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Abstract
We introduce a novel inversion algorithm for electrical impedance tomography
in two dimensions, based on a model reduction approach. The reduced models
are resistor networks that arise in five point stencil discretizations of the elliptic
partial differential equation satisfied by the electric potential, on adaptive grids
that are computed as part of the problem. We prove the unique solvability of the
model reduction problem for a broad class of measurements of the Dirichlet-
to-Neumann map. The size of the networks is limited by the precision of the
measurements. The resulting grids are naturally refined near the boundary,
where we measure and expect better resolution of the images. To determine
the unknown conductivity, we use the resistor networks to define a nonlinear
mapping of the data that behaves as an approximate inverse of the forward
map. Then we formulate an efficient Newton-type iteration for finding the
conductivity, using this map. We also show how to incorporate a priori
information about the conductivity in the inversion scheme.

1. Introduction

In electrical impedance tomography (EIT) we wish to determine the conductivity σ inside
a bounded, simply connected domain �, from simultaneous measurements of currents and
voltages at the boundary ∂� [6]. Equivalently, we measure the Dirichlet-to-Neumann (DtN)
map. This problem is known to be uniquely solvable given complete knowledge of the DtN
map [3, 14, 28, 36, 40, 45, 46]. However, it is exponentially ill-posed [1, 39], so numerical
inversion methods require regularization [29]. Because noise in the measurements limits
severely the number of parameters that we can determine, we use a regularization approach
based on sparse parametrizations of σ .

0266-5611/08/035013+31$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0266-5611/24/3/035013
mailto:fguevara@math.utah.edu
http://stacks.iop.org/ IP/24/035013


Inverse Problems 24 (2008) 035013 L Borcea et al

Regularization by means of sparse representations of the unknown in some preassigned
basis of functions has been proposed for linear inverse problems in [22]. There remain at
least two important questions: (1) how to design fast and efficient inversion algorithms for the
nonlinear EIT problem? (2) How to choose a good basis of functions, especially when we do
not have a priori information about σ?

We look at bases that consist of approximate characteristic functions of cells in grids
partitioning the domain �. The size of these grids is limited by the precision of the
measurements and the location of the grid points is determined adaptively as part of the
inverse problem. Here the adaptivity is with respect to the boundary measurements and not
the conductivity function σ , which is the unknown. The resulting grids capture the expected
gradual loss of resolution of the images as we move away from the boundary. They are refined
near ∂� and coarse deep inside the domain.

The first adaptive grids for EIT are due to Isaacson [30, 34] (see also [15, 44]). They
are based on the concept of distinguishable perturbations of the conductivity that give
distinguishable (above the noise level) perturbations of the boundary data. The grids are
built in a disc-shaped domain �, one layer at a time, by finding the smallest circular inclusion
of radius rn, concentric with �, that is distinguishable with the nth Fourier mode current
excitation exp(inθ), for n = 1, 2, . . . and θ ∈ [0, 2π). The first mode penetrates the deepest in
the domain and the more oscillatory modes see shallower depths in �. The resulting grids are
refined near ∂�, as expected. Note that they are constructed with a linearization approach that
estimates the depth penetration of each Fourier mode with one inclusion at a time. However,
the EIT problem is nonlinear and the accuracy of such linearization is not understood.

MacMillan et al [38] study distinguishability by deriving lower and upper bounds of the
perturbations of the Neumann-to-Dirichlet map, in terms of a local norm of perturbations δσ .
They use these bounds to describe approximately the set of distinguishable δσ and to construct
the distinguishability grids. The grids are still based on a linearization approach, with each
cell determined by the smallest distinguishable inclusion at a given depth in �. The numerical
inversion in [38] does not use the grids explicitly, but it incorporates the loss of resolution
quantified by them, through weights in the objective function that they optimize to find σ .

Other resolution and distinguishability studies for EIT are given in [2, 25, 42]. They are
all based on the linearization approximation. A different, nonlinear, adaptive parametrization
approach is due to Ben Ameur et al [4, 5]. It considers piecewise constant conductivities on
subsets (zones) of a two-dimensional domain discretized with some grid. The adaptivity of
the parametrization consists in the iterative coarsening or refinement of the zonation, using
the gradient of a least squares data misfit functional. This functional is minimized for each
update of the zonation and the approach can become computationally costly if many updates
of the conductivity are required.

In this paper we consider the EIT problem in two dimensions, in a disc-shaped domain
�, and we image on adaptive grids computed with a model reduction approach. The reduced
models are resistor networks of a certain topology that can predict the boundary measurements.
Resistor networks have been considered in other studies of EIT. For example, they are used
in [7, 8] for imaging high-contrast conductivities of a certain class, where the Dirichlet-to-
Neumann map degenerates to that of a resistor network, due to strong flow channeling. Here
we look at lower contrasts in the conductivity, where the networks arise from the discretization
of the elliptic partial differential equation for the electric potential. This was done before, for
example in [24], but the networks considered there are not uniquely recoverable from the data,
because they are large and contain redundant connections.

We look at uniquely recoverable resistor networks that we can specify precisely using the
foundational work [17, 18, 20, 32, 33] on circular planar graphs. The networks arise from
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five point stencil discretization schemes, on adaptive grids that are computed as part of the
problem. We estimate σ with a nonlinear optimization process consisting of two steps: first,
we use the networks and the grids to define a nonlinear mapping of the data to the space of
conductivities. This is an approximate inverse of the forward map. Then, we estimate the
conductivity with a Newton-type iteration formulated for the composition of the two maps,
which are approximate inverses of each other. This preconditions the iterative process and
gives fast convergence.

The paper is organized as follows: we begin with the mathematical formulation of
the problem in section 2. Then we state the model reduction problem in terms of resistor
networks in section 3. The unique solvability of the model reduction problem is discussed in
section 4. The iteration for finding σ from the resistor networks is given in section 5. The
numerical results are shown in section 6. All the results are with no prior information about
the conductivity. However, we show in section 7 how to incorporate such information in the
imaging process. We end with a brief summary in section 8.

2. Formulation of the inverse problem

We consider the EIT problem in two dimensions, in a unit disc �. In principle, this extends to
other simply connected domains in R

2 that can be mapped conformally to the disc, but we do
not address this here. We let σ(x) be a positive and bounded electrical conductivity function
defined in � and denote by u(x) the electric potential. It satisfies the elliptic second-order
partial differential equation

∇ · [σ(x)∇u(x)] = 0, x ∈ �, (1)

with Dirichlet boundary conditions

u(x)|∂� = V (x), (2)

for given V ∈ H 1/2(∂�). The inverse problem is to find σ(x) from the DtN map

�DtN
σ : H 1/2(∂�) → H−1/2(∂�), �DtN

σ V = n · (σ∇u)|∂�, (3)

where n(x) is the outward unit normal at x ∈ ∂�.
In practice, we typically measure the Neumann-to-Dirichlet (NtD) map

�NtD
σ : H−1/2(∂�) → H 1/2(∂�), �NtD

σ I = u|∂�, (4)

which is smoothing and deals better with noise. This map takes boundary current fluxes

I = n · (σ∇u)|∂�, (5)

satisfying ∫
∂�

I (x) dx = 0,

to boundary voltages u|∂�. Here u(x) solves equation (1) with Neumann boundary conditions
(5), and it is defined up to an additive (grounding potential) constant.

In the analysis of this paper it is convenient to work with the DtN map. It may be obtained
from the measured NtD map using convex duality, as shown in appendix A.

3. Formulation of the model reduction problem

In the first step of our inversion method, we seek a reduced model for problems (1) and (2)
that reproduces discrete measurements of the DtN map. We consider a particular class of
measurements described in section 3.1. The reduced model is a resistor network that arises in
a five point stencil discretization of equation (1), on a grid that is to be computed as part of
the problem. This is shown in section 3.2.
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Figure 1. Mn

(
�DtN

σ

)
can be interpreted as measurements taken with electrodes at the boundary.

3.1. The measured DtN map

We begin the formulation of the model reduction problem with the definition of the discrete
measurements of the DtN map that are to be reproduced by the reduced model. In principle,
we could work with pointwise measurements of �DtN

σ , as is done in [19, 20, 33]. Here we
consider a more general class of measurement operators, which allow for lumping of the
data at a few n boundary points. This can be useful in practice for filtering out uncorrelated
instrument noise.

