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Edge Illumination and Imaging of Extended Reflectors∗

Liliana Borcea†, George Papanicolaou‡, and Fernando Guevara Vasquez§

Abstract. We use the singular value decomposition of the array response matrix, frequency by frequency, to im-
age selectively the edges of extended reflectors in a homogeneous medium. We show with numerical
simulations in an ultrasound regime, and analytically in the Fraunhofer diffraction regime, that infor-
mation about the edges is contained in the singular vectors for singular values that are intermediate
between the large ones and zero. These transition singular vectors beamform selectively from the ar-
ray onto the edges of the reflector cross-section facing the array, so that these edges are enhanced in
imaging with travel-time migration. Moreover, the illumination with the transition singular vectors
is done from the sources at the edges of the array. The theoretical analysis in the Fraunhofer regime
shows that the singular values transition to zero at the index N�(ω) = |A||B|/(λL)2. Here |A| and
|B| are the areas of the array and the reflector cross-section, respectively, ω is the frequency, λ is
the wavelength, and L is the range. Since (λL)2/|A| is the area of the focal spot size at range L, we
see that N�(ω) is the number of focal spots contained in the reflector cross-section. The ultrasound
simulations are in an extended Fraunhofer regime. The simulation results are, however, qualitatively
similar to those obtained theoretically in the Fraunhofer regime. The numerical simulations indicate,
in addition, that the subspaces spanned by the transition singular vectors are robust with respect
to additive noise when the array has a large number of elements.

Key words. broadband array imaging, travel-time migration, selective illumination, singular value decomposi-
tion, generalized prolate spheroidal wave functions
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1. Introduction. Accurate array imaging of extended reflectors requires information that
comes from their edges. However, such information is masked by the strong reflections received
from the body of the reflectors. The singular value decomposition (SVD) of the array impulse
response matrix Π̂(ω), at frequency ω, is a natural tool for filtering strong reflections and
concentrating on the weaker edge effects. Here Π̂(ω) is the complex matrix with entries
Π̂(�xr, �xs, ω), which are the Fourier transforms of the time traces Π(�xr, �xs, t) recorded at
receiver locations �xr in the array when the source at �xs emits an impulse with flat spectrum
over the bandwidth.
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76 L. BORCEA, G. PAPANICOLAOU, AND F. GUEVARA VASQUEZ

We carry out a theoretical analysis of the SVD of Π̂(ω) in the Fraunhofer regime, in which
the Fresnel number [8, Chapter 8.2]

(1.1)
a2

λL
=

a

(λL)/a

is large. Here a is the linear array size, λ is the wavelength, and L is the range. The Fresnel
number is the ratio of a to the focal spot size (λL)/a, which is the first zero of the array
diffraction pattern in the Fraunhofer regime [8, Chapter 8.5]. In this regime the SVD of the
array response matrix can be obtained using the generalized prolate spheroidal wave functions
[38, 29, 41, 5]. This is because the SVD analysis can be reduced by factorization of the response
matrix Π̂(ω) to the eigenvalue problem of a self-adjoint operator of a special form, as explained
in section 4.4.

In the Fraunhofer regime, we show that if b is a linear cross-range size of the reflector,
then b2a2/(λL)2 is approximately the number N�(ω) of nonzero singular values. This says
that the effective rank of Π̂(ω) is determined by the number of focal spots of area (λL/a)2

that fit inside a reflector of area b2, a fact that has been observed empirically in [44, 43] and
which we justify here theoretically.

Beyond the threshold index N�(ω), the singular values transition rapidly to zero. The right
singular vectors associated with the transition singular values correspond to illuminations from
the edges of the array. The travel-time images with these illuminations focus selectively on
the edges of the reflector cross-section facing the array. The edges of the reflector can thus
be emphasized in travel-time migration images. This fact was also shown with variational
methods in the Fraunhofer regime in [5] and has been observed experimentally in [26].

The Fraunhofer regime arises naturally in optics [8, Chapter 8.5]. In ultrasonic array
imaging applications we encounter an extended Fraunhofer regime, in which edge diffraction
effects play a more prominent role. The Fraunhofer regime is based on the assumption that
b � a, so that the phase of the free space Green’s function

(1.2) Ĝ0(�x, �y, ω) =
exp[ik |�x − �y|]

4π |�x − �y|

can be linearized with respect to points �y in the reflector. This reduces the mathematical
analysis to that of Fourier integral operators. In the extended Fraunhofer regime the reflector
is large (b ∼ a), and the phase of the Green’s function contains the quadratic Fresnel term
in �y that accounts for stronger diffraction effects. This Fresnel term complicates the SVD
analysis of Π̂(ω), because the problem does not reduce as in the Fraunhofer case to the spec-
tral decomposition of a self-adjoint, compact operator (see section 5). However, we show here
with numerical simulations that the behavior of the singular values and singular vectors is
qualitatively similar to that of the Fraunhofer regime. We also demonstrate the effectiveness
of the SVD for edge illumination and its robustness to additive noise when the array has a
large number of transducers. Numerical simulations in the Fraunhofer regime are computa-
tionally demanding because wavelengths are typically very small compared to the size of the
array and the reflector. We do not carry out numerical simulations in the Fraunhofer regime.

The basic imaging function used in this paper is travel-time migration. It is easy to imple-
ment, it is not demanding computationally, and it is widely used in several applied areas such
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EDGE ILLUMINATION AND IMAGING OF EXTENDED REFLECTORS 77

as seismic imaging [9, 10, 3, 2], radar imaging [15, 7], and nondestructive evaluation of mate-
rials [34]. There are, of course, more accurate broadband imaging methods such as full wave
migration [2, Chapter 4] and full least squares inversion [2, Chapter 9]. Single frequency least
squares techniques that estimate the support of the reflector using level sets (shape deriva-
tives) [37, 16, 21] also work well when the array is large and the signal-to-noise ratio (SNR) of
the array data is high. However, these methods are more demanding computationally. In this
paper (see also [5]) we point out that migration becomes more efficient, accurate, and robust
when coupled with a data filtering process that tends to emphasize the echoes from the edges
of the reflectors. The data filtering increases the computational complexity of the migration
method, because the filters are defined frequency by frequency with the SVD of the response
matrix Π̂(ω), as explained in section 2.2.

The SVD can also be used in imaging with the linear sampling method [13, 14, 11, 12]. In
this approach, the measurements are made on a sphere of very large (asymptotically infinite)
radius R surrounding the reflector, and the image is formed with the SVD of the far field
operator with kernel Sω(�θr, �θs). With the data acquisition geometry considered in [13, 14, 11,
12], Sω is related to the response matrix Π̂(ω) by

Sω(�θr, �θs) = lim
R→∞

R2e−2ikRΠ̂(R�θr, R�θs, ω).

Here k = ω/c is the wavenumber, and �θs and �θr are unit vectors. The theoretical analysis
of the linear sampling method deals with the full scattering problem, not only the Born
approximation, and gives good results with high SNR data and with full aperture, where
Sω(�θr, �θs) is measured in all directions �θr and �θs. It is a single frequency method which does
not appear to have a natural time-domain extension.

In this paper we use the SVD of the limited aperture (a � L) response matrix Π̂(ω)
for all the frequencies in the bandwidth. We also make explicit the connection between the
geometrical features of the reflector cross-section facing the array and the singular vectors
of Π̂(ω) corresponding to the transition singular values whose indices are near the threshold
N�(ω).

In the full aperture case the behavior of the singular values of the far field operator with
kernel Sω is considered in [14, 11]. It is shown in particular, in [14, Chapter 4.3], that when
the reflector is contained in a ball of fixed radius b, the singular values decay like (ekb/(2n))n

as the index n → ∞. The threshold index at which the singular values start to decay is not
identified in [14, 11]. It is shown in [27, 28] that for two-dimensional disk-shaped reflectors of
radius b the transition index N�(ω) is the integer part of kb. This threshold is then used in
[27, 28] to characterize the convex scattering support associated with the data Sω(�θr, �θs) for a
fixed incident direction �θs and all unit vectors �θr. The convex scattering support is defined in
[27, 28] as the smallest convex set that can produce the far field measurements. It is a subset
of the convex hull of the support of any scatterer that gives the measured far field data. As
shown in [22], the convex scattering support can also be determined from back-scattered, far
field measurements Sω(�θ, �θ), for all directions �θ.

In [27, 28, 22] there is no discussion regarding the connection between the shape of the
scatterer and the form of the singular functions of Sω. In this paper we make this connection
precise for array imaging in the Fraunhofer regime, in the Born approximation. We also use
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78 L. BORCEA, G. PAPANICOLAOU, AND F. GUEVARA VASQUEZ

it to define, in general, data filtering operators that emphasize the echoes from the edges
in the time-domain data. The filtered data is then used in travel-time migration to obtain
sharp images of the support of the reflectors. To assess the robustness of the conclusions
drawn from the analysis, we present numerical simulations that account for multiple scattering
(see section 3.2) and for strong diffraction effects (i.e., the extended Fraunhofer regime) (see
section 5). We find that the theoretical results hold qualitatively in both cases.

We study the limited aperture problem a � L. The full aperture case, with measurements
made all around the reflector, in the far field, as considered in [14, 11, 27, 28, 22] is very
different. However, some ideas in this paper extend to the full aperture problem, as discussed
briefly in Appendix C.

The paper is organized as follows. In section 2 we formulate the array imaging problem
and the selected subspace migration imaging algorithm. In section 3 we present the results
of numerical simulations using this algorithm in an ultrasonic imaging regime, including data
with additive noise. In section 4 we introduce the Fraunhofer diffraction regime and analyze
the structure of the SVD of the array response matrix. In section 5 we introduce and discuss
an extended Fraunhofer regime that is closer to our ultrasonic imaging simulations than the
Fraunhofer regime. We end with a summary and conclusions in section 6.

2. Array imaging. We wish to image a reflective target with an active array A consisting
of Ns emitters and Nr receivers. The data in the frequency domain is denoted by Π̂(ω) ∈
C
Nr×Ns . It is the array impulse response matrix, assumed known in the frequency band

ω0 + [−B/2, B/2]. Here ω0 is the central frequency and B is the bandwidth. The entries
Π̂(�xr, �xs, ω) of this matrix are the Fourier transforms of the time traces of the echoes received
at �xr ∈ A, when the source at �xs ∈ A (see Figure 1) emits the signal

g(t) = exp[iω0t]
sin(Bt/2)

πt

whose Fourier transform is

ĝ(ω) =

∫
exp[−iωt]g(t)dt =

{
1 if |ω − ω0| ≤ B/2,

0 otherwise.

We assume for simplicity that the sources and receivers are collocated, which means that
all array elements act as emitters and receivers and that Nr = Ns = N . We also assume that
the reflector or target is immersed in a medium with constant wave speed c0.

Reflector
�0

�yS

�xs

�xr

A

Figure 1. General setup for array imaging.
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2.1. Travel-time migration. The Kirchhoff or travel-time migration function is given by
[9, 10, 3, 2]

(2.1) IKM(�yS ; f̂) =

∫
|ω−ω0|≤B/2

dω

N∑
s=1

N∑
r=1

exp
[
iωτ(�xr, �y

S) + iωτ(�xs, �y
S)
]

· Π̂(�xr, �xs, ω)f̂(�xs, ω).

