈ W = {(100λ0 + iλ0/2.5, jλ0/2.5), for i, j = −25, . . . , 25} using
the Kirchhoff migration functional (§2.2), summed over the bandwidth band B,

ΓKM[p + ζg0](~y) =

∫
B
dωΓKM[p + ζg0, ω](~y).

For our first experiment, we place a single point reflector at the location ~y = (100λ0, 0),
with refractive index perturbation ρ(~y) = 1× 10−8. The migrated image (figure 8.1a) indeed
exhibits the cross-range (Rayleigh) resolution estimate λ0L/a ≈ 5λ0 and range resolution
estimate c0/|B| ≈ 1λ0. Note that there is a trade-off in the choice of the reflectivity: ρ has
to be sufficiently small so that the quadratic terms in p can be neglected in (3.5). However
the smaller ρ is, the longer the acquisition time T has to be in order to better observe the
reflected-incident correlations in the data.

In our second experiment (figure 8.1b), we consider two oblique reflectors located at ~y1 =
(99λ0,−2λ0) and ~y2 = (103λ0, 4λ0) each with ρ(~yi) = 1× 10−8. We include a reconstruction
of an extended scatterer (line segment) in figure 8.2. Here the line segment is generated as a
set of point reflectors each with ρ(~yi) = 1× 10−9 uniformly spaced by λ0/8.

We now demonstrate the robustness of the proposed method with respect to additive noise
(see section 7). Here we have taken a realization of the data for a single point reflector (c.f.
figure 8.1a) and perturbed each measurement with additive noise as follows. The m−th signal
ûm(~xr, ω) has total power pm =

∫
|ûm(~xr, ω)|2dω. We construct a Gaussian signal ξm(t) with

mean zero, spectral density (7.1), lc ≈ 1.25 µs and total power 1. This allows to obtain the
perturbed total field ûm(~xr, ω) +

√
νpmξ̂m(ω) for some ν > 0. The m−th measurement with

additive noise is thus dm(~xr, ω) = |ûm(~xr, ω)|2 + νpm|ξ̂(ω)|2. Thus the ratio of the signal
power to the noise power is 1/ν. The signal-to-noise ratio (SNR) is then

SNRm = −10 log10(ν)dB.

Figure 8.3 shows the reconstruction from data with SNRm = 0 dB for each m, meaning that
the signal and the noise have the same power.
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Figure 8.1. Kirchhoff images of (a) one point and (b) two point reflectors, whose true positions are
indicated with crosses. The left column uses the full waveform data p, while the right column use the recovered
data p + ζg0. The horizontal and vertical axes display the range and cross-range respectively, with scales in
central wavelengths λ0.

Lastly we perform an experiment that sends as the m−th illumination the usual correlated
pair illumination fm, and uncorrelated noise from the remaining sources on the array A (see
remark 1). To generate this illumination we place the same realization of the signal f̂(ω) at
the locations xi(m) and xj(m), and independent realizations of f̂(ω) at the remaining source
locations. Similarly, a reference illumination is generated by placing independent realizations
of f̂(ω) at all locations on the array A. By measuring the autocorrelation of the resulting fields
we obtain data that is essentially the same form as dm(~xr, ω). Figure 8.4 shows this experiment
with the single point reflector located at ~y = (100λ0, 0) and reflectivity ρ(~y) = 1× 10−8.
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Figure 8.2. Kirchhoff images of an extended reflector. The left column uses the full waveform data p,
while the right column use the recovered data p + ζg0. The horizontal and vertical axes display the range and
cross-range respectively, with scales in central wavelengths λ0.
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Figure 8.3. Additive noise: (left) array response vector migration ΓKM[p](~y), (right) recovered array
response vector migration ΓKM[p+ζg0](~y) for SNRm = 0dB. The horizontal and vertical axes display the range
and cross-range respectively measured in central wavelengths λ0.

8.2. Optic regime. For imaging in an optic regime, we use the background wave velocity
c0 = 3× 108 m/s and central frequency ≈ 589 THz which gives a central wavelength λ0 ≈ 509
nm. Our source array A is again centered at the origin, but now consists of 1001 sources
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Figure 8.4. Uncorrelated background illumination: (left) array response vector migration ΓKM[p](~y), (b)
recovered array response vector migration ΓKM[p + ζg0](~y) for SNRm = 0dB. The horizontal and vertical axes
display the range and cross-range respectively measured in central wavelengths λ0.

located at coordinates ~xs = (0,−500λ0 + (s − 1)λ0) for s = 1, . . . , 1001, and we set ~xr =
(−1000λ0,−1000λ0).