Definition 1 (Discrete measurements of the DtN map). Let ϕ1, . . . , ϕn be a set of n nonnegative
functions in H 1/2(∂�), with disjoint supports and numbered in circular order around the
boundary. They are normalized by∫

∂�

ϕi(x) dx = 1, i = 1, 2, . . . , n. (6)

We define the n × n discrete measurement operator (matrix) Mn

(
�DtN

σ

)
with entries

(
Mn

(
�DtN

σ

))
i,j

=

⎧⎪⎪⎨⎪⎪⎩
〈
ϕi,�

DtN
σ ϕj

〉
if i �= j,

−
n∑

p=1,p �=i

〈
ϕi,�

DtN
σ ϕp

〉
otherwise,

(7)

where 〈·, ·〉 is the H 1/2(∂�),H−1/2(∂�) duality pairing. Note that Mn

(
�DtN

σ

)
is symmetric

and it satisfies the current conservation law
n∑

i=1

(
Mn

(
�DtN

σ

))
i,j

= 0, j = 1, . . . , n. (8)

Definition 1 is stated for arbitrary nonnegative functions ϕi in the trace space H 1/2(∂�).
If for example we take ϕi as indicator functions of arcs at ∂� (figure 1), the measurements
Mn

(
�DtN

σ

)
correspond to the ‘shunt electrode model’ [43], with electrodes idealized as perfect

conductors4. In this model, the potential is constant over the support of the electrodes and(
Mn

(
�DtN

σ

))
i,j

= 〈
ϕi,�

DtN
σ ϕj

〉
4 Other more accurate models such as the ‘complete electrode model’ can in principle be incorporated to the approach
presented here. From the theoretical point of view this would involve proving a consistency result analogous to
theorem 1 with a different electrode model. Once consistency is established, optimization could be used to find the
resistors fitting the data.
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is the current flowing out of electrode i, when we set the potential to ϕj at the j th electrode.
This is for i �= j . The diagonal entries are defined in (7) to satisfy the conservation of currents
law (8).

In our implementation ϕi are not indicator functions of electrodes. They are smooth
functions that we use for lumping the data at n equidistant boundary points

xi = (1, ihθ ), i = 1, 2, . . . , n, hθ = 2π

n
. (9)

The assumption is that we are given the potential and currents at many (N > n) points around
the boundary. Since in practice, the high-frequency components of the data are basically
noise, we filter them out by lumping at the n < N points (9) on ∂�. The details are given in
section 4.3. The lumping functions are obtained by translating around ∂� a smooth ϕ(x)

defined in appendix B.2

ϕi = ϕ(x − xi ), i = 1, 2, . . . , n. (10)

We observed numerically that our algorithm does not depend on the choice of the lumping
function.

Remark 1. In the remainder of the paper, we use a slight abuse of notation and let �DtN
σ

be the N × N matrix of actual measurements of the DtN map. These can be pointwise
measurements or measurements done at electrodes, using the shunt model (7). The lumping of
these measurements at the n boundary points (9) is given by the n×n matrixMn

(
�DtN

σ

)
. In this

case, a characterization analogous to theorem 1 holds when we do lumping of measurements,
as is shown in [31, B.4].

3.2. The reduced models

Our reduced models are resistor networks that are determined uniquely by the measurements
Mn

(
�DtN

σ

)
of the DtN map. We show this in section 4. Here we interpret the resistor networks

in the context of discretizing equation (1) with a five point stencil, finite volumes scheme. We
use such a scheme because it leads to critical networks (with no redundant connections) that
are uniquely determined by the measurements. The interpretation of the resistor networks
given below is used later, in section 5, to define a preconditioned Newton-type iteration for
estimating the conductivity.

3.2.1. The staggered finite volumes grids. We discretize on staggered, primary and dual
grids given by tensor products of a uniform angular grid and an adaptive, not known a priori
radial grid. We take n equidistant primary points (9) at ∂�, where we lump the measurements
in Mn

(
�DtN

σ

)
. This defines the uniform angle spacing5. The dual grid angles are the bisectors

of the primary grid angles, as shown in figure 2. The potential is discretized on the primary
grid points and the current fluxes on the dual grid edges.

We denote by ri the primary radii and by r̂i the dual ones, for i � 1. The counting of the
primary radii begins from the boundary,

0 � r�l/2�+1 < r�l/2� < · · · < r2 < r1 = 1,

where �l/2� is the smallest integer larger or equal to l/2. Similarly, the dual radii are counted
as

0 < r̂	l/2
+1 < r̂	l/2
 < · · · < r̂2 < r̂1 = 1,

5 We consider uniform angle discretizations because we assume that we have measurements all around ∂� and we are
interested in capturing the first n Fourier modes of the boundary data. In the case of partial measurements restricted
to a sector of ∂�, the grids will be nonuniform in angle. Inversion with such data is currently under investigation.
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Figure 2. Examples of the two kinds of grids used. The primary grid is in solid line and the dual
grid is in dotted line.

where 	l/2
 is the largest integer smaller or equal to l/2. The integer l corresponds to the
number of interior grid layers or, equivalently, the number of primary and dual radii that are
strictly less than 1.

We denote in short the grid by G(l, n). The first primary and dual radii in it coincide
(r1 = r̂1 = 1), in order to compute both the potential and the current flux at ∂�. The type of
the next layer depends on the parity of l. It is a primary one if l is odd and dual otherwise.
We illustrate our notation in figure 2, where we show two grids with n = 6 primary boundary
points. In the left picture we have l = 5 layers, corresponding to the primary and dual radii
0 � r4 < r̂3 < r3 < r̂2 < r2 < 1. We do not count r1 and r̂1 because they are fixed
at the boundary. In the right picture in figure 2 we have l = 6 layers, corresponding to
0 � r4 < r̂4 < r3 < r̂3 < r2 < r̂2 < 1.

3.2.2. The finite volumes scheme. We integrate equation (1) over the dual cells, and then
use the divergence theorem to derive the balance of fluxes through the dual cell boundaries.
These fluxes are approximated with finite differences, and the discrete equations become like
Kirchhoff’s node law for a resistor network with topology given by the primary grid. For
details of the discretization scheme see [31, section 3.1.2].

Let ui,j be the approximation of potential u at the primary grid nodes (ri, jhθ ), for
1 � i � �l/2� + 1 and 1 � j � n. Let also Ij be the approximation of the current density
I = σn · ∇u|∂� at boundary point (1, jhθ ), for 1 � j � n. We now write the discretization
scheme, using the resistors

Ri,j =
∫ ri

ri+1

dr

(
r

∫ (j+1/2)hθ

(j−1/2)hθ

dθ σ (r, θ)

)−1

= 1

σ̂i,j

1

hθ

∫ ri

ri+1

dr

r
= ln(ri/ri+1)

σ̂i,j hθ

, (11)

for i = 1, . . . , �l/2� , j = 1, . . . , n and

R̂i,j+1/2 =
∫ (j+1)hθ

jhθ

dθ

(∫ r̂i−1

r̂i

drσ (r, θ)

r

)−1

≈ h2
θ

(∫ r̂i−1

r̂i

dr

∫ (j+1)hθ

jhθ

dθ
σ (r, θ)

r

)−1

= 1

σi,j+1/2
hθ

(∫ r̂i−1

r̂i

dr

r

)−1

= hθ

σi,j+1/2 ln(̂ri−1/̂ri)
, (12)

6
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for i = 2, . . . , 	l/2
 + 1, j = 1, . . . , n. The coefficients σ̂i,j and σi,j+1/2 are averages of the
conductivity on the grid.

At the dual cells containing primary grid nodes (ri, jhθ ) that are neither on the boundary
nor at the origin (i.e., for 2 � i � �l/2� and 1 � j � n), we have

ui−1,j − ui,j

Ri−1,j

+
ui+1,j − ui,j

Ri,j

+
ui,j+1 − ui,j

R̂i,j+1/2
+

ui,j−1 − ui,j

R̂i,j−1/2
= 0, (13)

where the operations (+) and (−) on the angular index j are to be understood modulo n. The
cell containing the origin is a special case, as involves only radial primary layers, and the
discretization is

n∑
j=1

u�l/2�,j − u�l/2�+1,j

R�l/2�,j
= 0. (14)

It remains to define the stencil for the boundary nodes. When l is odd (see figure 2 on the
left), the stencil is

u2,j − u1,j

R1,j

+ Ij = 0, for 1 � j � n. (15)

Otherwise, we take (see figure 2 on the right)
u2,j − u1,j

R1,j

+
u1,j+1 − u1,j

R̂1,j+1/2
+

u1,j−1 − u1,j

R̂1,j−1/2
+ Ij = 0, for 1 � j � n. (16)

3.2.3. The resistor network. The discrete equations (13)–(16) are Kirchhoff’s node law for
a circular resistor network. We denote this network by C(l, n). Its topology is determined by
the primary grid in G(l, n) and the edges have resistors Ri,j , for i = 1, . . . , �l/2� and R̂i,j+1/2,
for i = 2, . . . , 	l/2
 + 1 and j = 1, . . . , n.