Here τ(�xr, �y
S) is travel time from the point �xr to �yS , �yS is a search point in the image

domain, and the pulse sent from location �xs is f̂(�xs, ω). Since the propagation medium is
homogeneous, we have τ(�xr, �y

S) =
∣∣�xr − �yS

∣∣ /c0.
2.2. Selected subspace migration. We will use an imaging functional in which we replace

the array data Π̂(ω) in (2.1) by a filtered version D[Π̂(ω);ω]:

(2.2) ISM(�yS ; f̂) =

∫
|ω−ω0|≤B/2

dω

N∑
s=1

N∑
r=1

exp
[
iωτ(�xr, �y

S) + iωτ(�xs, �y
S)
]

·
(
D
[
Π̂(ω);ω]

])
r,s

f̂(�xs, ω).

The filtering operator D[ · ;ω] : C
N×N → C

N×N acts only on the singular values of the
response matrix. It has the form

(2.3) D[Π̂(ω);ω] =

N∑
j=1

dj(ω)σj(ω)uj(ω)v∗
j (ω),

where the filter weights are dj(ω) ≥ 0, uj(ω) and vj(ω) are the left and right singular vectors of
the response matrix, respectively, and σ1(ω) ≥ σ2(ω), . . . ,≥ σN (ω) ≥ 0 are its singular values.
We recall that the singular vectors form two orthonormal bases, so that for 1 ≤ i ≤ N ,
1 ≤ j ≤ N , we have

u∗
i (ω)uj(ω) = v∗

i (ω)vj(ω) = δi,j

with δi,j being the Kronecker delta. The SVD [20] of the array response matrix is

(2.4) Π̂(ω) =

N∑
j=1

σj(ω)uj(ω)v∗
j (ω).

The idea in using subspace migration is that the SVD provides a natural scale for the
strength of the reflections reaching the array from different features of the target. Data
filtering with subspace migration is an idea similar to apodization, where exoplanets or faint
astronomical objects are imaged by obscuring the strong light from nearby stars with aperture
control [39, 25]. The difference here is that the array is active, the data is in a broadband
regime, and we exploit the coherence of the SVD over the different frequencies. Data filtering
using the singular values of a matrix is also used as a regularization method in linear inverse
problems [46].
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Throughout this paper we make two simplifying assumptions regarding the migration
functional (2.2). First, we assume that the pulses sent from each source are the same and
independent of the frequency; i.e., f̂(�xs, ω) = 1. The second assumption is that the multi-
plicative weights dj(ω) used to define the filter D are binary; that is,

(2.5) dj(ω) =

{
1 if j ∈ J(ω),

0 otherwise,

for some set J(ω) ⊂ {1, . . . , N} that determines which singular vectors of Π̂(ω) we keep. An
optimization approach to select illuminations f̂(�xs, ω) and filter weights dj(ω) in a way that
enhances the quality of the images, as is done in [5], can also be carried out.

We focus attention on three subspace selection strategies.
1. The simplest strategy is to keep all singular vectors, so that all the data is migrated

to obtain an image, without any selection. In this case JKM(ω) = {1, . . . , N}, so the filter D
is the identity, and we recover the usual travel-time migration.

2. Another strategy is to keep for each frequency the strongest reflection, i.e., JDetect.(ω) =
{1}. This is good for detection and is very robust to noise. However, it is not good for imaging
extended targets since the waves scattered by the edges are weaker than direct or specular
reflections from the bulk of the target, and thus there is practically no information about
the edges in the migrated data. This strategy is more closely related to the DORT (French
acronym for decomposition of the time reversal operator) method [36], which is used for both
imaging and physical time reversal, and which is designed to selectively image or focus energy
on well-separated point-like targets. DORT in its basic form relies on the fact that the array
response matrix for n such targets has rank n and that each singular vector corresponds to a
different target [6]. In principle, migrating each singular vector separately forms an image of
each single point-like target. When the point-like targets are not well separated and even when
the surrounding medium is randomly inhomogeneous, an optimization approach introduced
in [4] can determine weights {dj(ω)} that image the targets one by one in a robust way.

3. Here we will remove the strongest reflections from an extended target so that we
can focus on its edges. This is achieved by selecting singular vectors so that the normalized
singular values σj(ω)/σ1(ω) of Π̂(ω) belong to some interval [α, β] ⊂ (0, 1); that is,

(2.6) JSM(ω; [α, β]) =

{
j | σj(ω)

σ1(ω)
∈ [α, β]

}
.

In this approach, we trade off some robustness to noise (detection capability) for the ability
to focus selectively on the edges (imaging capability).

Using numerical simulations in the ultrasound regime, we compare next these approaches
for imaging extended targets.

Remark 2.1. In simple situations it may be feasible to isolate the echoes coming from
various parts of the reflectors by time-gating the data. However, for extended but far away
reflectors this is difficult to do because the echoes arrive at almost the same time. The
SVD-based subspace data filtering method proposed here is, in general, more computationally
demanding than time-gating. But it has the advantage that it can be automated, thus avoiding
any intervention. It is also robust with respect to additive noise for arrays with a large number
of elements.
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zx

y

h

b1

b2

a1

a2

B × L + [−h/2, h/2]

A

�0

�y�

L

Figure 2. Setup for array imaging.

3. Numerical experiments. For simulations in the ultrasound regime we use the setup
shown in Figure 2. The speed of propagation in the background medium (water) is c0 =
1.5km/s, and the frequency band is [1.5MHz, 4.5MHz]. The central wavelength is λ0 = 0.5mm,
and the bandwidth B = 3MHz.

3.1. Setup for numerical simulations. We probe the medium with a square array in the
xy plane with side (aperture) a = 24.5λ0 and collocated sources and receivers in two different
configurations. The first configuration has N = 2500 elements placed on a uniform 50 × 50
lattice. The second has N = 100 elements placed on a 10 × 10 uniform lattice.

The targets are thin prisms B×L+[−h/2, h/2] with reflectivity ρ(�y). We take first the case
of constant reflectivity ρ(�y) = 1. Then we consider in section 3.9 nonconstant reflectivities.
The targets are at range L = 100λ0. Their cross-range profile is B ⊂ [−b/2, b/2]2 with
b = 20λ0, and their thickness is h = λ0/5. Off-centered targets are briefly examined in
section 3.9. The targets are at first parallel to the array. In section 3.10 we also consider
obliquely placed targets.

The synthetic data is generated using the Born approximation [8, section 13.1.2]

(3.1) Π̂(�xr, �xs, ω) ≈ k2

∫
d�yρ(�y)Ĝ0(�xr, �y, ω)Ĝ0(�xs, �y, ω),

where supp ρ = B×L+[−h/2, h/2]. The integral in (3.1) is evaluated with the midpoint rule,
which is equivalent to having a target with a lattice of point reflectors. In our computations
we use 41 × 41 × 5 points placed uniformly, at a distance no more than λ0/2 apart.

We generated data for Nfreq = 51 equally spaced frequencies ωi in the bandwidth, which
are 60KHz apart. This is enough for resolving numerically the coherent behavior of the
singular values over the bandwidth. The frequency spacing we use corresponds roughly to a
time window that is one-quarter of the travel time from the array to the target and back.

3.2. Multiple scattering. If we think of the target as a lattice of closely spaced point
reflectors or “particles,” then the Born approximation (3.1) takes into account only scattering
paths involving a single particle. Our algorithm can of course be applied to any data, and,
to see how multiple scattering influences the images that it produces, we also generated data
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with second order multiple scattering ([8, section 13.1.4]), by modeling scattering paths that
involve up to two particles:

(3.2) Π̂(xr,xs, ω) ≈ k2

∫
d�yρ(�y)Ĝ0(�xs, �y, ω)

[
Ĝ0(�xr, �y, ω) + k2

∫
d�y′ρ(�y′)

· Ĝ0(�xr, �y
′, ω)Ĝ0(�y, �y

′, ω)

]
.

Here supp ρ = B × L + [−h/2, h/2].

We only considered a parallelepiped target with reflectivity ρ = 1, in the same configura-
tion described in section 3.1. The target was discretized using 221 × 221 × 5 points in order
to get roughly 10 points per wavelength, although we went up to 21 points per wavelength
(413 × 413 × 11 points) to validate our code. Since (3.2) involves convolutions, we can evalu-
ate it efficiently using the FFT, as in a single step of the conjugate-gradient FFT or k-space
Lippmann–Schwinger equation solvers (see, e.g., [23] for a review). Convergence is slow as the
number of discretization points increases because we do not deal with the singularity at the
diagonal of the kernel Ĝ0(�y, �y

′, ω).

For the 50 × 50 array and at the central frequency we found that the second order term
in (3.2) represented roughly 51.6% of the power of the first order term (3.1); i.e., the ratio of
their squared Frobenius norms was about 51.6%.

We generated subspace migration images using both first and second order scattering data,
with the rescaled singular values in the interval [0.001, 0.2] and with the 10×10 and the 50×50
arrays. We do not show here the images with the second order scattering data, because they
are almost identical to the single scattering ones. This can be explained intuitively from (3.2),
because in the second integral over �y′ it is the volume of the penetrable target that plays the
dominant role and not its edges (boundary). Our subspace migration approach looks for the
edges of the target, and their effect on multiple scattering in the penetrable target is small.
Multiple scattering should have a visible effect on the estimation of the actual value of the
reflectivity inside the target and on the imaging of the support of impenetrable targets. We
do not consider these problems here.

3.3. Singular values of the array response matrix. We compare in Figure 3 the singular
values of the response matrix for both the 50 × 50 and the 10 × 10 arrays. To make the
comparison more realistic we look at the array response matrix Π̂(ω) as an approximation of
an L2(A) → L2(A) operator Π̂C(ω) and plot the approximate singular values of Π̂C(ω). That
is, for g some function defined on A and g = [g(x1), . . . , g(xN )]T we have

(3.3)

(Δa)2(Π̂(ω)g)r = (Δa)2
N∑
s=1

Π̂((xr, 0), (xs, 0), ω)g(xs)

≈
∫
A
dxsΠ̂((xr, 0), (xs, 0), ω)g(xs) = (Π̂C(ω)g)(xr),

where (Δa)2 ≡ a2/(
√
N − 1)2 is the area associated, or covered, by an array sensor. The

approximation above is a midpoint quadrature rule for the L2(A) inner product.
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(a) SNR 0dB, 50 50 array (b) SNR 10dB, 10 10 array

Figure 3. The first 100 singular values of the continuous array response matrix ̂ΠC(ω) for noiseless (green
line) and noisy (blue line) measurements for a rectangular target, and for frequencies 1.5MHz, 3MHz, and
4.5MHz. The dotted line is at the estimated largest singular value of the noise matrix.

The spacing between elements in the 50×50 array is λ0/2, so that it behaves as a continuum
aperture (Nyquist criterion). As can be seen from Figure 3, the 10× 10 array also behaves as
an aperture, even though the spacing between elements is 2.5λ0. Indeed, the singular values
for both arrays are similar when there is no noise.