We generate intensity data d(~xr, ω) as

dm(xr, ω) =
∣∣∣(g0 + p

)T
(ei(m) + ej(m))

∣∣∣2 − ∣∣∣(g0 + p
)T

ei(m)

∣∣∣2 − ∣∣∣(g0 + p
)T

ej(m)

∣∣∣2,
for 100 (angular) frequencies ω uniformly spaced in the frequency band [429, 750] THz. This
corresponds to performing the source pair experiments (source pair illuminations and sin-
gle source reference illuminations) for 100 different monochromatic visible light sources with
wavelengths λ ∈ [400, 700] nm, equally spaced in frequency. Since there are a large number
of sources in this setup (N = 1001), we implement the strategy discussed in §4 to reduce the
number of source pair experiments from Np = N(N − 1)/2 to Np = 2N .

As before, we use the pseudoinverse M† to recover p + ζg0 for each frequency ω ∈ B,
and then use the Kirchhoff migration functional (§2.2) to form an image. Here we use the
image window W = {(5000λ0 + iλ0/2.5, jλ0/2.5), for i, j = −25, . . . , 25}. In figure 8.5(b) we
demonstrate the migrated image for two point reflectors placed at ~y1 = (4098λ0, 3λ0) and
~y2 = (5004λ0,−5λ0) each with reflectivity ρ(~yi) = 1 × 10−17. Although we are significantly
undersampling the data in frequency and the source spacing is larger than λ0/2, the spot sizes
still exhibit the Kirchhoff migration resolution estimates (§2.2) of λ0L/a ≈ 5λ0 in cross-range
and c0/|B| ≈ 2λ0 in range.

9. Discussion. By sending correlated signals from different pairs of locations we have
shown that from intensity data we can recover full waveform data by solving a linear system.
This linear system has a known one-dimensional nullspace provided the sources and receiver



20 P. BARDSLEY AND F. GUEVARA VASQUEZ

ΓKM[p](~y) ΓKM[p + ζg0](~y)

4,990 4,995 5,000 5,005 5,010
−10

−5

0

5

10

4,990 4,995 5,000 5,005 5,010
−10

−5

0

5

10

Figure 8.5. Optic regime:(left) array response vector migration ΓKM[p](~y), (b) recovered array response
vector migration ΓKM[p+ζg0](~y). The horizontal and vertical axes display the range and cross-range respectively
measured in central wavelengths λ0.

satisfy the distance conditions given by assumption 1, which allows for the recovery of p +
ζg0. We show this quantity is enough to use standard migration techniques (e.g. Kirchhoff
migration ΓKM) provided the sources and receiver satisfy the additional geometric conditions
of assumption 2. Thus we obtain full waveform resolution estimates for an image formed from
intensity-only data.

Our method relies only on knowledge of paired source locations and the correlation of
the signals being sent. This allows us to relax illumination control by using paired stochastic
signals. By measuring autocorrelations of the resulting fields, we obtain essentially the same
intensity data as with using deterministic source pairs. These stochastic illuminations can be
created e.g. by using a configurable mask that is parallel to the wave fronts of an incoherent
plane wave.

The linear system we solve has size 2N × 2N and is very sparse (up to 4 non-zero entries
per row). In our simulations we used M†, however sparse solvers such as CGLS (see e.g.
[17]) could be used. To form the system we need at least 3N different illuminations, 2N pair
illuminations plus N reference illuminations. However, in our illumination strategy, the phase
of the source signals does not need to be known. We replace the direct phase control by the
natural phase modulation that comes from the different positions of the signals.

We use the geometric imaging conditions (assumption 2) to show the nullspace of M does
not affect imaging via ΓKM. This assumption imposes some restrictions on the juxtaposition
of the sources and receiver and in turn on the forms of illuminations we can consider. For
example, using a stationary phase argument, it can be shown the autocorrelation of the total
field is negligible if spatially continuous array illuminations (rather than paired point sources)
are used. In future work, we would like to address this more thoroughly to determine if more
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general illuminations can be used. It may also be interesting to see if the source pair strategy
we propose will work for other imaging setups.
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Appendix A. Proof of proposition 6.1. In this appendix we prove proposition 6.1 which
details the statistical stability of the measured autocorrelation (6.3) with respect to real-
izations of the illumination f . The theorem and proof are patterned after the result by
Garnier and Papanicolaou [10, Proposition 4.1], only we make small modifications to allow
for complex fields and the form (6.1) of the correlation function R(τ).