Problem 1 (Model reduction). Determine the resistor network C(l, n) that has as DtN map
the measurements Mn

(
�DtN

σ

)
.

We prove in section 4 that problem 1 can be solved uniquely, if the number n of boundary
points is odd and the number of layers is l = (n − 1)/2. Note that under this restriction
we have n(n − 1)/2 resistors in C(l, n) and that this is precisely the number of independent
entries in the matrix of measurements Mn

(
�DtN

σ

)
. Because Mn

(
�DtN

σ

)
is symmetric and its

rows sum to zero, it is completely determined by the n(n − 1)/2 entries in its strictly upper
triangular part. The resulting network C(l, n) is our reduced model that matches exactly the
data.

3.3. The adaptive grid

According to equations (11) and (12), the resistors in C(l, n) are determined by averages of
σ(r, θ) in the grid cells. This suggests that if we knew σ(r, θ) we could find the grid G(l, n)

from the resistors. However, we restrict G(l, n) to the class of tensor product grids and such a
computation may not be possible for general two-dimensional σ(r, θ). In layered media with
conductivity σ(r), the network is rotation invariant

Ri,j = 1

hθ

∫ ri

ri+1

dt

tσ (t)
= Ri, i = 1, . . . , �l/2� ,

R̂i,j+1/2 = hθ

(∫ r̂i−1

r̂i

dtσ (t)

t

)−1

= R̂i , i = 2, . . . , 	l/2
 + 1.

(17)
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Figure 3. Grids for σ 0 = 1 (primary grid is in solid line and the dual grid is in dotted line).

Then, the computation of the primary and dual radii from the resistors is straightforward.
For two-dimensional conductivities σ(r, θ) the resistors depend on the angular index j , for
j = 1, . . . , n, and there is no guarantee that we can find an exact tensor product grid from the
resistors. Nevertheless, the network C(l, n) is unambiguously defined by the data Mn

(
�DtN

σ

)
for any σ(r, θ), and we can formulate a nonlinear optimization problem for estimating σ(r, θ),
using an approximate grid. The key point of this paper is that for a class of sufficiently smooth
or piecewise smooth σ(r, θ), we can use the grid G0(l, n) corresponding to the uniform
conductivity σ 0 = 1.

For σ = σ 0 = 1, the resistors are

R0
i,j = 1

hθ

∫ r0
i

r0
i+1

dt

t
= ln

(
r0
i /r0

i+1

)
hθ

= R0
i , i = 1, . . . , �l/2� ,

R̂0
i,j+1/2 = hθ

(∫ r̂0
i−1

r̂0
i

dt

t

)−1

= hθ

ln
(̂
r0
i−1

/̂
r0
i

) = R̂0
i , i = 2, . . . , 	l/2
 + 1,

(18)

for j = 1, . . . , n, n odd and l = (n − 1)/2. We denote the grid by G0(l, n) and obtain from
(18) its primary and dual radii

r0
1 = r̂0

1 = 1,

r0
i+1 = exp

(−hθ

(
R0

1 + · · · + R0
i

))
, for i = 1, . . . , �l/2�,

r̂0
i = exp

(−hθ

((
R̂0

2

)−1
+ · · · +

(
R̂0

i

)−1))
, for i = 2, . . . , 	l/2
 + 1.

(19)

We plot G0(l, n) in figure 3, for n = 11 and n = 15. We observe the expected interlacing of
the primary and dual grids, the refinement near the boundary and the coarsening inside the
domain. Note that although the resistor network C(l, n) has the innermost branches electrically
connected, in the grid, the last layer r�l/2�+1 is not at the origin. We have r�l/2�+1 → 0 as l → ∞
[9, 10], but we do not approach this limit here, because the size of the grid is limited severely
in the presence of noise, as explained in section 4.3. For finite l, we get r�l/2�+1 > 0, as if we
truncated the domain close to the origin, due to a finite depth penetration of electric currents.
We call G0(l, n) an ‘optimal grid’ because, by construction, the discrete solution computed on

it matches exactly the entries in Mn

(
�DtN

σ 0

)
. Naturally, in the case of a variable conductivity

σ(r, θ), the discretization on G0(l, n) does not give an exact match of the data Mn

(
�DtN

σ

)
.

However, the discretization error is small [9], at least for a class of sufficiently smooth, or

8
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piecewise smooth conductivities. This interpolation property of the grid G0(l, n) plays a key
role in our inversion algorithm, as explained in section 5.

4. The inverse problem for the resistor network

In this section we study problem 1. We prove its solvability in section 4.1 and we explain in
section 4.2 how to find the network from the data Mn

(
�DtN

σ

)
. We end in section 4.3 with a

discussion of network size limitations due to noisy measurements.

4.1. Solvability of the model reduction problem

To prove the solvability of the model reduction problem, we must establish two things: (1)
the consistency of the measurements with the resistor network model and (2) that C(l, n) is
determined uniquely by the measurements. We begin with the consistency.

Theorem 1. For a smooth enough, positive and bounded σ , the measurement matrix
Mn

(
�DtN

σ

)
is the DtN map of a well-connected planar resistor network.

Let xi , i = 1, . . . , n be the boundary nodes of a planar network, embedded on a circle
and consecutively numbered there. The DtN map of the network is an n × n matrix, with the
(i, j) entry given by the current flowing out of node xi , when the boundary potential is one at
xj and zero elsewhere. The network is called well connected if any two sets of k boundary
nodes, belonging to disjoint arcs of the circle, are connected by k disjoint paths in the network
[17, 20].

The proof of theorem 1 is in appendix C. It is based on two results: (1) theorem 3, which is
a novel characterization of the DtN map of planar regions, equivalent to that of Ingerman and
Morrow [32], but involving the measurement functions (7) instead of pointwise measurements
and (2) the complete characterization of the DtN maps of well-connected, circular resistor
networks from [18, 20].

The following lemma from [18, 20] defines the class of networks that can be uniquely
recovered from their DtN map.

Lemma 1. A resistor network is said to be recoverable when its resistors can be uniquely
determined from the DtN map. A network is recoverable if and only if it is critical. This means
that the network is well connected and the removal of any edge makes the network not well
connected.

The unique solvability of the model reduction problem is given by the next theorem.

Theorem 2. The networks C(l, n) are uniquely recoverable from their DtN map if and only if
n is odd and l = (n − 1)/2.

Proof. That C ((n − 1)/2, n) is critical and therefore recoverable for n = odd follows from
proposition 2.3 and corollary 9.4 in [21]. Let us show then that there is no critical network
C(l, n) for n = even.

A critical network with n boundary nodes has n(n−1)/2 edges (see [20, section 5]). This
is the same as the number of independent entries in the DtN map. If n is even, the number of
edges in a critical network with n boundary nodes is n(n − 1)/2 ≡ n/2 mod n. However, the
number of edges in C(l, n) is nl ≡ 0 mod n. Therefore C(l, n) is not a critical network when
n is even. �

9
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Figure 4. Critical networks for an even number n of boundary points. The construction is slightly
different depending on n mod 4 (taken from [21, pp 20–24]).

It is possible to construct critical networks with an even number of boundary nodes (see
figure 4), but their topology is fundamentally different from that of C(l, n).

4.2. Finding the resistor network from the measurements

To recover the critical resistor network C(l, n) from the data, we use the algorithm introduced
by Curtis et al [19]. This determines the resistors layer by layer, starting from the boundary
of the network. This algorithm is fast and simple to implement, but it becomes unstable for
large networks. We observed a typical loss of precision in the resistors of a factor of ten,
when going from one layer to the next. In the presence of noise, we regularize the problem
by keeping the network small, as we see next. This is what allows us to use the layer peeling
Curtis et al [19] algorithm.

Remark 2. An alternative way of finding the network C(l, n) from the measurements
Mn

(
�DtN

σ

)
is to solve a nonlinear, least squares optimization problem. This has been done

recently in [11]. It is observed that the optimization algorithm produces the same results as
the layer peeling one, for small n. For larger n, the layer peeling algorithm breaks down, as
produces negative resistors. The optimization method is slightly more robust but it breaks
down as well, as n increases. The threshold n over which these methods become unstable
depends on the noise level.

4.3. The resistor network for noisy measurements

We regularize problem 1 by restricting the network C(l, n) size with a criterion based on the
precision of the measurements. This can be done in at least two ways.

Method 1. Consider a sequence of problems, for nk = 2k + 1 boundary points at which we
lump the data into the matrix Mnk

(
�DtN

σ

)
, using the lumping functions (10). Here k � 1 and

we note that the smaller the k is, the more smoothing or noise filtering we do on the data. For
each nk we determine the resistor network C ((nk − 1)/2, nk) from Mnk

(
�DtN

σ

)
, as explained

in section 4.2. We define the threshold n as the largest nk for which we obtain a network with

10
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positive resistors and we keep the corresponding network C ((n − 1)/2, n) as our reduced
model.