Clearly there are only a few nonzero singular values, so Π̂(ω) is effectively a low-rank
matrix (Figure 3). The first few right singular vectors correspond to the low-dimensional
subspace of illuminations that produce echoes at the array.

The number of singular values that are effectively nonzero, that is, above some threshold
relative to the largest singular value, increases with the frequency. This characteristic behavior
has a theoretical explanation, at least in the Fraunhofer regime, as we show in section 4. In
that section we also explain the staircase form of the singular values for square targets, which
comes from separation of variables.

3.4. Singular values of the array response matrix with noise. To simulate instrument
noise we added a noise matrix W (ω) ∈ C

Nr×Ns with zero mean uncorrelated Gaussian dis-
tributed entries having variance εpavg, that is, Wr,s(ω) ∼ N (0, εpavg). Here ε > 0, and pavg is
the average power received per source, receiver, and frequency:

(3.4) pavg =
1

NrNsNfreq

Nfreq∑
i=1

∥∥∥Π̂(ωi)
∥∥∥2

F
,

where ‖·‖F is the Frobenius matrix norm. The expected power of the noise W (ωi) over all
frequencies, receivers, and sources is

E

⎡⎣Nfreq∑
i=1

‖W (ωi)‖2
F

⎤⎦ = εNrNsNfreqpavg.

Since the total power of the signal received over all frequencies, receivers, and sources is
NrNsNfreqpavg, the SNR in dB is −10 log10 ε.

D
ow

nl
oa

de
d 

05
/1

5/
15

 to
 1

55
.1

01
.9

7.
16

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

84 L. BORCEA, G. PAPANICOLAOU, AND F. GUEVARA VASQUEZ

The behavior with noise can be quantified relative to σ1[W (ω)]. To see this, let us return
to the case N = Nr = Ns (collocated sources and receivers) and use Corollary 8.6.2 in [20]
which guarantees that for 1 ≤ j ≤ N ,

(3.5)
∣∣∣σj [Π̂(ω) + W (ω)

]
− σj

[
Π̂(ω)

]∣∣∣ ≤ σ1 [W (ω)] .

Thus, the singular values of Π̂(ω) that are essentially zero become with noise singular values
no larger than σ1[W (ω)]. This last quantity has been estimated asymptotically for large N
by Geman [18] (see also [17]):

(3.6) σ1[W (ω)] ≈ 2
√
εNpavg for N large.

In Figure 3 we show the estimated effect of noise on the singular values of Π̂C(ω) by a
dotted line at (Δa)22

√
εNpavg. This is a better estimate for the 50 × 50 array than for the

10 × 10 array, since (3.6) is an asymptotic result for large N .

The effect of noise is significantly higher when there are fewer receivers, which is what is
expected. In fact, for the 10× 10 array the noise influences more the singular values than for
the 50×50 array, even if it is ten times weaker. The improvement in SNR with more elements
in the array follows from

(3.7) (Δa)2σ1[W (ω)] ≈ (Δa)22
√

εNpavg =
2a2

√
εNpavg

(
√
N − 1)2

= O(N−1/2) for N large.

The bound (3.5) is rather conservative for the largest singular values, as can be seen with
a simple example. Assuming Π̂(ω) has rank r < N , its SVD can be rewritten as

Π̂(ω) =
[
U1 U2

] [Σ
0

] [
V ∗

1

V ∗
2

]
,

where [U1, U2] and [V1, V2] are unitary matrices and Σ = diag(σ1[Π̂(ω)], . . . , σr[Π̂(ω)]). Now
if the vectors in the span of U1 and V1 are not noisy, then we can think of RangeW (ω) ⊂
RangeU2 and RangeW ∗(ω) ⊂ RangeV2. Let us further assume that we do have W (ω) =
U2U

∗
2W (ω)V2V

∗
2 and that the SVD of U∗

2W (ω)V2 is UWΣWV ∗
W with σ1[ΣW ] ≤ σr[Σ]. Then

the SVD of the noisy measurements has the form

Π̂(ω) + W (ω) =
[
U1 U2UW

] [Σ
ΣW

] [
V ∗

1

V ∗
WV ∗

2

]
.

Thus, at least in this very simple case, the largest singular values of Π̂(ω) + W (ω) remain
those of Π̂(ω).

3.5. Image display conventions. Most of the images we show in section 3 are obtained
with the search point �yS in a domain D consisting of three slices z = L, x = 0, and y = 0
passing through the center �y� = (0, L) of the target. Each slice is discretized with 40 × 40
points. The cross-range dimension of the slices is 30λ0, and the dimension in range is 10λ0.
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J(ω) z = L x = 0 y = 0
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Figure 4. Comparison of different methods for imaging a rectangular target with data captured on a 50×50
array and with infinite SNR.

We plot
∣∣I(�yS)

∣∣ /max�yS∈D(
∣∣I(�yS)

∣∣), and we used the same scale for each row of plots. For
reference, the outline of the target is superposed in black.

We show the sets J(ωi) that define the class of filtering operators that we consider as blue
dots on a contour plot of the rescaled singular values σj(ωi)/σ1(ωi), with the frequency ωi as
the abscissa and the singular value index j as the ordinate. The contours are spaced every
10%. When there is noise in the data we add a thick green line. The singular values above
this line are above the expected noise level 2(Δa)2

√
εpavgN (see section 3.4).

3.6. Selected subspace migration imaging. We compare in Figures 4 and 5 the images
obtained with the different filtering strategies described in section 2.2, for the 50 × 50 array
with and without noise. To emphasize the fact that the array response matrix Π̂(ω) is low
rank, instead of taking all the singular values for travel-time migration, we take at a given
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Figure 5. Comparison of different methods for imaging a rectangular target with data captured on a 50×50
array and with 0dB SNR.

frequency ωi only the singular values larger than 0.1% of σ1[Π̂(ωi)].
Travel-time migration works well in recovering the object as a whole. In detection, only

the largest singular value is used, so the image shows the strongest reflection which comes
from the center of the object. This is good for detecting targets but not for imaging extended
targets because information about the edges is lost.

Keeping intermediate singular values, say between 10% and 20% of the largest singular
value, gives images that show the edges of the object. It appears from our experiments that
taking all the singular values below some threshold (say 20%) improves the images in range.
This is probably because information about the perimeter of the object is present redundantly
in the intermediate singular values (see section 4).

We make two general observations regarding the contour plots for the singular values
(Figures 4 and 5). First, the number of singular values that are within 10% of the largest one
increases with frequency. Second, the noise influences the higher frequencies more. In fact
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Figure 6. Edge illumination of other targets, with infinite SNR.

for the data with 0dB SNR there are no singular values below the 10% contour for the upper
half of the bandwidth (the “dome” in Figure 5). This separation does not occur with fewer
receivers (Figure 8).

In Figure 6 we use the edge illumination algorithm for targets that have different cross-
range profiles. The results are similar to those for the rectangular target, so we show only
images with rescaled singular values between 10% and 20%. Note that the images peak close
to the corners because scattering is stronger there.

3.7. Influence of array size on imaging with noisy data. Travel-time migration and
detection with the top singular value are very stable in the presence of noise: the images
with 0dB SNR are very similar to the images with infinite SNR data. The edge illumination
method is naturally more sensitive to noise, but if we take singular values above the noise
level, the results are similar. If we go below the noise level, we still get images of the edges,

D
ow

nl
oa

de
d 

05
/1

5/
15

 to
 1

55
.1

01
.9

7.
16

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

88 L. BORCEA, G. PAPANICOLAOU, AND F. GUEVARA VASQUEZ

J(ω) z = L x = 0 y = 0

SM
[0

.0
95

,0
.1

]

1.5 3 4.5

1

10

20

30

40

50

60

70

80

90

100

frequency (MHz); nnz = 848 x (λ
0
)

y 
(λ

0)

–15 –10 –5 0 5 10 15
–15

–10

–5

0

5

10

15

z (λ
0
)

x 
(λ

0)

95 100 105
–15

–10

–5

0

5

10

15

z (λ
0
)

y 
(λ

0)

95 100 105
–15

–10

–5

0

5

10

15

SM
[0

.0
9,

0.
09

5]

1.5 3 4.5

1

10

20

30

40

50

60

70

80

90

100

frequency (MHz); nnz = 499 x (λ
0
)

y 
(λ

0)

–15 –10 –5 0 5 10 15
–15

–10

–5

0

5

10

15

z (λ
0
)

x 
(λ

0)

95 100 105
–15

–10

–5

0

5

10

15

z (λ
0
)

y 
(λ

0)

95 100 105
–15

–10

–5

0

5

10

15

Figure 7. Imaging with the bottom 10% of the rescaled singular values and with 0dB SNR data, captured
with a 50 × 50 array gives blurry images. This robust-to-noise behavior should be compared to that of an array
with fewer sensors and the same aperture (Figure 8).

but they appear blurred in both range and cross-range. This is shown in Figures 7 and 8.

For the 50 × 50 array, edge illumination imaging is robust to noise: blurry images can be
obtained even with singular values that are 10% below the largest one (Figure 7). This is
because of the large number of elements in the array (section 3.4) and because we use only
the first 100 singular vectors.

With fewer array elements the images break down more easily. For the 10 × 10 array,
imaging with the bottom 5% of the rescaled singular values (Figure 8) gives unacceptable
images. The breakdown happens mostly outside the target, where there is no information
since there are no echoes.

3.8. Sparse sensor arrays. We show in Figure 9 images obtained with progressively
sparser sensor placement in the arrays and with infinite SNR. Here by sparse we mean that
the array has fewer sensors but the same overall dimensions. The possibility of being able to
use sparse arrays is important because arrays with many sensors can be expensive. Of course,
the sensors must not be too far apart because then they will not behave like an array at all.
It simplifies the theory when we treat Π̂(ω) as the L2(A) → L2(A) operator Π̂C(ω), and in
the numerics it avoids aliasing. The rule of thumb (motivated by the Nyquist criterion) is to
have array elements that are no more than λ0/2 apart. This is why in most of our numerical
simulations we use a large array with 50 × 50 elements.

In the numerical experiments we see that it is possible to obtain comparable images even
with a small 8 × 8 array, where its elements are 7 times farther apart than in the 50 × 50
array. The images obtained with travel-time migration and detection using the top singular
value behaved similarly, so we do not show them.

Having a small number of sensors in the array is not a good idea because imaging is much
more sensitive to noise. As we saw in section 3.4, the effect of noise decreases with the number
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Figure 8. Images obtained with the bottom 30% of the rescaled singular values and with 10dB data, captured
with a 10 × 10 array. When we use the bottom 5% of rescaled singular values the images break down. This
should be contrasted with the robustness of the images for the 50 × 50 array in Figure 7.

of array elements. With infinite SNR, good images can be obtained as long as the number of
array elements is larger than the effective rank N�(ω) of the operator Π̂C(ω), at the highest
frequency in the bandwidth.