Proof. Since we are assuming f is a stationary process in t, the resulting total field u is
also a stationary random process in t. So we have

〈u(~xr, t)u(~xr, t+ τ)〉 = 〈u(~xr, 0)u(~xr, τ)〉,

which allows us to compute

〈ψ(~xr, τ)〉 =
1

2T

∫ T

−T
dt〈u(~xr, t)u(~xr, t+ τ)〉

=
1

2T

∫ T

−T
dt〈u(~xr, 0)u(~xr, τ)〉 = 〈u(~xr, 0)u(~xr, τ)〉.

So (6.3) is independent of T . By expressing the quantity 〈u(~xr, 0)u(~xr, τ)〉 through the Green’s
function G we verify (6.4):

〈ψ(~xr, τ)〉 =

N∑
p,p′=1

∫
dt′
∫
dt′′G(~xr, ~xp,−t′)G(~xr, ~xp′ , τ − t′′)〈fp(t′)fp′(t′′)〉

=
N∑

p,p′=1

∫
dt′
∫
dt′′G(~xr, ~xp,−t′)G(~xr, ~xp′ , τ − t′′)Rp,p′(t′′ − t′)

=
1

2π

∫
dωe−ıωτg(~xr, ω)∗R̂(ω)g(~xr, ω).

To show the ergodicity (6.6), we need to compute the variance of ψ. We first compute the
covariance as

Cov
(
ψ(~xr, τ), ψ(~xr, τ + ∆τ)

)
=

N∑
p,p′,q,q′=1

1

(4T )2

∫ T

−T

∫ T

−T
dtdt′

∫
dsds′dudu′

×G(~xr, ~xp, s)G(~xr, ~xp′ , u− τ)G(~xr, ~xq, s
′)G(~xr, ~xq′ , u

′ − τ −∆τ)

×
(
〈fp(t− s)fp′(t− u)f q(t

′ − s′)fq′(t′ − u′)〉

− 〈fp(t− s)fp′(t− u)〉〈f q(t′ − s′)fq′(t′ − u′)〉
)
.

(A.1)
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The product of the second order moments is

〈fp(t− s)fp′(t− u)〉〈f q(t′ − s′)fq′(t′ − u′)〉 = Rp′,p(u− s)Rq,q′(s′ − u′).

Since f(t) is Gaussian (in time), the fourth order moment is given by the complex Gaussian
moment theorem (see e.g. [22]) as

〈fp(t− s)fp′(t− u)f q(t
′ − s′)fq′(t′ − u′)〉 = Rp′,p(u− s)Rq,q′(s′ − u′)

+Rq,p(t− t′ − s+ s′)Rp′,q′(t
′ − t− u′ + u).

We now integrate over the t, t′ variables to obtain

1

4T 2

∫ T

−T
dt

∫ T

−T
dt′
(
〈fp(t− s)fp′(t− u)f q(t

′ − s′)fq′(t′ − u′)〉

− 〈fp(t− s)fp′(t− u)〉〈f q(t′ − s′)fq′(t′ − u′)〉
)

=
1

4T 2

∫ T

−T
dt

∫ T

−T
dt′Rq,p(t− t′ − s+ s′)Rp′,q′(t

′ − t− u′ + u)

=

∫
dω

∫
dω′ sinc2

(
(ω − ω′)T

)
eıω

′(s−s′)e−ıω(u−u′)R̂q,p(ω)R̂p′,q′(ω
′).

Plugging this into (A.1) we obtain

Cov
(
ψ(~xr, τ), ψ(~xr, τ + ∆τ)

)
=

N∑
p,p′,q,q′=1

∫
dω

∫
dω′ sinc2

(
(ω − ω′)T

)
× Ĝ(~xr, ~xp, ω

′)Ĝ(~xr, ~xp′ , ω)Ĝ(~xr, ~xq, ω)Ĝ(~xr, ~xq′ , ω)R̂q,p(ω)R̂p′,q′(ω
′)eıω∆τ

=

∫
dω

∫
dω′ sinc2

(
(ω − ω′)T

)(
g(~xr, ω)∗R̂(ω)g(~xr, ω

′)
)

×
(
g(~xr, ω)∗R̂(ω′)g(~xr, ω

′)
)
eıω∆τ ,

where g = g0 + p is given by (2.2) and (2.6), and
(
R̂(ω)

)
i,j

= R̂i,j(ω) is a CN×N Hermitian
matrix for each ω. Then taking T →∞ we compute the variance as

T Var
(
ψm(~xr, τ)

) T→∞−−−−→
∫
dω
∣∣∣g(~xr, ω)∗R̂(ω)g(~xr, ω)

∣∣∣2,
and so the variance is O(1/T ) as T →∞. This establishes (6.6).
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