Method 2. An alternative way of estimating the threshold n is given by the distinguishability
ideas of Isaacson [34] (see also [16]). This involves the singular value decomposition of
�NtD

σ − �NtD
σ 0 . With noisy measurements, only a few, n singular values are above the noise

level δ and we could choose the network C((n − 1)/2, n) with n boundary nodes. See [31,
section 3.2.5] for more details.

5. Estimating the conductivity from the resistor network

Once we have determined the resistor network, the data fitting is done. Now we wish to
estimate σ from the network. We do this by solving a nonlinear minimization problem
introduced in section 5.1, using an iterative, Gauss–Newton method. We start the iteration
with a good initial guess obtained from the network, as explained in section 5.3. The details
of the iterative estimation of σ are given in section 5.4.

5.1. Outline of the method

To avoid confusion, let us denote here by σ	 the true and unknown conductivity function. We
propose to estimate it by the minimizer of the objective function

O(σ ) = 1
2‖
n(σ ) − 
n(σ

	)‖2
2. (20)

The minimization is done over the set S of positive and bounded conductivities and 
n is the
composition of two maps


n(σ ) = Qn ◦ Fn(σ ). (21)

Here Fn is the forward map Fn : S → Dn, which takes σ ∈ S and maps it to

Fn(σ ) = Mn

(
�DtN

σ

) ∈ Dn, (22)

the predicted measurements belonging to the set Dn of DtN maps of well-connected, circular
networks (see theorem 1 and definition 3). The map Qn in (21) takes these measurements to
a set Sn ⊂ R

n(n−1)/2 of parametrized conductivities. We define it using the resistor network
(reduced model) as follows.

Definition 2 (MappingQn). Let A be a matrix belonging to the setDn. Find the critical circular
resistor network C(l, n) with resistors Ri,j , R̂i,j+1/2 and DtN map A. Here l = (n − 1)/2
and n is odd. Similarly find the resistor network C0(l, n) with DtN map Mn

(
�DtN

σ 0

)
for the

reference, uniform conductivity σ 0 ≡ 1. This gives resistors R0
i , R̂

0
i that can be regarded as

constants. The map Qn : Dn → Sn takes the data matrix A to the parametrized conductivities

σ̂i,j = R0
i

Ri,j

i = 1, . . . , �l/2� , j = 1, . . . , n,

σi,j+1/2 = R̂0
i

R̂i,j+1/2
i = 2, . . . , 	l/2
 + 1, j = 1, . . . , n.

(23)

We note that our inversion method is quite different from the typical output least squares
formulation, which minimizes over σ the misfit between the measured data and the prediction
of the forward map. Such a minimization is typically not well conditioned and it requires

11
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careful regularization. Even then, convergence may be slow and the computational cost is high
in comparison with that of our method. We illustrate this with numerical results in section 6.

The map Qn is used in the objective function (20) as a preconditioner of the forward map.
This is the key point of our algorithm as we discuss next.

5.2. Preconditioning of the forward map using the adaptive grid G0(l, n)

Definition 2 of the map Qn(σ ) involves the ratio of two kinds of resistors: (1) the resistors
Rij and R̂i,j+1/2 in the network C(l, n) for σ and (2) the resistors R0

i and R̂0
i in the network

C0(l, n) for the reference conductivity σ 0 = 1, given by (18) in terms of the primary and dual
radii in the adaptive grid G0(l, n). As explained in section 3.2.3 (see equations (11), (12)), Rij

and R̂i,j+1/2 can be interpreted as averages of σ on cells of an appropriate discretization grid.
The key point in definition 1 is that G0(l, n) is such a grid.

Now, imagine that we took the approximate averages of σ returned by Qn and interpolated
them on the grid G0(l, n), with some interpolation operator P : Sn → S. We would get that
for smooth enough conductivities

P ◦ Qn

(
Mn

(
�DtN

σ

)) ≈ σ, (24)

and therefore that P ◦ Qn would be an approximate inverse of the forward map

Fn(σ ) = Mn

(
�DtN

σ

)
.

Put otherwise, P ◦ 
n would be close to an identity for such σ and the minimization of (20)
would become trivial, because of the preconditioning role played by Qn.

We illustrate all these points with numerical simulations in the following section. But
before that, let us discuss some theoretical results.

5.2.1. Necessary condition for convergence. To prove convergence of our method, we would
need to show that it is both necessary and sufficient that the inversion be done on the reference
grid G0(l, n). Here we give the necessary condition. Sufficiency remains a conjecture at this
point but it was established in [10] for a closely related problem in layered media, where we
have different (spectral) measurements of the DtN map.

Consider a compact set S of sufficiently smooth conductivity functions and let σ 0 ∈ S.
Consider also an arbitrary tensor product grid G(l, n) and define εl > 0 as the smallest real
number so that

max
σ∈S

max
1�j�n

hθ

∣∣∣∣∣∣
∫ 1

ri+1

dr

(
r

∫ (j+1/2)hθ

(j−1/2)hθ

dθ σ (r, θ)

)−1

−
i∑

p=1

Rp,j

∣∣∣∣∣∣ � εl, i = 1, . . . , �l/2�

max
σ∈S

max
1�j�n

∣∣∣∣∣∣ 1

hθ

∫ 1

r̂i

dr

∫ (j+1)hθ

jhθ

dθ
σ (r, θ)

r
−

i∑
p=2

hθ

R̂i,j+1/2

∣∣∣∣∣∣ � εl, i = 2, . . . , 	l/2
 + 1.

Here εl is necessarily bounded, because σ(r, θ) is bounded and strictly positive. The resistors
are defined for each σ ∈ S, by solving problem 1 with data Mn

(
�DtN

σ

)
.

Now, suppose that there exist tensor product grids that are nearly optimal for all σ ∈ S, in
the asymptotic limit l → ∞. The following proposition shows that they are necessarily close
to the optimal grid for the reference conductivity σ 0.

Proposition 1. If there exist grids G(l, n) so that εl → 0 as l → ∞, then they must be
asymptotically close to the optimal grid G0(l, n).

12
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Proof. The proof is trivial. Since σ 0 ∈ S and σ 0 = 1, we obtain

max
σ∈S

max
1�j�n

hθ

∣∣∣∣∣∣
∫ 1

ri+1

dr

(
r

∫ (j+1/2)hθ

(j−1/2)hθ

dθ σ (r, θ)

)−1

−
i∑

p=1

Rp,j

∣∣∣∣∣∣
� max

1�j�n
hθ

∣∣∣∣∣∣
∫ 1

ri+1

dr

(
r

∫ (j+1/2)hθ

(j−1/2)hθ

dθ σ 0(r, θ)

)−1

−
i∑

p=1

R0
p,j

∣∣∣∣∣∣ = ∣∣ln ri+1 − ln r0
i+1

∣∣.
Similarly,

max
σ∈S

max
1�j�n

∣∣∣∣∣∣ 1

hθ

∫ 1

r̂i

dr

∫ (j+1)hθ

jhθ

dθ
σ (r, θ)

r
−

i∑
p=2

hθ

R̂i,j+1/2

∣∣∣∣∣∣ �
∣∣ln r̂i − ln r̂0

i

∣∣.
Now by assumption∣∣ln ri+1 − ln r0

i+1

∣∣ � εl, i = 1, . . . �l/2�∣∣ln r̂i − ln r̂0
i

∣∣ � εl, i = 2, . . . 	l/2
 + 1

and εl → 0 as l → ∞. Thus grids G(l, n) must be asymptotically close to G0(l, n). �

5.3. Using the grid G0(l, n) to obtain the initial guess for the Gauss–Newton iteration

We begin the iteration for minimizing the objective function (20) with the initial guess σ0(x)

given by the linear interpolation of the discrete parameters returned by Qn(Mn

(
�DtN

σ	

))
.

Here Mn

(
�DtN

σ	

)
is our data, corresponding to the true and unknown conductivity σ 	. The

interpolation is done on the homogeneous grid G0(l, n), as follows: we interpret σ̂i,j and
σi,j+1/2 as point values at

(̂
r0
i , jhθ

)
and (r0

i , (j + 1/2)hθ ) respectively and then, we interpolate
linearly using a Delaunay triangulation. Outside the convex hull of the evaluation points, we
extrapolate linearly to get values over the whole �.

Note that once we have the resistors, it is trivial to compute the initial guess. But how
close is it to the linear interpolation of the averages of the true conductivity σ 	 on the grid
G0(l, n)? If these two are close, then the grid G0(l, n) is close to optimal, for the unknown σ 	.
We demonstrate this in the following sections with numerical experiments.