3.9. Off-centered targets and nonconstant reflectivities. We see from Figure 10 that
subspace migration is unaffected by shifts of the reflector in the xy plane. We computed
subspace migration images for a parallelepiped target with dimensions 10λ0 × 10λ0 × λ0/5,
centered at the point (5λ0, 5λ0, 100λ0). The images are centered at the point (0, 0, 100λ0),
following the conventions outlined in section 3.5.

We also tested how subspace migration behaves when the reflectivity is not constant, using
two configurations. In the first, the target is a parallelepiped with dimensions b × b × h (as
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Figure 9. Using arrays with identical aperture but fewer sensors, and with infinite SNR. The distances
between sensors are from top to bottom: 0.5λ0, 2.72λ0, 3.5λ0, and 8.16λ0. The rescaled singular values are in
the interval [0.001, 0.2]. The plots are shorter for sparser arrays because there are fewer singular values.
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Figure 10. Edge illumination of an off-center rectangular target.
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Figure 11. Subspace migration images in the xy plane of a rectangular target made with two reflectivities.
The higher reflectivity is in x > 0. Two different contrasts (ratio of highest to lowest reflectivity) are considered.
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Figure 12. Subspace migration images in the xy plane of a circular target with two reflectivities with
contrast (ratio of highest to lowest reflectivity) of 10. First row: the higher reflectivity is on the outside. Second
row: the higher reflectivity is on the inside.

in section 3.1), where the reflectivity is different depending on the sign of x. In the second
configuration (Figure 12) the target is a cylinder of diameter b and depth h, having a different
reflectivity in the concentric cylinder of diameter b/2. We show images when the higher
reflectivity is either on the inside (|ξ| < b/2) or on the outside (b/2 ≤ |ξ| ≤ b).

In Figure 11 we also see the effect of the contrast (ratio of highest to lowest reflectivity)
on the images. For low contrast, subspace migration images are comparable to those for
a constant reflectivity where the edges are emphasized when we remove the largest singular
values. However, the edges for the higher reflectivities appear sharper than those for the lower
reflectivities. With higher contrast, in both Figures 11 and 12, we see that when we take all
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the singular values below a threshold we mask the stronger reflections, which come from the
highest reflectivity region of the target, and thus enhance the part of the reflector that is not
well imaged with the plain travel-time migration.

For nonconstant reflectivities, therefore, imaging with subspace filtering does not detect
edges but removes the stronger components of the usual travel-time migration to reveal the
faintest ones. If we can use low enough singular values, it may be possible to image the edges
of the low reflectivity region. A deeper study of the information contained in the singular
subspaces of the response matrix for nonconstant reflectivities is left for future studies.

3.10. Oblique targets. In Figure 13 we consider travel-time migration, detection with
the top singular value, and our edge illumination approach when the target is not parallel to
the array. The rectangular target we considered has the same dimensions 20λ0 × 20λ0 × λ0/5
as before, but it is rotated by π/12 around the x axis or around the x = y, z = L axis. The
image domain is a box with dimensions [−15λ0, 15λ0]

2 × [−5λ0, 5λ0], with the same center �y�

as the target. It is discretized with 403 points.

From the images with travel-time migration and detection with the top singular value
images we see that the edges parallel to and close to the array are the ones that produce the
strongest reflections. In fact, detection with the top singular value focuses only on the closest
feature, edge or corner, to the array. Because of the orientation, the interior of the target and
the other edges do not appear in the images: the echoes from the waves hitting these features
do not reach the array and are overpowered by the specular reflections.

The edge illumination approach obscures these strong reflections and reveals features
coming from edges or corners that could not be seen in the travel-time migration image.
For both targets we can see corners as stronger features. The edges that are prominent in the
travel-time migration images are masked.

4. Analysis in the Fraunhofer regime. We now show that the qualitative behavior of the
singular values of the array response matrix can be explained in the regime of Fraunhofer
diffraction by using some results for space and wavenumber limiting operators.1 The analysis
also explains why choosing intermediate singular values images well the edges of the target.

4.1. The Fraunhofer regime. With the characteristic length scales of the imaging prob-
lem we define the following dimensionless parameters:

θa =
k0a

2

L
, θb =

k0b
2

L
, θh =

k0h
2

L
, and θab =

k0ab

L
.

Here k0 = ω0/c0 = 2π/λ0 is the central wavenumber, λ0 is the central wavelength, a is the
array aperture, L is the range, b is the diameter of the target, and h is its thickness (see
Figure 2).

The parameter θa is the Fresnel number of the array. By analogy we also call the other
three parameters Fresnel numbers (as in [5]). The scaling regime we consider is a particular

1Space and wavenumber limiting operators are discussed in more detail in section 4.5. They are also called
“space and frequency limiting” [38] or “time and band limiting” operators [40], depending on the interpretation
of the Fourier space. To avoid confusion with the frequency ω, we use here “wavenumber” instead of “spatial
frequency.”
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Kirchhoff Detection SM [0.001, 0.2]

Figure 13. Images for a rectangular target rotated by π/12 around the x axis (top row) or the x = y, z = L
axis (bottom row), with infinite SNR data. The true target appears in pink. Only the isosurfaces 1/4 and 1/2
of the image are plotted.

case of the usual Fraunhofer diffraction regime [8, section 8.3], in which the focal spot size is
small relative to the array aperture; that is,

(4.1)
λ0L

a
� a ⇔ θa � 1.

We also require that the range is large so that

(4.2)
a2

L2
� 1

θa
� 1

and that the target is small with respect to the aperture; that is, b � a and θb � 1. We
assume that the target contains at least a few focal spot sizes; that is,

(4.3) b ≥ λ0L

a
⇔ θab ≥ 1.

We work with thin reflectors satisfying θh � 1 and h � a � L. Moreover, we assume that
the thickness of the reflector h is small compared to L2/(k0a

2), the range resolution of single
frequency images [8, Chapter 8.8]:

(4.4) h � L2

k0a2
⇔ hθa

L
� 1.
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4.2. Ultrasonic and optical imaging. The setup for the numerical simulations of sec-
tion 3 is for high frequency ultrasonic imaging which, however, does not fall into the Fraun-
hofer scaling regime as we defined it in section 4.1. Indeed, we take the frequency band
[1.5MHz, 4.5MHz] so that, for the sound speed c0 = 1.5km/s in water, we get a central wave-
length λ0 = 0.5mm. The range is L = 100λ0 = 5cm, and the array aperture a = 24.5λ0 =
1.225cm is comparable to the linear size of the reflector b = 20λ0 = 1cm. The Fresnel numbers
in our simulations are

θa ≈ 12π, θb = 8π, θh =
1

1250
π, and θab =

49

5
π,

so we are clearly not in the Fraunhofer regime of section 4.1.
The Fraunhofer regime arises naturally in optical imaging, where the typical wavelength

is λ0 = 0.5μm and where, for example, the range may be taken to be L = 3m, the array
aperture a = 2cm, and the reflector size b = 0.1mm. This gives

1 � θa ≈ 1.68 × 103 � L2

a2
= 2.25 × 104

and
θab ≈ 8.38 � θb ≈ 0.042,

so it corresponds roughly to the assumptions in section 4.1.
Numerical simulations in the Fraunhofer regime are very demanding computationally be-

cause the array aperture contains about 104 central wavelengths in each direction. Since the
sensors in the array should be separated by at most a λ0 distance, we need about 108 sensors.
This is why we do not carry out numerical simulations in the Fraunhofer regime.

In the ultrasonic regime of our numerical setup, an extended Fraunhofer regime with
θb ∼ θab ∼ 1 is more appropriate. The results of the numerical simulations indicate, how-
ever, that the qualitative behavior of our imaging algorithm is nearly as predicted by the
Fraunhofer theory. We discuss briefly in section 5 the extended Fraunhofer regime and show
how it captures better the behavior of the singular values of the array response matrix in the
numerical simulations.

4.3. The array response matrix in the Fraunhofer regime. Three key approximations
are made in the Fraunhofer regime. The first is the Born approximation [8, section 13.1.2],
and the second is the paraxial approximation Ĝ0(�x, �y, ω) ≈ Ĝ0(�x, �y, ω), which simplifies with
the scalings of the Fraunhofer regime as described below. With the two first approximations
we may write

(4.5) Π̂(�xr, �xs, ω) ≈ Π̂F (�xr, �xs, ω) = k2

∫
B×L+[−h/2,h/2]

d�yρ(�y)Ĝ0(�xr, �y, ω)Ĝ0(�xs, �y, ω),

where ρ(�y) is the reflectivity of the target. The third and last is the “continuum” approxima-
tion of the L2(A) inner product by (Δa)2 ≡ a2/(

√
N−1)2 times the C

N inner product. Instead
of studying the matrix [Π̂F (�xr, �xs, ω)]Nr,s=1, we study the operator Π̂F (ω) : L2(A) → L2(A)
defined by

(4.6) (Π̂F (ω)f)(x) =

∫
A
dyf(y)Π̂F ((x, 0), (y, 0), ω).
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We now describe how to obtain the paraxial approximation to the free space Green’s
function

(4.7) Ĝ0(�x, �y, ω) ≈ Ĝ0(�x, �y, ω) =
1

4πL
exp

[
ik

(
L + η +

|x|2

2L
− x · ξ

L

)]
,

for �x = (x, 0) ∈ A and �y = (ξ, L+η) ∈ B×L+[−h/2, h/2]. The first step is to notice that for
�x in the array and �y in the target, the denominator in the free space Green’s function (1.2)
is approximately 4πL since

(4.8) |�x − �y| =
[
(L + η)2 + |x − ξ|2

] 1
2

= L

[
1 + O

(
h

L

)
+ O

(
a2

L2

)]
≈ L.

The approximation of the phase in the Green’s function (1.2) comes from

(4.9)

k |�x − �y| = k

(
L + η +

|x|2

2L
− x · ξ

L

)
+ O

(
θb + θh + θa

h

L
+ θa

a2

L2

)

≈ k

(
L + η +

|x|2

2L
− x · ξ

L

)
.

In both (4.8) and (4.9), we can neglect the terms in O(·) because of the assumptions made in
the Fraunhofer regime (section 4.1).

Next we characterize the Fraunhofer regime array response matrix Π̂F (ω) in terms of a
known class of linear operators.

4.4. The singular value decomposition of the array response matrix. For reflectivities
of the form ρ(�y) = χB(ξ)ρL(η), where �y = (ξ, L + η) is in the target, we relate Π̂F (�xr, �xs, ω)
to a space and wavenumber limiting operator. We have the following.

Proposition 4.1. When the array is invariant under reflections about the origin (−x ∈ A ⇔
x ∈ A), then

Π̂F (ω) =
ρ̂L(−2k)

4
U(ω)RAQ k

L
BAU(ω).