5.3.1. Numerical results. We compute the initial guess from synthetic data sets for the
conductivities shown in figure 5 and defined in appendix B.1. Then, we compare the result
with the linear interpolation of the averages of σ 	 on G0(l, n),

σ̂ 	
i,j = ln

(
r0
i

/
r0
i+1

)
hθ

(∫ r0
i

r0
i+1

dt

(
t

∫ (j+1/2)hθ

(j−1/2)hθ

σ 	(t, θ) dθ

)−1
)−1

,

σ 	
i,j+1/2 = hθ

ln
(̂
r0
i−1

/̂
r0
i

)
⎛⎝∫ (j+1)hθ

jhθ

dθ

(∫ r̂0
i−1

r̂0
i

dt σ 	(t, θ)

t

)−1
⎞⎠−1

.

(25)

The comparison is done in figures 6 and 7 for noiseless measurements and on two grids:
G0(7, 15) and G0(5, 11). The results for noisy measurements are in figures 8 and 9. We
superpose the grid G0 on the plots and use the following convention: the primary grid is in
solid lines and the dual grid is in dotted lines.

The data is obtained as follows: we discretize equation (1) with finite volumes, on a grid
with 100 × 100 dual cells of uniform size and with constant conductivity over dual cells. This
gives us approximate pointwise values of the kernel of the DtN map, at 100 equally spaced
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Figure 5. Conductivities used in the numerics. See appendix B.1 for definition.

Figure 6. Left: initial guess for smooth conductivity sigX and noiseless data. Right: interpolation
of the averages of sigX on G0.

points of ∂�. Then, we use these values in (7) to get the ‘measurements’ Mn

(
�DtN

σ

)
by

lumping.
We simulate noise in the measurements by adding a multiplicative, mean zero Gaussian

noise to the approximation of the kernel of the DtN map. We give in table 1 the size of
the networks predicted by the SVD analysis of section 4.3, for different noise levels (see
method 2 in section 4.3). This heuristic gives only approximate network sizes that do not
always give positive resistors with the layer peeling algorithm that we used (see section 4.2).
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Figure 7. Left: initial guess for the piecewise constant conductivity phantom1 and noiseless data.
Right: interpolation of the averages of phantom1 on G0.

Table 1. Network sizes predicted by the SVD analysis of the NtD map.

0.1% 0.5% 1% 5%

sigX C(7, 15) C(4, 9) C(3, 7) C(1, 3)

phantom1 C(12, 25) C(8, 17) C(7, 15) C(3, 7)

This is why we preferred to find empirically the largest network that gives positive resistors
for several realizations of the noise (see method 1 in section 4.3).

5.3.2. Other studies of the interpolation property of the gridG0(l, n). The results in figures 6–
9 show that G0(l, n) is close to optimal for our test conductivities. Further evidence of this
fact can be obtained from the sensitivity analysis of the map 
n.

Let δσ be a perturbation of σ 0 = 1. The induced perturbation of 
n is


n(σ
0 + δσ ) = 
n(σ

0) + D
n[σ 0]δσ + · · · , (26)

where D
n[σ 0] is the formal Jacobian of 
n at σ 0. If it is true that we can make the
approximations

σ̂i,j = R0
i

Ri,j

≈ ln
(
r0
i

/
r0
i+1

)
hθ

(∫ r0
i

r0
i+1

dt

(
t

∫ (j+1/2)hθ

(j−1/2)hθ

σ (t, θ) dθ

)−1
)−1

,

σi,j+1/2 = R̂0
i

R̂i,j+1/2
≈ hθ

ln
(̂
r0
i−1

/̂
r0
i

)
⎛⎝∫ (j+1)hθ

jhθ

dθ

(∫ r̂0
i−1

r̂0
i

dt
σ (t, θ)

t

)−1
⎞⎠−1

,

(27)
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Figure 8. Left: initial guess for the piecewise constant conductivity phantom1 and noisy data.
Right: interpolation of the averages of phantom1 on G0.

for σ = σ 0 + δσ , then the sensitivity functions of 
n(σ ) would be close to the indicator
functions of the cells in G0. We plot a few sensitivity functions in figure 10 and observe that
this is indeed the case, as they are all nicely localized around the grid cells.

5.4. The Gauss–Newton iteration

Given measurements Mn

(
�DtN

σ	

)
, we use the Gauss–Newton method to find σ that minimizes

(20). Convergence of Gauss–Newton for EIT is considered in [26]. The analysis for our
method is similar, since Qn is an invertible mapping, and so is its differential [19]. From
results such as [23, section 4.4], we expect local convergence of the method to σ that fits the
measurements (assuming that D
n[σ ] has full row rank).

Now the conductivity must remain positive and we enforce this constraint by changing
variables κ = ln(σ ). Because we wish to compare quantities that are as similar as possible to
our new variable κ , we modify slightly the objective function, by taking the logarithm of 
n.
This takes us to the unconstrained minimization,

min
κ

1
2‖
̃n(κ) − 
̃n(κ

	)‖2
2, (28)

where 
̃n ≡ ln ◦
n ◦ exp and κ	 = ln(σ 	). We compute sensitivity functions for the mapping

̃n, with respect to perturbations of the log-conductivity κ , and obtain the formal expansion,


̃n(κ + δκ) = 
̃n(κ) + D
̃n[κ]δκ + · · · . (29)

Here D
̃n[κ] is the Jacobian of 
̃n evaluated at κ .
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Figure 9. Left: initial guess for the smooth conductivity sigX and noisy data. Right: interpolation
of averages of sigX on G0.

The Gauss–Newton method consists of finding the new iterate κj+1, from the previous
iterate κj , by

κj+1 = κj + (D
̃n[κj ])†(
̃n(κ
	) − 
̃n(κj )), (30)

where (D
̃n[κj ])† is the pseudo-inverse6 of D
̃n[κj ]. This iteration amounts to finding the
update δκ = κj+1 − κj as the minimal L2 norm solution of the normal equations,

D
̃∗
n[κj ]D
̃n[κj ]δκ = D
̃∗

n[κj ](
̃n(κ
	) − 
̃n(κj )),

where D
̃∗
n[κj ] is the adjoint of D
̃n[κj ]. In other words, we find the orthogonal projection

of the update δκ = κj+1 − κj onto the span of the sensitivity functions. Implicitly this is a
form of regularization.

We start the iterations with the initial guess obtained as in section 5.3. That this initial
guess is close to σ 	 is helpful in the convergence, as expected. The algorithm is summarized
below and numerical experiments are shown in section 6.

Algorithm 1. Inputs: Measurements Mn

(
�DtN

σ	

)
(definition 1) for n odd and some tolerance

ε for stopping the iteration. Outputs: An estimate of the conductivity.

(1) Compute κ0 = ln(σ0), where σ0 is obtained as in section 5.3 by interpolating the output
of Qn applied to Mn

(
�DtN

σ	

)
, on the homogeneous conductivity grid.

(2) For j = 0, 1, . . . do,

6 The pseudo-inverse or Moore–Penrose generalized inverse can be defined in the context of the Hilbert spaces, see
e.g. [29, section 2].
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^ ^

Figure 10. Sensitivity of 
n(σ ) to perturbations of σ . The resistor network is C(6, 13) and
the reference conductivity is σ 0 ≡ 1. Since there is a 2π/13 rotational symmetry, we plot only
sensitivities for σi,1/2 and σ̂i,0. All the sensitivity functions integrate to one. We highlight the cells
where we average.

(a) κj+1 ← κj + (D
̃n[κj ])†(
̃n(κ
	) − 
̃n(κj ))

(b) If ‖
̃n(κj+1) − 
̃n(κ
	)‖2 < ε, stop.

(3) Estimate σ 	 by exp(κj+1).

6. Numerical results

6.1. Implementation of the Gauss–Newton algorithm

In our numerical experiments, n is much smaller than the number of parameters used for
discretizing κ . Thus, the pseudo-inverse in the Gauss–Newton iteration (30) can be computed
efficiently, with the identity

(D
̃n[κj ])† = D
̃∗
n[κj ](D
̃n[κj ]D
̃∗

n[κj ])†. (31)

The Jacobian D
̃n[κj ] was full-rank to working precision and well conditioned, for all the
σ 	 that we tried. This made the small matrix D
̃n[κj ]D
̃∗

n[κj ] invertible and, therefore, the
pseudo-inverse in (31) could be replaced by solving a small linear system.

In general, one uses globalization strategies, such as line search or trust region, to guarantee
progress at each iteration of algorithm 1, by essentially limiting the size of the update of κ (see
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Figure 11. Convergence history for algorithm 1 on the conductivity sigX, with 1% noise.
The reported residual is the misfit ‖
̃n(ln(σ )) − 
̃n(ln(σ 	))‖2

2. (a) Initial guess σ0, residual =
1.03 × 10−1; (b) iterate σ1, residual = 1.00 × 10−4; (c) iterate σ2, residual = 6.62 × 10−11;
(d) iterate σ3, residual = 1.70 × 10−23.

e.g. [41, chapters 3, 4]). We did not need such strategies, probably because the initial iterate
(see section 5.3) was always close enough to σ 	.

6.2. The results

We give in figures 11 and 12 two typical images obtained with algorithm 1, on data collected
with 100 ‘electrodes’ tainted with 1% multiplicative, mean zero, Gaussian noise. As we can
see from the results, numerical convergence occurs in only a few iterations, with the largest
update done in the first iteration. For all practical purposes, this first iterate is already a good
image. Note that the conductivity values are better resolved after the iteration than in the
initial guess σ0.

6.3. A nonlinear preconditioning of the problem?

If we follow the traditional approach of minimizing directly the misfit in the measurements
with the Gauss–Newton method, we obtain an iteration with the Jacobian DFn[σ ] of the
forward map Fn(σ ) = Mn

(
�DtN

σ

)
, instead of D
n(σ) = DQn[Fn(σ )]DFn[σ ]. We compare

the condition numbers (ratio of largest to smallest singular value) of these two Jacobians in
table 2. Note that in all the cases we considered, the matrices approximating these quantities
were full-rank, so that when using identity (31), the condition number of the systems we
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Figure 12. Convergence history for algorithm 1 on the conductivity phantom1, with 1% noise.
The reported residual is the misfit ‖
̃n(ln(σ )) − 
̃n(ln(σ 	))‖2

2. (a) Initial guess σ0, residual =
7.61 × 10−1; (b) iterate σ1, residual = 3.10 × 10−3; (c) iterate σ2, residual = 2.29 × 10−8;
(d) iterate σ3, residual = 7.73 × 10−18.

Table 2. Condition numbers of D
n [σ ] and DFn[σ ], for different conductivities.

σ ≡ 1 σ ≡ sigX σ ≡ phantom1

n DFn[σ ] D
n[σ ] DFn[σ ] D
n[σ ] DFn[σ ] D
n[σ ]

9 5.55×102 4.81×100 5.72×102 4.80×100 1.24×103 4.48×100

11 5.14×103 6.01×100 5.27×103 5.92×100 1.13×104 5.67×100

13 4.88×104 7.89×100 4.95×104 7.78×100 9.19×104 7.56×100

need to solve to compute the Gauss–Newton update, is actually the square of what appears in
table 2.

We observe that the condition numbers of D
n[σ ] are orders of magnitude smaller than
those of DFn[σ ], and that they do not change considerably with n or the conductivity. This is
numerical evidence that the mapping Qn (see definition 2) preconditions the problem.

7. Using a priori information about the conductivity

If a priori information about σ 	 is available, it should be taken into account in the imaging
process. Here we show how to incorporate a certain type of prior information, which says that
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σ 	 is ‘blocky’, or piecewise constant. We do this using a penalty function J (κ) = TV(κ) on
the total variation semi-norm of the log-conductivity.

The Gauss–Newton iteration of section 6 uses no prior information and it converges very
fast. In fact, we saw that after the first iteration, the corrections were negligible and the image
remained virtually unchanged. Therefore, for all practical purposes it is enough to keep the
first Gauss–Newton iterate. This is the same as finding the minimal L2(�) norm solution κ̃ of
the linearized problem

D
̃n[κ0](κ̃ − κ0) = 
̃n(κ
	) − 
̃n(κ0), (32)

with respect to the initial guess σ0 defined in section 5.3. The solution κ̃ gives a perfect data fit,
by design, to the linearized problem. Now, we wish to improve it, using the prior information.

Note that κ = κ̃ + δκ is also a solution of (32), provided that δκ ∈ null(D
̃n[κ0]). This
means that we can add a priori information by simply looking for the correction δκ in the
orthogonal complement of the sensitivity functions (i.e. null(D
̃n[κ0])) that minimizes the
penalty functional J (κ). This gives the constrained optimization problem,

min
κ

J (κ)

subject to D
̃n[κ0](κ − κ̃) = 0.
(33)

The procedure is summarized as follows.

Algorithm 2. Inputs: measurements Mn

(
�DtN

σ	

)
for n odd and the penalty functional J (κ)

encoding the a priori information. Outputs: an estimate of the conductivity.

(1) Compute κ0 = ln(σ0), where σ0 is obtained as in section 5.3 by interpolating the output
of Qn applied to Mn

(
�DtN

σ	

)
, on the homogeneous conductivity grid.

(2) Carry out the first iteration of algorithm 1,

κ̃ ← κ0 + (D
̃n[κ0])†(
̃n(κ
	) − 
̃n(κ0)).

(3) Estimate κ	 = ln(σ 	) by the minimizer of ((33))

Imaging with a total variation penalty was done before, for example by Dobson and
Santosa [27]. However, this was coupled with traditional output least squares, where σ

was sought directly as a minimizer of the data misfit. In such cases, the constraints are
the sensitivities of the data to perturbations of σ . The sensitivity matrices are typically ill-
conditioned, so an SVD truncation is required [27]. In our approach, the sensitivity matrix
D
̃n[κ0] has a small condition number, as explained in section 5.4 and optimization (33) is
easier to do. This is especially because we have small resistor networks and, therefore, few
constraints.

7.1. Numerical experiments with a priori information

We implemented algorithm 1 with the total variation penalty function

JTV(κ) = TV(κ), where TV(κ) =
∫

�

‖∇κ(x)‖2 dx.

7.1.1. Implementation strategies. To solve problem (33) we resort to an SQP (sequential
quadratic programming) method where the KKT (Karush–Kuhn–Tucker) systems are solved
using the range space approach [41, chapter 18]. This method is well suited for our optimization
problem, because we have only a few linear constraints, and the Hessian of the Lagrangian
of (33) is readily available, positive definite and sparse. For the size of the problems we

21



Inverse Problems 24 (2008) 035013 L Borcea et al

Figure 13. Typical convergence history of the SQP algorithm for minimizing (33) with a TV
penalty functional. (a) Penalty functional; (b) norm of gradient of the Lagrangian.

considered (up to 104 variables for σ ), sparse direct methods (such as UMFPACK in Matlab)
are efficient in solving the systems involving the Hessian that need to be computed at each
iteration of the optimization algorithm.

To make the convergence global, we control the size of the step with a line search strategy
on an 1-type merit function [41, p 544]. Moreover, to minimize the non-differentiable
functional JTV we use the standard trick of approximating the absolute value by a smooth
functional,

TV(κ) ≈
∫

�

√
‖∇κ(x)‖2

2 + β2 dx,

with β = 0.1. We also use the quasi-Newton approximation of the Hessian of the TV
functional (i.e. neglecting the part of the Hessian containing second derivatives), that is further
regularized by adding 10−2 to the diagonal entries. This additional regularization also controls
the step length.

The resulting numerical method for minimizing (33), with the JTV penalty function, is
very similar to the so-called lagged diffusivity method [47, p 136], modified to take into
account the constraints.

7.1.2. Noiseless reconstructions. We stopped the iterations when the norm of the gradient of
the Lagrangian was reduced by a factor of 5 × 10−2, which in all our test cases occurred in no
more than 15 SQP iterations. As seen in figure 13, a typical convergence justifies our stopping
criterion: much of the progress in reducing the objective function is done at the beginning, so
it is best to terminate the iterations early.

We present in figure 14 images of σ on a uniform grid with 50 × 50 cells. The noiseless
data are computed numerically as explained in section 5.3.1.

7.2. Comparison of our method to output least squares

We compare our approach to traditional output least squares (LS) in figure 15. Both methods
are given the same noisy data collected at 50 ‘electrodes’.
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Figure 14. Images from noiseless data, using algorithm 2, with TV penalty functional and for
conductivity phantom1. We show the results given by two resistor networks.

Figure 15. Comparison with traditional output least squares. The same color scale is used for all
four reconstructions.

To be more specific, let N be the number of electrodes and MN

(
�DtN

σ

)
the measured DtN

map. In the LS method, we seek the log-conductivity κ	 minimizing,

min
κ

1
2

∥∥MN

(
�DtN

exp(κ)

)− MN

(
�DtN

σ	

)∥∥2
F

+ αTV(κ), (34)
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where ‖·‖F is the Frobenius norm for matrices. We determine empirically the regularization
parameter α by minimizing (34) for different values of α.