Here U(ω) is the unitary operator

(U(ω)f)(x) = (4πL)Ĝ0(�x, �y
�, ω)f(x) = exp

[
ik

(
L +

|x|2

2L

)]
f(x),

which is multiplication by a phase, and with �x = (x, 0) and �y� = (0, L). The operator
A : L2(R2) → L2(R2) is the orthogonal projection onto the set of functions supported on A,

(Af)(x) = χA(x)f(x),

and the operator Q k
L
B : L2(R2) → L2(R2) projects orthogonally onto the set of functions that

have a Fourier transform supported on the set k
LB ≡

{
x ∈ R

2 | L
kx ∈ B

}
,

Q k
L
B = F−1

(
k

L
B
)
F ,
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where F is the Fourier transform. Finally, R is reflection about the origin (Rf)(x) ≡ f(−x).
The factorization of the operator Π̂F (ω) in Proposition 4.1 has a simple physical interpreta-

tion. Since U(ω), A, and R commute, the operator Π̂F (ω) is a multiple of AU(ω)RQ k
L
BU(ω)A,

whose action from right to left means that the illumination is first restricted to the array, it
is then propagated to the reflector by U(ω), it scatters off the reflector according to Q k

L
B (in

the Fraunhofer regime), it is reflected about the origin, then propagated back to the array,
and, finally, restricted to the array again.

The operator AQ k
L
BA of Proposition 4.1 is a space and wavenumber (or time and fre-

quency) limiting operator, a product of orthogonal projections, encountered in the study of
functions that are well localized as are their Fourier transforms. The connection between the
Fraunhofer response matrix and such operators, in the context of imaging a slit with a linear
array in two dimensions, is considered in [5].

We review the properties of time and frequency limiting operators in section 4.5. In
particular, AQ k

L
BA is Hilbert–Schmidt, is self-adjoint, and has a discrete real spectrum with

positive eigenvalues. So the SVD of Π̂F (ω) follows by Proposition 4.1 from the spectral
decomposition of AQ k

L
BA.

Proposition 4.2. The singular values of Π̂F (ω) are for n ∈ N

σn[Π̂F (ω)] =
|ρ̂L(−2k)|

4
σn[AQ k

L
BA],

with associated right and left singular functions

vn[Π̂F (ω)] = U∗(ω)vn[AQ k
L
BA] and

un[Π̂F (ω)] = arg(ρ̂L(−2k))U(ω)Rvn[AQ k
L
BA],

where arg(·) denotes the complex argument.
Proof of Proposition 4.1. Applying U∗(ω)Π̂F (ω)U∗(ω) to a function f gives

(U∗(ω)Π̂F (ω)U∗(ω)f)(xr)

= (4πL)2
∫
A
dxsf(xs)Ĝ0(�xr, �y�, ω)Π̂F (�xr, �xs, ω)Ĝ0(�xs, �y�, ω),

where �y� = (0, L), �xs = (xs, 0), and �xr = (xr, 0). With (4.5) and the identity

(4.10) (4πL)2Ĝ0(�x, �y, ω)Ĝ0(�x, �y�, ω) = exp

[
− ik

L
x · ξ + ikη

]
,

for �y = (ξ, L + η) and �x = (x, 0), we get

(4.11) (U∗(ω)Π̂F (ω)U∗(ω)f)(xr) =
k2

(4πL)2

∫
A
dxsf(xs)

∫
B×L+[−h/2,h/2]

d�y

· ρ(�y) exp

[
− ik

L
(xr + xs) · ξ + 2ikη

]
.
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When the reflectivity is ρ(�y) = χB(ξ)ρL(η), the above expression simplifies to

(U∗(ω)Π̂F (ω)U∗(ω)f)(xr) =
ρ̂L(−2k)

4

1

(2π)2

∫
A
dxsf(xs)χ̂ k

L
B(xr + xs)χA(xr).

The result follows by identifying above the kernel representation of Q k
L
B,

(Q k
L
Bf)(x) =

1

(2π)2

∫
dyf(y)χ̂ k

L
B(y − x).

Example 4.3 (taken from [5]). In two dimensions when the array is linear [−a/2, a/2] × 0
and we wish to image the slit [−b/2, b/2]×L+ [−h/2, h/2] with unit reflectivity, the singular
values of Π̂F (ω) are 2π2k |ρ̂L(−2k)| νn(kab/(4L)). Here νn(C), with C = kab/(4L), are the
singular values of the operator P[C] = P[−1,1]Q[−C,C]P[−1,1] with kernel representation,

(P[C]f)(x) =

∫ 1

−1
dyf(y)

sin[C(x− y)]

π(x− y)
.

Here P[−1,1] is the orthogonal projection that restricts functions to the interval [−1, 1], and
Q[−C,C] = F−1P[−C,C]F is the orthogonal projection that restricts a function to [−C,C]
in frequency. The singular functions of this operator can be computed explicitly and are
the prolate spheroidal wave functions, as was shown by Landau, Pollak, and Slepian (see
[42, 30, 41]), so the singular values νn(C) are known analytically. The properties of this
operator are considered further in Appendix A.

Therefore, in the Fraunhofer regime the array response Π̂F (ω) is, up to unitary transfor-
mations, a space and wavenumber limiting operator. Let us now review properties of this
class of operators.

4.5. Space and wavenumber limiting. The problem of finding a function localized to
some set A (in space) and whose Fourier transform is most concentrated on another set B
can be solved with the spectral decomposition of the operator AQBA. When A and B are
intervals of the real line, this problem has an explicit solution in terms of the prolate spheroidal
wave functions, as was shown by Slepian and Pollak [42] (see also [40]). One of the many
generalizations (see, e.g., the review by Slepian [41]) of their work is to higher dimensions.
We review known results about the generalized prolate spheroidal wave functions that allow
us to analyze the behavior of our imaging algorithm. Because of our problem setup, we limit
the discussion to two-dimensional versions of results that also hold in higher dimensions.

4.5.1. Space and wavenumber limited functions. A function f that is supported on
a set A in space is such that f = Af , so its L2 norm is ‖Af‖2 or, by Parseval’s iden-
tity, (2π)−2 ‖FAf‖2. Now the norm of f measured on the set B in the Fourier domain is
(2π)−2 ‖BFAf‖2. Functions that are restricted to the set A and that are well localized on
the set B in Fourier space maximize the ratio

(4.12) (2π)−2 ‖BFAf‖2

‖Af‖2
= (2π)−2 〈BFAf,BFAf〉

〈f, f〉 ,

D
ow

nl
oa

de
d 

05
/1

5/
15

 to
 1

55
.1

01
.9

7.
16

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

98 L. BORCEA, G. PAPANICOLAOU, AND F. GUEVARA VASQUEZ

where 〈·, ·〉 is the usual L2(R2) inner product and we have f = Af . The ratio (4.12) is
the Rayleigh quotient for the self-adjoint operator (2π)−2AF∗BFA = AQBA, since QB =
F−1BF and F−1 = (2π)−2F∗. Since AQBA is compact, the concentration in energy (4.12) is
maximized by the eigenfunction v1[AQBA] corresponding to the largest eigenvalue σ1[AQBA].
The compactness of AQBA follows from it being of trace class, since by Mercer’s theorem,

tr AQBA =
∑
j

σj [AQBA] =
1

(2π)2

∫
dxχA(x)χA(x)χ̂B(x − x) =

|A| |B|
(2π)2

,

where | · | denotes the area (measure) of a set.
We could have formulated the problem differently: what is the function localized in the

Fourier domain to B, that is most concentrated in space to A? The answer is the eigen-
function of BQ∗

AB = BFAF−1B with largest eigenvalue. From this reformulation we see
that the Fourier transform of an eigenfunction, Fv[AQBA], is a function of the same form,
v[QABQA]. This important property of essential invariance under Fourier transforms is used
in Proposition 4.5.

So far we have effectively constructed the left and right singular functions of the operator
(2π)−1BFA with largest singular value (we omit the (2π)−1 factor when referring to singu-
lar functions). The remaining singular functions solve constrained problems: the jth right
singular function vj [BFA] maximizes the concentration (4.12) while being orthogonal to the
first j − 1 right singular functions, and the jth left singular function uj [BFA] is the function
localized in frequency domain to B that is most concentrated in space to A and orthogonal
to the first j − 1 left singular functions.

4.5.2. Asymptotics of the eigenvalue distribution. A remarkable result about the spec-
trum of AQBA is that for large sets B, this product of orthogonal projections behaves itself
like an orthogonal projection: its higher (2π)−2 |A| |B| eigenvalues are close to one and then
plunge to zero very rapidly. For the operator AQ k

L
BA that we encountered in our study of

the array response Π̂F (ω), this result can be seen as a large Fresnel number θab = kab/L
asymptotic form of its eigenvalue distribution function, where a is the size of the array and b
that of the target, in cross-range. The eigenvalue distribution of AQ k

L
BA is defined by

N(δ; θab) = #
{
j
∣∣ σj [AQ k

L
BA] > δ

}
for 0 < δ < 1.

That the operator AQ k
L
BA behaves like an orthogonal projection can be seen by applying

the results of Kac, Murdock, and Szegő [24] on Hermitian Toeplitz operators (see also Landau
[29] for a direct proof). As θab → ∞ we have the asymptotic form

(4.13) N(δ; θab) = (λL)−2 |A| |B| (1 + o(1)),

where the leading term is O(θ2
ab). To first order, N(δ; θab) is independent of δ, which means

that the first (λL)−2 |A| |B| eigenvalues are close to one, while the rest are close to zero. This
phenomenon has been seen in actual experiments (see, e.g., [44, 43]) since the first term in
the expansion can be rewritten as

N(δ; θab) ≈
|B|

(λL)2/ |A| ;
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that is, the rank of the array data operator produced by the target is roughly equal to the
number of focal spot areas (square of the spot size) that fit in the target.

In the numerical simulations of section 3 we are in a scaling regime that is different from the
Fraunhofer regime, and so we do not observe this law or the plateau. The computed singular
values decay faster than they would in the Fraunhofer regime, as can be seen in Figure 14. This
significant difference in the distribution of eigenvalues is explained in section 5 by analyzing
the response matrix in an extended Fraunhofer regime.

Remark 4.4. In our imaging method we migrate the singular functions of Π̂(ω) for singular
values, rescaled by σ1[Π̂(ω)], in some interval [α, β] ⊂ (0, 1). By the above result on the
distribution of eigenvalues, σ1[AQ k

L
BA] ≈ 1. Thus by dividing all the singular values of Π̂(ω)

by σ1[Π̂(ω)] we cancel out the effect on the singular values of the range dimension of the
target, that is, the factor |ρ̂(−2k)| /4 in Proposition 4.2, and recover the singular values of the
underlying operator AQ k

L
BA.

The singular values in the plunge region (intermediate) of AQ k
L
BA are the ones we use

to illuminate the edges of the target (see section 3). However, the asymptotic form (4.13)
indicates that the width of the plunge region is relatively small as θab → ∞; it does not give
any information other than that it is o(θ2

ab).
Next we review refinements of (4.13) that quantify the width of the plunge region.