We minimize (34) using the quasi-Newton approximation of the Hessian of the TV
penalty and we regularize further the Hessian by adding 10−3 to the diagonal entries. We use
an Armijo line search [41, chapter 3] as a globalization strategy of the iterations. The stopping
criterion was to achieve a relative reduction of the norm of the gradient by at least 10−2. The
conductivity is discretized on the same 50 × 50 cells of uniform size. This makes the Hessian
of the objective function in (34) a 2501 × 2501 dense matrix that is formed explicitly in our
code.

The times included in figures 14 and 15 correspond to wall-clock times for obtaining
reconstructions in Matlab r2006a on a Pentium 4 Linux PC with 2 GB of RAM. We remark
that algorithm 1 is roughly five times faster than the traditional LS approach. In our LS
implementation, close to 50% of the time is spent forming the Hessian and solving for
the Newton updates, while the other 50% corresponds to solving the forward problem and
computing derivatives. Thus, LS would be more expensive than our approach even if we could
find a more efficient way of computing the updates (e.g. with a Krylov-based iterative solver).
The computational advantage of our approach is that we do not need to solve at each iteration
the forward problem and compute derivatives.

Remark 3. We show in figure 15 the LS images on the same color scale as that for our
method, for noise levels 1% and 5%. These reconstructions would be comparable to those in
e.g. [12, 13, 15, 27, 37] if each image had its own color scale ranging from its minimum to
maximum values. However since we are using here a color scale that is close to the range of
the true σ 	, the LS reconstructions appear worse than those in [12, 13, 15, 27, 37].

8. Summary

We introduced a novel inversion approach for electrical impedance tomography in two
dimensions. It consists of two key steps: in the first step, we look for a reduced model
which fits the boundary measurements. This is a well-connected, critical resistor network that
we prove is uniquely recoverable from the data. In the second step, we seek the conductivity
from the reduced model, with a Newton-type iteration.

We use the resistor network to define a nonlinear mapping Qn of the data to the space
of conductivities. This is an approximate inverse of the forward map Fn, for a large class of
conductivities. The Newton-type iteration is defined for the composition Qn ◦ Fn of the two
maps, which are approximate inverses of each other. This makes the problem well conditioned.
We also use the map Qn to get a very good initial guess of the conductivity by interpolating
on a grid that is adapted to the measurements for a reference conductivity. This leads to fast
convergence of the Newton-type iteration.

The inversion method does not require a priori information of the conductivity. However,
we show how to incorporate such information in the imaging process. We present numerical
results and a comparison with the traditional output least squares approach.
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Appendix A. Converting NtD map measurements to DtN map measurements using
convex duality

We derive the simple relation (A.5) to get the measured DtN map for 1/σ from measurements
of the NtD map for σ . If we are given NtD map measurements for σ , the idea is to use (A.5)
to generate data for our inversion method. We would then get an image of 1/σ (and therefore
its reciprocal, for σ ) from such artificial data.

In two dimensions, the electric current density j is divergence free, so there is a scalar
field h such that j = −∇⊥h, where ∇⊥ ≡ (∂/∂y,−∂/∂x)T . The current density is related to
the electric potential u through Ohm’s law (see e.g. [6, section 2.1])

σ∇u = −j = ∇⊥h. (A.1)

Now recall that the DtN map is defined as �DtN
σ f = n · (σ∇u) where u solves the differential

equation with Dirichlet boundary conditions,

∇ · [σ∇u] = 0 in � and u|∂� = f.

By the duality relation (A.1) we have that h solves the differential equation with Neumann
boundary conditions,

∇ ·
[

1

σ
∇h

]
= 0 in � and n ·

(
1

σ
∇h

)
= −n · ∇⊥u on ∂�.

By using the duality relation (A.1) again we get that �DtN
σ f = n · ∇⊥h. Since � is the unit

disc, the tangential derivative takes the form n ·∇⊥ ≡ ∂/∂θ where θ is the angle parametrizing
the unit circle in the usual way. Therefore the NtD map of 1/σ and the DtN map of σ are
related via the duality relation,

�DtN
σ = − ∂

∂θ
�NtD

1/σ

∂

∂θ
. (A.2)

Our inversion algorithms assume measurements (7) of the DtN map. We now show using
the duality relation (A.2), that NtD measurements consistent with the ‘shunt electrode model’
[43], can be transformed into DtN map measurements.

Let ψ1, . . . , ψ2n be 2n nonnegative functions in H−1/2(∂�) with disjoint supports,
numbered in circular order around the boundary, and such that

∫
∂�

ψi dx = 1. Assume
NtD map measurements in the form M2n

(
�NtD

σ

) ∈ R
2n×2n, defined componentwise by

(
M2n

(
�NtD

σ

))
i,j

=

⎧⎪⎪⎨⎪⎪⎩
〈
ψi,�

NtD
σ ψj

〉
if i �= j,

−
2n∑

p=1,p �=i

〈
ψi,�

NtD
σ ψp

〉
otherwise,

(A.3)

where 〈·, ·〉 is the H−1/2(∂�),H 1/2(∂�) duality pairing. Let Ii be the smallest connected
component of ∂� containing both supp ψ2i and supp ψ2i−1, and the functions ζi be defined
for i = 1, . . . , n by

ζi(θ) =
∫ θ

αi

[ψ2i−1(s) − ψ2i (s)] ds.

Here αi is the angle of some point in the complement of Ii in ∂�. Thus since the functions ψk

integrate to one, we have supp ζi = Ii . Furthermore, the functions ζi are nonnegative because
the ψk are numbered by increasing θ .
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∫
ψ2i−1 − ψ2i ϕi

Figure A1. How n measurement functions ϕi for the DtN map could be obtained from 2n

measurement functions ψk of the NtD map?

Now define βi = ∫
∂�

ζi dx. The functions ϕi ≡ ζi/βi ∈ H 1/2(∂�) meet all the
requirements outlined in definition 1 to define a measured DtN map. In particular, they
have disjoint supports and, by the duality relation (A.2) we have for i �= j ,〈

ϕi,�
DtN
1/σ ϕj

〉 = −
〈
ϕi,

(
∂

∂θ
�NtD

σ

∂

∂θ

)
ϕj

〉
=
〈
∂ϕi

∂θ
,�NtD

σ

∂ϕj

∂θ

〉
= 1

βiβj

〈
ψ2i − ψ2i−1,�

NtD
σ (ψ2j − ψ2j−1)

〉
.

(A.4)

Thus, by doing a numerical tangential derivative of the NtD data for σ , we can extract a
measured DtN map for 1/σ . We illustrate the process with figure A1. The matrix version of
(A.4) is surprisingly simple:

Mn

(
�DtN

1/σ

) = Z(DT M2n

(
�NtD

σ

)
D), (A.5)

where Z(A) := A − diag(A1) and D ∈ R
2n×n is the matrix given columnwise by

D = [β1(e1 − e2), β2(e3 − e4), . . . , βn(e2n−1 − e2n)].

Another immediate consequence of (A.4) is that we can formulate corollaries to the results
we obtained in appendix C on the consistency of DtN map measurements with the resistor
network model. Specifically, we can derive necessary conditions for the NtD map based on
the necessary conditions of Ingerman and Morrow [32].

Appendix B. Numerical experiments supplement

B.1. Conductivity definitions

The conductivities used in our numerical experiments appear in figure 5. The precise definition
of each conductivity follows.

Conductivity ‘sigX’ is depicted in figure 5 (left) and it is a smooth function given by the
superposition of two Gaussian bell functions. Specifically,

σ(x) = 1 + 1
2ψ(‖x‖2)

[
exp

(−‖A(x − a)‖2
2

)
+ exp

(−‖B(x − b)‖2
2

)]
,

where a = (0.3, 0.3)T , b = (−0.4,−0.4)T and the matrices A and B are,

A = Q
[√

20 0
0 1

]
QT , B = Q

[
1 0
0

√
20

]
QT , with Q = −1√

2

[
1 1
1 −1

]
.

The function ψ(t) is a smooth cutoff function that ensures σ |∂� = 1 by having ψ(t) = 0
for t � 0.99 and ψ(t) = 1 for t � 0.5. The smooth transition from 0 to 1 on [0.5, 0.99] is
obtained by an affine mapping of the function exp(1 + 1/s2) defined on [0, 1].

Conductivity ‘phantom1’ is depicted in figure 5 (right) and it is a piecewise constant function
that represents a simplified chest phantom with conductivities relative to the background close
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0 1–1
0

1

t

Figure B1. The smoothed box function ϕ(t) we use to define the measured DtN map, rescaled to
have values in [0, 1].

to those of the human body during expiration [35, section 5.1]. The background conductivity
is 1. The lungs are simulated by two ellipses with conductivity 1/3 and the heart has
conductivity 2.