4.5.3. Second order asymptotics of the eigenvalue distribution. For Hermitian opera-
tors Tr : L2(A′) → L2(A′) of the form

(Tru)(x) =
r2

(2π)2

∫
A′

dyu(y)

∫
R2

dξ exp[irξ · (x − y)]q (x, ξ)

with real symbol q(x, ξ) and having jump type discontinuities in ξ, Widom [49, 50] conjectured
a second order asymptotic formula for computing tr f(Tr) for suitable functions f , as the
dilation factor r → ∞. The operator AQ k

L
BA is precisely in this class: its symbol is q(x, ξ) =

χb−1B(ξ), A′ = a−1A and the dilation factor is the Fresnel number r = θab = kab/L. Moreover,
knowing the large θab asymptotics for tr f(AQ k

L
BA) automatically gives an asymptotic form

for N(δ; θab) since

N(δ; θab) =

∫ 1

δ
dt

d

dt
[−N(t; θab)] = tr χ(δ,1)(AQ k

L
BA).

Assuming that the Widom asymptotic expansion holds, we have

(4.14)

N(δ; θab) = (λL)−2 |A| |B|

+ (λL)−1 ln θab
4π2

ln
1 − δ

δ

∫
∂A

∫
∂B

dxdξ |nA(x) · nB(ξ)|

+ o(θab ln θab).

The Widom conjecture has been shown to hold in one dimension by Landau and Widom [31],
and in higher dimensions when the domain B is a half-space [50]. Gioev [19] has recently
confirmed that the second term in the asymptotics of tr f(Tr) is of the order predicted by
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Widom. In Appendix A we show that (4.14) holds in the very particular case of rectangular
A and B using the one-dimensional two-term asymptotics [31].

The expansion (4.14) indicates that information about the edges of B appears redundantly
in the plunge region. Indeed, if the Widom conjecture holds, then the number of eigenvalues in
the plunge region is proportional to the double integral term, which is less than the product
|∂A| |∂B| of the perimeters of A and B. This is probably why similar edge images can be
obtained with different parts of the plunge region, as we see in the numerical simulations of
section 3, with selected subspace migration.

Another use of the large Fresnel number asymptotic expression (4.14) could be for detect-
ing edges by looking at the rate of decay in the plunge region. Indeed, if the reflectivity in the
cross-range dimension is smooth, the second term would be only O(θab) (see, e.g., [47, 48]),
instead of being O(θab ln θab) as it is in (4.14).

4.5.4. Localization of the singular functions. The leading singular function v1[(
k
LB)FA]

peaks typically at the center of A and dies off quickly away from its peak. The corresponding
left singular function u1[(

k
LB)FA] behaves similarly in k

LB. As j increases, the peaks of the
singular functions move progressively outward to the edges of their respective domain, with
oscillations that die off quickly away from the peaks.

The singular value σj [AQ k
L
BA] measures the fraction of energy in A (resp., k

LB) of the

extension of vj [(
k
LB)FA] (resp., uj [(

k
LB)FA]) to L2(R2). Slepian [38] defines the extension of

vj [(
k
LB)FA] by

(4.15) vj [(
k
LB)FA](x) =

1

σj [AQ k
L
BA]

(2π)−2

∫
A
dyvj [(

k
LB)FA](y)χ̂ k

L
B(y − x) for x ∈ R

2.

In addition to being orthonormal in L2(A), the extended functions have the property of being
mutually orthogonal also in L2(R2) with 〈vi, vj〉 = δi,j/σi[AQ k

L
BA]. The domain of definition

of the left singular functions can be similarly extended from k
LB to R

2.

We know that roughly the first (λL)−2 |A| |B| singular values of AQ k
L
BA are close to

one. Therefore, the first (λL)−2 |A| |B| singular functions uj [(
k
LB)FA] are relatively well

concentrated inside k
LB. The situation is exactly the opposite for singular values with index

above the threshold. Therefore, if we want singular functions that peak on the edges of k
LB,

we should consider the plunge region, which corresponds to intermediate singular values.

The localization property of the eigenfunctions of the response matrix has been observed
experimentally [26]. To further illustrate localization, we give in Appendix A explicit formulas
for the singular functions of BFA when both A and B are rectangles. Also, the fact that the
images in range agree with ∂B for other cross-range profiles B indicates that this localization
property holds more generally.

In the next section 4.6 we show that the single-frequency, single-eigenfunction subspace

migration image (2.2) is roughly
∣∣uj [( k

LB)FA]( k
L ·)
∣∣2. Therefore, the localization property

explains why we can focus on the edges by imaging with the singular functions in the plunge
region.
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4.6. Analysis of selected subspace migration. In this section we connect the subspace
migration images to the singular functions of space and wavenumber limiting operators. We
express the image resulting from migrating a right singular function of Π̂F (ω) in terms of the
left singular functions of ( k

LB)FA. We present this result as Proposition 4.5. It allows us
to apply the properties of the SVD of space and frequency limiting operators to explain the
behavior of selected subspace imaging in the numerical simulations of section 3.

Proposition 4.5. Subspace migration images (2.2) with a single singular function vj [Π̂F (ω)]
at a single frequency ω in the Fraunhofer regime have the form

ISM(�yS ;ω) ∼ ρ̂L(−2k) exp[2ikηS ]σ2
j [AQ k

L
BA]

∣∣∣∣uj [( k

L
B
)
FA

](
k

L
ξS
)∣∣∣∣2 ,

where the search point is �yS = (ξS , L+ ηS) and the symbol ∼ means equality up to a positive
multiplicative factor, independent of ω, j, and �yS. Here the values of uj [(

k
LB)FA] outside k

LB
are given by Slepian’s extension (4.15).

This result shows that images with subspace selection are as localized as the left singular
functions of ( k

LB)FA. By section 4.5.4, the singular functions for intermediate singular values
are localized near the edges of the array and the object. Thus, when we migrate with a
subspace that contains those intermediate singular functions we expect to image the edges
with illuminations coming mainly from the edges of the array. This agrees with the numerical
simulations of section 3.

When the single frequency image is summed over the frequencies, the simulation results
in section 3 indicate that the oscillatory part (recall section 4.5.4) of the singular functions
average out.

The potential for imaging with eigenfunctions has been noted in [35, 33] for the full
aperture, far field operator, which is different from array imaging. In array imaging the
selective focusing on the edges with illuminations coming from the ends of a linear array was
shown in [5].

Proof of Proposition 4.5. Using the continuum approximation of the C
N inner product,

which is the L2(A) inner product, the subspace migration imaging functional (2.2) for a single
singular function becomes

ISM(�yS ;ω) ∼
∫
A
dxr

∫
A
dxs exp

[
ik
∣∣�xr − �yS

∣∣+ ik
∣∣�xs − �yS

∣∣]
· σj [Π̂F (ω)]uj [Π̂F (ω)](xr)v∗j [Π̂F (ω)](xs).

Here the symbol ∼ means equality up to a positive multiplicative factor. From Proposition 4.2
and approximating the phases in the complex exponentials as in (4.7) we obtain

ISM(�yS ;ω) ∼ ρ̂L(−2k)σ′
j

∫
A
dxr

∫
A
dxsĜ0(�xr, �y

S , ω)Ĝ0(�xs, �y
S , ω)

· Ĝ0(�xr, �y�, ω)v′j(−xr)Ĝ0(�xs, �y�, ω)v′j(xs),
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where to simplify the notation we write v′j ≡ vj [(
k
LB)FA] and σ′

j ≡ σj [AQ k
L
BA]. Recalling

the expression (4.7) of Ĝ0 and that �yS ≡ (ξS , L + ηS), we obtain

ISM(�yS ;ω) ∼ ρ̂L(−2k)σ′
j

∫
A
dxr

∫
A
dxs exp

[
2ikηS − ik

L
(xr + xs) · ξS

]
v′j(−xr)v

′
j(xs),

which becomes (using Fubini’s theorem)

ISM(�yS ;ω) ∼ ρ̂L(−2k)

4
exp[2ikηS ]σ′

j

(∫
A
dxr exp

[
− ik

L
xr · ξS

]
v′j(−xr)

)
(∫

A
dxs exp

[
− ik

L
xs · ξS

]
v′j(xs)

)
.

We have assumed here that the set A is symmetric about the origin (x ∈ A ⇔ −x ∈ A).
Therefore

ISM(�yS ;ω) ∼ ρ̂L(−2k) exp[2ikηS ]σ′
j

∣∣∣∣(FAv′j)

(
k

L
ξS
)∣∣∣∣2 .

Finally, from the definition of the SVD we have

(4.16)

(
k

L
B
)
FAv′j = σj

[(
k

L
B
)
FA

]
u′j = 2π

√
σ′
ju

′
j ,

where u′j ≡ uj [(
k
LB)FA]. In one dimension, property (4.16) is the remarkable self-similarity

of the prolate spheroidal wave functions with respect to the Fourier transform [41], noted in
section 4.5.1. Here, it translates into knowing the field at the target after migration from the
array. Thus, the image inside the cross-section B of the target takes the form

(4.17) ISM(�yS ;ω) ∼ ρ̂L(−2k) exp[2ikηS ]σ′2
j

∣∣∣∣u′j ( k

L
ξS
)∣∣∣∣2 for ξS ∈ B.

Outside B the image is also given by (4.17), provided Slepian’s extension (4.15) of u′j is used.
This is because the extension of u′j that is naturally defined by (4.16)

(4.18) g′j(ζ) =
1

2π(σ′
j)

1/2

∫
A
dx exp [−ix · ζ] v′j(x), for ζ ∈ R

2,

is equivalent to (4.15). To see this, simply substitute v′j above by using the properties of the

SVD: v′j = (σj
[(

k
LB
)
FA

]
)−1AF∗( k

LB)u′j , to obtain after some manipulations

g′j(ζ) =
1

(2π)2σ′
j

∫
k
L
B
dζ′u′j(ζ

′)χ̂A(ζ′ − ζ)

which for A symmetric about the origin is precisely Slepian’s extension (4.15).
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5. The extended Fraunhofer regime. In the analysis of imaging in the Fraunhofer regime
in section 4 we assume that the target is small (θb � 1). However, in the numerical simulations
we violate this condition, since we have θb = 8π. Although the qualitative behavior of our
imaging algorithm can be understood using the analysis of the Fraunhofer regime, quantita-
tively the story is different. Figure 14 shows that there is a significant difference between the
computed singular values and those predicted by the Fraunhofer regime. We now introduce
an extended Fraunhofer regime that accounts for this discrepancy by incorporating θb ≥ 1 in
the analysis of sections 4.3 and 4.4. Preliminary results suggest a scaling law analogous to
(4.13).

5.1. The array response matrix in the extended Fraunhofer regime. We proceed as in
section 4.3 to approximate the array response matrix Π̂(�xr, �xs, ω) for large targets. We make
the Born and the paraxial approximation ĜFre

0 of the Green’s function to get

Π̂(�xr, �xs, ω) ≈ Π̂Fre(�xr, �xs, ω) = k2

∫
B×L+[−h/2,h/2]

d�yρ(�y)ĜFre
0 (�xr, �y, ω)ĜFre

0 (�xs, �y, ω).