B.2. A smoothed box function

We recall from section 3.1 that the measured DtN map Mn(�σ ) consists of measurements
taken with n nonnegative functions ϕi defined on the boundary ∂� and that have disjoint
supports. In the numerics, all ϕi are patterned from a single function and we explain here how
this is done.

We parametrize the boundary ∂� by an angle θ ∈ [0, 2π ], and by a slight abuse of notation
ϕi(θ) represents ϕi(x(θ)). Then the functions ϕi are constructed from a single function ϕ(t)

with supp ϕ ⊂ (−1, 1), by setting

ϕi(θ) = (n/π)ϕ((n/π)(θ − 2iπ/n)).

This ensures the supports of ϕi are disjoint since supp ϕi ⊂ 2iπ/n + (−π/n, π/n).
We chose ϕ as the smoothed box function depicted in figure B1, rescaled so that∫ 1

−1 ϕ(t) dt = 1. This function is such that ϕ(t) = 1 for |t | � 0.1 and ϕ(t) = 0 for
|t | � 0.9. The smooth transition from 0 to 1 on [0.1, 0.9] and [−0.9,−0.1] is obtained by an
affine mapping of the function exp(1 + 1/s2) defined on [0, 1].

Appendix C. Proof of theorem 1

We must show that the measurements Mn

(
�DtN

σ

)
belong to Dn, the set of DtN maps of

well-connected resistor networks. This set is defined in [20] as follows.

Definition 3. Dn is the set of matrices A ∈ R
n×n such that

(i) The matrix A is symmetric.
(ii) The matrix A has zero row sum, i.e. A1 = 0.

(iii) All circular minors M of A are totally negative, i.e. det(−M) > 0. A circular minor of
A is a submatrix M = A(p1, . . . , pk; q1, . . . , qk), with distinct indices pi and qi between
1 and n, for 1 � i � k. The indices are sorted so that points vp1 , . . . , vpk

, vqk
, . . . , vq1

appear in order on ∂�.

That Mn

(
�DtN

σ

)
is a symmetric n × n matrix, with zero row sum, follows trivially from

definition 1 and the self-adjointness of �DtN
σ . The technical part is to show that all the circular

minors of Mn

(
�DtN

σ

)
are totally negative (see e.g. [20, section 10] for a definition).
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To establish the total negativity of the circular minors of the measured DtN map, we use a
characterization of the kernel of the DtN map due to Ingerman and Morrow [32]. Recall that
the kernel Kσ : ∂� × ∂� → R of the DtN map is such that for f ∈ H 1/2(∂�),(

�DtN
σ f

)
(x) =

∫
∂�

Kσ (x, y)f (y) dy.

We require some terminology to review the results in [32].

Definition 4. A set of 2k distinct points {x1, . . . , xk, y1, . . . , yk} of ∂� is called a circular
pair if x1, . . . , xk, yk, . . . , y1 are consecutive on the circle. Similarly, a set of 2k nonnegative
functions {X1, . . . , Xk, Y1, . . . , Yk}, with supports I1, . . . , Ik, J1, . . . , Jk in ∂�, is called a
circular pair of functions if their supports are disjoint and are consecutive on the circle when
numbered I1, . . . , Ik, Jk, . . . , J1. Additionally, each function should integrate to one.

Definition 5. A kernel K : ∂� × ∂� → R is said to have property (P1) if and only if, for
all circular pairs {x1, . . . , xk, y1, . . . , yk}, and for all integers k, the following determinantal
inequality holds

det({−K(xi , yi )}i,j=1,...,k) > 0. (C.1)

Note that it is possible to take pointwise evaluations of the kernel Kσ (x, y) when it is continuous
away from the diagonal x = y. This holds for example for C2 conductivities (see [32]).

Definition 6. A kernel K : ∂� × ∂� → R is said to have property (P2) if and only if, for
all circular pairs of functions {X1, . . . , Xk, Y1, . . . , Yk}, and for all integers k, the following
determinantal inequality holds

det

({
−
∫

∂�×∂�

Xi(x)Yj (y)K(x, y) dx dy
}

i,j=1,...,k

)
> 0. (C.2)

It is clear from definition 1 that to show the total negativity of the circular minors of
Mn

(
�DtN

σ

)
, it suffices to show that the kernel of the DtN map satisfies (P2). The main result

in [32] is that the kernel Kσ of the DtN map for a conductivity σ ∈ C2(�) satisfies (P1). We
extended this result to more general measurements, by showing the equivalence between (P1)

and (P2), which is stated in the next theorem.

Theorem 3. Let K : ∂� × ∂� → R be a kernel, continuous away from the diagonal, and
such that limy→x K(x, y) = −∞. Then (P1) holds for K iff (P2) holds for K.

In order to prove theorem 3, let us show first an intermediary lemma, involving the
weaker properties (WP1) and (WP2), which are obtained by replacing the strict inequalities
in definitions 5 and 6, by non-strict inequalities. Note that the assumptions on K in the lemma
are relaxed, compared to those of theorem 3. The singularity of the kernel on the diagonal is
not required.

Lemma 2. Let K : ∂� × ∂� → R be some continuous kernel away from the diagonal. Then
(WP1) holds for K if and only if (WP2) holds for K.

Proof. We use the techniques of lemma 6.1 in [32]. Let K be a kernel satisfying the assumptions
of the theorem. Let us start by assuming (WP1) holds. If {X1, . . . , Xk, Y1, . . . , Yk} is some
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circular pair of functions, using the combinatorial definition of the determinant, and reducing
the domain of integration to the support of the functions involved, we may write,

det

⎛⎝{−
∫

Ii×Jj

Xi(x)Yj (y)K(x, y) dx dy

}
i,j=1,...,k

⎞⎠
=

∑
τ∈�(1,...,k)

sgn(τ )

k∏
i=1

(
−
∫

Ii×Jτ(i)

Xi(xi )Yτ(i)(yτ(i))K(xi , yτ(i)) dxi dyτ(i)

)
, (C.3)

where �(1, . . . , k) is the set of all k! permutations of 1, . . . , k, and the sign of a permutation
τ is defined by

sgn(τ ) =
{

+1 if τ is equivalent to an even number of transpositions,

−1 if τ is equivalent to an odd number of transpositions.

Now, we obtain after some reordering,∑
τ∈�(1,...,k)

sgn(τ )

∫
I1×J1

· · ·
∫

Ik×Jk

dx1 dy1 · · · dxk dyk

(
k∏

i=1

−K(xi , yτ(i))

)(
k∏

i=1

Xi(xi )Yi(yi )

)
and, identifying a determinant, we get

det

⎛⎝{−
∫

Ii×Jj

Xi(x)Yj (y)K(x, y) dx dy

}
i,j=1,...,k

⎞⎠ =
∫

I1×J1

· · ·
∫

Ik×Jk

× det({−K(xi , yj )}i,j=1,...,k)

(
k∏

i=1

Xi(xi )Yi(yi )

)
dx1 dy1 · · · dxk dyk. (C.4)

Note that {x1, . . . , xk, y1, . . . , yk} is a circular pair of points, because xi ∈ Ii, yi ∈ Ji and
I1, . . . , Ik, Jk, . . . , J1 do not intersect, and they are consecutive when laid on a circle. Since K
satisfies (WP1), the determinant in the integrand is nonnegative, and so is the integrand itself,
which proves (WP1) ⇒ (WP2).

To prove (WP2) ⇒ (WP1), construct a sequence of circular pairs of functions
{X(p)

1 , . . . , X
(p)

k , Y
(p)

1 , . . . , Y
(p)

k } such that for i, j = 1, . . . , k, we have

lim
p→∞

∫
∂�×∂�

X
(p)

i (x)Y
(p)

j (y)K(x, y) dx dy = K(xi , yj ).

Then (WP1) follows from the continuity of the determinant. �

We can now write a proof of theorem 3, which follows essentially from [32].

Proof of theorem 3. Using (C.4) and strict inequalities in the argument for (WP1) ⇒ (WP2)

in lemma 2, it follows that (P1) ⇒ (P2). Assume then that (P2) holds for K, therefore
(WP2) and by lemma 2 (WP1) hold for K, as well. Moreover Ingerman and Morrow [32,
section 4], proved that provided K is a kernel continuous away from the diagonal and singular
on the diagonal, we have (WP1) ⇒ (P1). This completes the proof. �

Remark 4. In the proof we assume complete knowledge of the DtN map. When we have
measurements of this map at only N points on ∂�, we can estimate the quadratic forms in
Mn

(
�DtN

σ

)
using some quadrature rule. Then an analogous characterization holds [31, B.4]:

there is a unique resistor network of type C(l, n) that fits the measurements. Therefore we
can use our algorithm unchanged when we have N measurements on ∂�.
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