For large targets the difference is that the approximation (4.7) of the free space Green’s
function is not valid because we neglected an O(θb) term in the phase. When we include this
term the new approximation to the Green’s function is

(5.1) Ĝ0(�x, �y, ω) ≈ ĜFre
0 (�x, �y, ω) =

1

4πL
exp

[
ik

(
L + η +

|x|2

2L
− x · ξ

L
+

|ξ|2

2L

)]
for �x = (x, 0) in the array and �y = (ξ, L + η) in the vicinity of the target. The additional
term in the phase appears in the study of Fresnel diffraction [8], which explains our notation
Π̂Fre(�xr, �xs, ω).

5.2. The singular value decomposition of the response matrix in the extended Fraun-
hofer regime. We give a characterization analogous to Proposition 4.1 for the operator
Π̂Fre(ω) : L2(A) → L2(A) defined by

(Π̂Fre(ω)f)(x) =

∫
A
dyf(y)Π̂Fre((x, 0), (y, 0), ω),

when the reflectivity is of the form ρ(�y) = χB(ξ)ρL(η). We omit the proof since it goes along
the same lines as the proof of Proposition 4.1.

Proposition 5.1. When the array is invariant with respect to reflections about the origin
(−x ∈ A ⇔ x ∈ A), we have

Π̂Fre(ω) =
ρ̂L(−2k)

4
U(ω)RAQ̃ k

L
BAU(ω).

Here U(ω), R, and A are operators identical to those appearing in Proposition 4.1. The
operator Q̃ k

L
B is a non-Hermitian one with kernel representation,

(Q̃ k
L
Bf)(x) = (2π)−2

∫
dyf(y)q̂(y − x), where q(ξ) = χ k

L
B(ξ) exp

[
i
L

k
|ξ|2

]
.
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0 20 40 60 80 100
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σ

Figure 14. The computed (green lines) singular values of the array response matrix versus the ones predicted
in the usual (red lines) and extended (blue lines) Fraunhofer regimes for a rectangular target, and for frequencies
1.5MHz (-·-), 3MHz (- -), and 4.5MHz (—). The singular values in the extended Fraunhofer regime are obtained
from (5.2) using k = 2π/λ, L = 100λ0, a = 24.5λ0, and b = 20λ0, which are the same as those in section 3.

However, the operator AQ̃ k
L
BA is still Hilbert–Schmidt. This can be seen by comparing with

Example X.2.2 in [51] and ∫
A

∫
A
dxdy |q̂(x − y)|2 < ∞.

Thus the SVD of AQ̃ k
L
BA is well defined. The SVD of Π̂Fre(ω) follows from a result similar

to Proposition 4.2.
Proposition 5.2. The singular values of Π̂Fre(ω) are for n ∈ N

σn[Π̂Fre(ω)] =
|ρ̂L(−2k)|

4
σn[AQ̃ k

L
BA],

with associated right and left singular functions

vn[Π̂Fre(ω)] = U∗(ω)vn[AQ̃ k
L
BA] and

un[Π̂Fre(ω)] = arg(ρ̂L(−2k))U(ω)Run[AQ̃ k
L
BA].

Therefore, up to unitary transformations, the array response matrix in the extended Fraun-
hofer regime is the operator AQ̃ k

L
BA.

5.2.1. Comparison with the Fraunhofer regime. We compare in Figure 14 the singular
values of the array response matrix for a square 20λ0 × 20λ0 target to the singular values
predicted by the usual and the extended Fraunhofer regimes. The singular values of AQ k

L
BA

(usual Fraunhofer regime) can be computed analytically using the one-dimensional prolate
spheroidal wave functions (see Appendix A). As for the singular values of AQ̃ k

L
BA (extended

Fraunhofer regime), we obtain them similarly using separation of variables from the singular
values of its analogous one-dimensional operator

(5.2) (2π)−1

∫ a/2

−a/2
dyf(y)q̂(y − x), where q(ξ) = χ k

L
[−b/2,b/2](ξ) exp

[
i
L

k
ξ2

]
,
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EDGE ILLUMINATION AND IMAGING OF EXTENDED REFLECTORS 105

which we approximate using collocation. In Appendix A, the eigenfunctions of the operator
(5.2) are compared to those that would be obtained in the usual Fraunhofer regime when
q(ξ) = χ k

L
[−b/2,b/2](ξ) in (5.2).

5.3. Distribution result for the pseudospectrum. The operator AQ̃ k
L
BA is non-Hermitian,

so we cannot speak about eigenvalues and eigenvectors since their existence is not guaranteed.
Landau [29] was among the first proponents of pseudospectra for the study of non-Hermitian
operators [45], and one of his original results gives a scaling law that is similar in spirit to the
one in the Fraunhofer regime (4.13).

An ε-pseudoeigenvalue μ ∈ C of AQ̃ k
L
BA is such that∥∥∥AQ̃ k

L
BAφ− μφ

∥∥∥ ≤ ε for some nonzero φ.

The function φ is said to be an ε-pseudoeigenfunction of AQ̃ k
L
BA. Here we have used the

L2(A) norm. In our setting, Theorem 3 in [29] means that the maximum number of orthogonal
ε-pseudoeigenfunctions with ε-pseudoeigenvalues in the annulus2

Ω = {z ∈ C | δ ≤ |z| ≤ 1}

is (λL)−2 |A| |ΩB|, in the limit ε → 0 and θab → ∞. Here ΩB is the set of points for which the
symbol of AQ̃ k

L
BA belongs to the annulus Ω, that is,

ΩB = {ξ ∈ R
2 | χB(ξ) exp[i(L/k) |ξ|2] ∈ Ω} = B.

The last equality shows that in fact ΩB is the same as the set B.

A physical interpretation (from Proposition 5.1) is that the maximal number of orthogonal
(independent) signals f for which∥∥∥∥Π̂Fre(ω)f − μ

ρ̂L(−2k)

4
U(ω)RU(ω)f

∥∥∥∥ ≤ ε for some μ ∈ C with δ ≤ |μ| ≤ 1

is roughly (λL)−2 |A| |B| (the number of focal spot areas fitting in the target). In other words,
there are about |B| /((λL)2/ |A|) orthogonal signals that when sent by the array, produce an
echo which is essentially the same signal up to a reflection and a phase.

6. Summary and conclusions. We have introduced a selective subspace migration ap-
proach for array imaging of the edges of extended reflectors in homogeneous media. Numeri-
cal simulations show that this imaging method is quite effective because it masks the strong
specular reflections from the bulk of the object to be imaged, allowing us to image the edges.
It is also robust to noise if the array has a large number of sensors. In the Fraunhofer regime
the analysis of selective subspace migration imaging can be carried out using the theory of
generalized prolate spheroidal wave functions. Imaging extended reflectors with ultrasound is

2The result in [29] holds for other regions of C not containing the origin.
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not, however, in the Fraunhofer regime but rather in an extended one. The theory of general-
ized prolate spheroidal wave functions carries over only partially into the extended Fraunhofer
regime. This is enough, however, to explain much of what we see in the numerical simulations.

There are many things that are not addressed here, but should be. On the theoretical side
is developing a more complete theory for imaging in the extended Fraunhofer regime and with
nonconstant reflectivities. On the side of applications as well as theory are questions about
robustness to noise and sensor sparsity that need a deeper analysis. Extensions to random
media and optimal subspace selection and illumination, as in [4], also need to be considered.

Appendix A. Rectangular array and target. For a rectangular array A and target B,
centered at the origin, the eigenvalues and eigenfunctions of the space and wavenumber lim-
iting operator AQ k

L
BA can be expressed in terms of the prolate spheroidal wave functions

[42, 30, 41]. The eigenvalue distribution of AQ k
L
BA for such A and B can also be inferred

from existing one-dimensional results [31].

A.1. The one-dimensional prolate spheroidal wave functions. Slepian and Pollak [42]
found the eigenfunctions and eigenvalues of the one-dimensional space and wavenumber lim-
iting (called time and band limiting in [42]) operator P[C] = P[−1,1]Q[−C,C]P[−1,1] with kernel
representation,

(A.1) (P[C]f)(x) =

∫ 1

−1
dyf(y)

sin[C(x− y)]

π(x− y)
.

Here P[−1,1] is the orthogonal projection that restricts functions to the interval [−1, 1], and
Q[−C,C] = F−1P[−C,C]F restricts a function to [−C,C] in the Fourier domain. The elegant
method of Slepian and Pollak consists in showing that the operator P[C] commutes with
a differential operator for which the eigenfunctions are known explicitly [1, section 21]. The
eigenvalues of P[C] are denoted by νn(C) (in decreasing order) and its eigenfunctions ψn(x;C),
with normalization ‖ψn(·;C)‖2

L2[−1,1] = νn(C). Since the operator P[C] is positive and Her-
mitian, the singular values and singular functions are the eigenvalues and eigenfunctions.

The first order asymptotic for the eigenvalue distribution (the one-dimensional analogue
of (4.13)) is that, except for relatively few eigenvalues, the first n∗(C) = �2C/π� eigenvalues
are asymptotically close to one, and the rest approach zero as the dilation factor C → ∞ (see,
e.g., [40]).

A.2. Eigenvalues and eigenfunctions. Finding the eigenvalues of the operator AQBA
when A =

∏2
i=1[−ai/2, ai/2] and B =

∏2
i=1[−bi/2, bi/2] in terms of the prolate spheroidal

wave functions is done with separation of variables and change of integration variables. For
simplicity, we drop in this section the dilation factor k/L and suppose that B already includes
it.

Proposition A.1. For rectangular sets

A =

2∏
i=1

[−ai/2, ai/2] and B =

2∏
i=1

[−bi/2, bi/2]
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the (unsorted) eigenvalues and eigenfunctions of AQBA are, for x = (x1, x2) ∈ A,

σn[AQBA] =

2∏
i=1

νni

(
aibi
4

)
and vn[AQBA](x) ∼

2∏
i=1

ψni

(
2

ai
xi;

aibi
4

)
,

where the symbol ∼ means equality up to a norming constant and n = (n1, n2) ∈ N
2. For the

“dual” operator BQ∗
AB we have σn[BQ∗

AB] = σn[AQBA], with eigenfunctions

vn[BQ∗
AB](y) ∼

2∏
i=1

ψni

(
2

bi
yi;

aibi
4

)
for y = (y1, y2) ∈ B.

That the eigenfunctions of the “dual” operator BQ∗
AB are the prolate spheroidal wave

functions stretched to B is a manifestation of the self-similarity under Fourier transform of
the prolate spheroidal wave functions [41].

The staircase aspect of the eigenvalues of AQBA for a rectangular array and target can be
explained qualitatively by Proposition A.1 and by the characteristic plateau behavior of νn(C).
Roughly speaking, each eigenvalue νn1 (a1b1/4) that is in the plunge region for P[a1b1/4] has
multiplicity n∗(a2b2/4) as an eigenvalue of AQBA, since

∏2
i=1 νni(aibi/4) ≈ νn1(a1b1) for

n2 ≤ n∗(a2b2/4).

We show in Figure 15 some of the eigenfunctions of P[aibi/4] for dimensions ai = 24.5λ0

and bi = (k0/L)20λ0 = 2π/(5λ0), taken from the setup of section 3. The eigenfunctions up
to n∗(aibi/4) = 4.9 are well localized in [−a/2, a/2], but then spill outside this interval. The
eigenfunctions of P[aibi/4] that are better localized on the edges of the array are near the
threshold n∗(aibi/4). We recall that the extension of the domain of definition of the singular
functions is done with (4.15).

The eigenfunctions we use as illuminations in our method are mostly localized on the
edges of A. Moreover, the associated eigenfunctions on the target side are also localized near
the edges of B. Thus, by Proposition 4.5 the images concentrate near the edges of B in the
Fraunhofer regime.

However, the behavior of the array response matrix is better described in the extended
Fraunhofer regime, as we saw in Figure 14. Thus, for comparison we include in Figure 15
some of the eigenfunctions of the one-dimensional operator (5.2) that appears in the extended
Fraunhofer regime array response matrix for a rectangular array and target. We see that, at
least on the array side, the eigenfunctions are localized, but that they spill over faster outside
the array. As for the eigenvalues, they also decay faster than those in the usual Fraunhofer
regime. The extension of the eigenfunctions was done similarly to (4.15). The study of the
operator (5.2) and the characterization of images in the extended Fraunhofer regime are left
for future studies.

A.3. Eigenvalue distribution. We show that for rectangular sets A and B in space and
Fourier domain, the eigenvalue distribution of AQ k

L
BA is consistent with that conjectured by

Widom (4.14). This is based on the two-term asymptotic distribution for P[C] due to Landau
and Widom [31], and we formulate it as a large Fresnel number θab = kab/L asymptotic in
the following proposition.
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Figure 15. Top row: some eigenfunctions of P[C] stretched to [−a/2, a/2] with C = 49π/20. Bottom
row: some eigenfunctions of the operator (5.2), ordered by decreasing magnitude of the associated eigenvalues
μn. The eigenfunctions are consistent with the setup in section 3 at the central frequency, that is, k = 2π/λ0,
L = 100λ0, a = 24.5λ0, and b = 20λ0. The abscissa −a/2 and a/2 are in dotted lines, with units λ0. The
functions are rescaled to have unit L2([−a/2, a/2]) norm and are extended to [−a, a].

Proposition A.2. For rectangular sets

A =

2∏
i=1

[−ai/2, ai/2] and B =

2∏
i=1

[−bi/2, bi/2],

with respective length scales a and b, the eigenvalue distribution of AQ k
L
BA is consistent with

the Widom conjecture (4.14): as θab = kab/L → ∞ we have

N(δ; θab) = (λL)−2a1a2b1b2 + (λL)−1 ln θab
4π2

4(a1b1 + a2b2) ln
1 − δ

δ
+ o(θab ln θab).

Proof. By Proposition A.1, we have σn[AQ k
L
BA] = νn1(C1)νn2(C2) for (n1, n2) ∈ N

2 with

Ci =
kaibi
4L

, i = 1, 2,

and where νni(Ci) are the eigenvalues of the operator P[Ci] (recall (A.1)). Using the asymp-
totic expansion of Landau and Widom [31] (see also [41]) of the eigenvalue distribution of
P[C] , we obtain, for large Fresnel number θab,

(A.2) N (i)(δ; θab) = (λL)−1aibi +
1

π2
ln(θab) ln

1 − δ

δ
+ o(ln θab),
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where N (i)(δ; θab) = #{n|νn(Ci) > δ} and i = 1, 2. Notice that

N(δ; θab) = #
{
n = (n1, n2) ∈ N

2 | σn[AQ k
L
BA] = νn1(C1)νn2(C2) > δ

}
=

∞∑
n1=1

#

{
n2 | νn2(C2) >

δ

νn1(C1)

}
=

∞∑
n1=1

N (2)

(
δ

νn1(C1)
; θab

)
,

where we can divide by νn1(C1) because the operator P[C] is positive. But we have δ ≥ νn1(C1)
for n1 > N (1)(δ; θab) and N (2)(α; θab) = 0 for α ≥ 1, so it is easy to see that the above sum
has only a few nonzero terms, giving

N(δ; θab) =

N(1)(δ;θab)∑
n1=1

N (2)

(
δ

νn1(C1)
; θab

)
.

For most n1 ≤ N (1)(δ; θab), we have that νn1(C1) → 1 as θab → ∞, with only a few o(θab)
exceptions where the limit of νn1(C1) is not one, which happens when n1 nears N (1)(δ; θab).
This observation together with the asymptotics (A.2) of the summand gives N(δ; θab) =
N (1)(δ; θab)N

(2)(δ; θab) + N (1)(δ; θab)o(ln θab). The result follows from (A.2).

A.4. Eigenvalue computation. The downside of Proposition A.1 is that it does not give
any information about the ordering of the eigenvalues. Fortunately, we are interested only in
the eigenvalues of AQ k

L
BA that are for practical purposes nonzero.

According to Proposition A.2, and for large enough θab, the number N(δ; θab) of eigenvalues
of AQ k

L
BA above some 0 < δ < 1 is essentially

∏2
i=1 N

(i)(δ; θab), where N (i)(δ; θab) is the

number of eigenvalues above δ of P[kaibi/(4L)]. Thus to find the singular values above some
δ, we compute σn[AQ k

L
BA] for n ∈ N

2∩
∏2

i=1[1, N
(i)(δ; θab)] and then sort them in decreasing

order.
For the eigenvalues of AQ k

L
BA in Figure 14, we computed the first 100 eigenvalues of

P[kaibi/(4L)], which is well into the region where the νn(kaibi/(4L)) are almost zero. This
gives 104 unsorted eigenvalues for AQ k

L
BA. We sort them and keep the 100 largest ones.

Appendix B. Other computational issues. Computations for the forward problem were
done with the Born approximation (3.1), which can be seen as a symmetric matrix-matrix
multiplication if the sources and receivers are collocated in the array. This is a so-called level-3
linear algebra operation that can achieve near peak processor performance when using tuned
BLAS libraries such as ATLAS or the Intel MKL.

A significant part of the computational cost of our method is spent computing the SVD
of the array response matrix, especially for the 50× 50 array where the array response matrix
is C

2500×2500. This is an embarrassingly parallel task, since it can be done independently
frequency by frequency. However, we did not parallelize the SVD computations in our code.
Instead we noted that the Fraunhofer regime theory of section 4.1 predicts that the array
response matrix is effectively low-rank, and that its rank can be estimated a priori by having
an idea of the area of the target.

Therefore we need only compute the first few singular vectors and values of the array
response matrix, and this can be done efficiently using an iterative method. We use the
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MATLAB eigs interface to ARPACK [32]. The low rank of the response matrix can also be
used to reduce the storage of the frequency samples. In our computations, we store only the
first 100 singular vectors and values of the data, which is the best rank-100 approximation
in the matrix 2 norm and Frobenius norm; see, e.g. [20, section 2.5.5]. This was enough to
capture the significantly nonzero singular values. Of course, when we add noise to the array
response matrix we add it before such compression.

The imaging method described in section 2.2 uses only the intermediate singular values,
which are a relatively small part of the data. It would be interesting to directly compute the
singular vectors corresponding to intermediate singular values. In principle a simple spectral
transformation can make the intermediate singular values the ones with largest magnitude,
for example, the transformation A(σ1[A]I −A), where A = Π̂∗(ω)Π̂(ω).

Appendix C. The full aperture problem. We consider here the full aperture scattering
problem for a disk-shaped reflector of radius b, in two dimensions, in order to show how the
ideas in the paper extend to this case. The full aperture data have the form

(C.1) Π̂(�xr, �xs, ω) =
e2ikR

R2
Sω(�θr, �θs),

where the sources and receivers are on a disk of radius R � b, concentric with the reflector,
and k = ω/c0. We have

�xr = R�θr, �xs = R�θs

for unit vectors3

�θr = (cos θr, sin θr) , �θs = (cos θs, sin θs) .

With the Born approximation, the kernel of the far field operator is

(C.2) Sω(�θr, �θs) =
k2

(4π)2
ρ̂
(
k�θr + k�θs

)
,

as follows easily from the far field approximation of the Green’s function

(C.3) Ĝ0(�x, �y, ω) ≈ eikR

4πR
e−ik�θ·�y

for �x = R�θ and �y a point in the reflector (|�y| ≤ b). Thus, the SVD analysis of Π̂(ω) reduces
to the analysis of the operator with kernel ρ̂(k�θr + k�θs).

The singular values (see [27, 28]) have the form

(C.4) μn =

∫ b

0
J2
n(kr)rdr,

where Jn is the Bessel function of order n. The right singular functions of the far field operator
are given by

(C.5) vn(θs) = cos(nθs) or sin(nθs),

3The notation θr for angles should not be confused with that for Fresnel numbers (section 4.1).
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and, using (C.1) and (C.2), we get the singular vectors of Π̂(ω)

(C.6) Vn(θs) =
e−ikR

4πR
vn(θs) ≈ Ĝ0(�xs,�0, ω)vn(θs).

It follows from the properties of the Bessel functions [1, Chapter 9] that the singular values
are uniformly large for indices n < kb and then plunge to zero for n > kb. Thus, the threshold
is

(C.7) N∗(ω) = [kb],

as obtained in [27, 28]. What we wish to show here is that when we illuminate the reflector
with the transition singular vectors VN∗(θs), we obtain images that are focused on the edges
of the disk.

The single frequency migration image is

(C.8) J (�yS , ω, n) =

∫ 2π

0
dθr

[∫ 2π

0
dθsΠ̂(�xr, �xs, ω)Vn(θs)

]
Ĝ0(�xr, �y

S , ω).

Since

(C.9)
[
Π̂(ω)Vn

]
(θr) ∼ μnVn(θr),

we have

J (�yS , ω, n) ∼ μn

∫ 2π

0
dθrVn(θr)Ĝ0(�xr, �y

S , ω) ≈ μn

∫ 2π

0
dθrvn(θr)e

−ikrS cos(θr−ϕS).

Here we used the polar coordinates

�yS = rS
(
cosϕS , sinϕS

)
.

Using (C.5) we get the single frequency image

(C.10) J (�yS , ω, n) ∼ μne
inϕS

Jn(krS).

We plot J (�yS , ω, n)/μn in Figure 16 for kb = 100 and for kb = 110. Note how it peaks at
rS = 0 when we use the leading singular vectors V0, and how the peaks move to the boundary
of the disk when we use the transition singular vectors VN� . The images are greatly improved
when we integrate over the bandwidth kb ∈ [100, 200], as shown in Figure 16. This is because
the oscillations of the Bessel functions cancel out in the integration. In particular, the image

(C.11) J (�yS) =

∫
dωJ

(
�yS , ω,N�(ω)

)
is nicely focused on the edges of the reflector.

Acknowledgment. The authors would like to thank the anonymous referees for their
helpful remarks and especially for referring us to the related work by Kusiak and Sylvester
[27, 28], Haddar, Kusiak, and Sylvester [22], Colton and Kress [14], and Colton, Coyle, and
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Figure 16. Left: we plot the normalized single frequency image versus rS = |�yS |. We show two images, for
kb = 100 and kb = 110. Right: we plot the broadband image. The top line is for illuminations with the leading
singular vectors and the bottom line is for illuminations with the transition singular vectors.
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