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Abstract
We introduce an inversion algorithm for electrical impedance tomography (EIT)
with partial boundary measurements in two dimensions. It gives stable and fast
reconstructions using sparse parameterizations of the unknown conductivity
on optimal grids that are computed as part of the inversion. We follow the
approach in Borcea et al (2008 Inverse Problems 24 035013) and Vasquez
(2006 PhD thesis Rice University, Houston, TX, USA) that connects inverse
discrete problems for resistor networks to continuum EIT problems, using
optimal grids. The algorithm in Borcea et al (2008 Inverse Problems 24
035013) and Vasquez (2006 PhD Thesis Rice University, Houston, TX, USA)
is based on circular resistor networks, and solves the EIT problem with full
boundary measurements. It is extended in Borcea et al (2010 Inverse Problems
26 045010) to EIT with partial boundary measurements, using extremal quasi-
conformal mappings that transform the problem to one with full boundary
measurements. Here we introduce a different class of optimal grids, based on
resistor networks with pyramidal topology, that is better suited for the partial
measurements setup. We prove the unique solvability of the discrete inverse
problem for these networks and develop an algorithm for finding them from
the measurements of the Dirichlet to Neumann map. Then, we show how to
use the networks to define the optimal grids and to approximate the unknown
conductivity. We assess the performance of our approach with numerical
simulations and compare the results with those in Borcea et al (2010).

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

We present a novel approach for the numerical approximation of solutions of electrical
impedance tomography (EIT) with partial boundary measurements in two dimensions. The
EIT problem [6, 13] is to find the conductivity σ(x) in a simply connected domain � ⊂ R2,
given simultaneous measurements of currents and voltages at the boundary B of �. More
explicitly, σ(x) is the coefficient in the elliptic equation

∇ · (σ (x)∇u(x)) = 0, x ∈ �, (1.1)

with the Dirichlet boundary conditions

u(x) = φ(x), x ∈ B, (1.2)

and it is to be determined from measurements of the Dirichlet to Neumann (DtN) map
�σ : H 1/2(B) → H−1/2(B), where

�σφ(x) = σ(x)
∂u

∂ν
(x), x ∈ B, (1.3)

and ν is the outer unit normal at B.
EIT with full boundary measurements refers to the ideal case with complete knowledge of

the DtN map. It is uniquely solvable as proved in [12, 40] under some regularity assumptions on
σ and in [3] for bounded σ . We consider the EIT problem with partial boundary measurements
on the accessible subset BA of B. The inaccessible boundary BI = B\BA is assumed to be
grounded. That σ is determined uniquely by the set of Cauchy data

{
u
∣∣
BA

, σ ∂u
∂ν

∣∣
BA

}
, when

u|BI
= 0, follows from [19, 20, 34, 35] for real-analytic or piecewise real-analytic σ , and from

[28] for σ ∈ C3+ε(�̄), with ε > 0.
Because we are concerned with numerical inversion, we work with finitely many

measurements4 of the DtN map. Still, we say that we have a full boundary data EIT problem
when the measurement points are distributed on the entire boundary B. The partial data
problem considered in this paper has the measurement points confined to the accessible
boundary BA, which is a proper subset of B.

The uniqueness and stability of numerical estimates (images) of σ are highly dependent
on their parametrization. Naturally, the number of degrees of freedom in the measurements
limits the number of parameters that we can recover. However, the real difficulty is caused
by the exponential ill-posedness of the underlying continuum EIT problem, even in the ideal
case of complete knowledge of the DtN map. By exponential instability we mean that the
sup norm of perturbations of σ is bounded in terms of the logarithm of the operator norm of
perturbations of �σ [1, 5, 33]. The bounds are sharp [38], but the estimates are global and do
not give resolution limits of the images of σ(x) as we vary x ∈ �.

The trade-off between stability and resolution is studied in [2, 32, 41] for linearized full
boundary data EIT. The results in [2] give explicit reconstructions of small perturbations δσ

of a constant conductivity, which are then used to assess the stability and resolution. The
distinguishability studies in [32, 41] do not look for small perturbations, but are still linear
in the sense that they determine the smallest support of a single inclusion centered at a given
x ∈ �, in a constant conductivity background, that causes visible perturbations of the boundary
data. Both approaches lead to the intuitive conclusion that stability comes at the cost of the
progressive loss of resolution as we move away from the boundary, where the measurements
are made. This means that if we use inadequate parameterizations of the unknown σ ,

4 By measurements we mean a measurement operator that takes the DtN map to a discrete data set at the measurement
points on B, as explained in section 2.3.
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on grids that are too fine inside �, the numerical inversion will be unstable and must be
regularized [24].

The question is then how to find proper parameterizations of σ , on grids that capture
correctly the resolution limits, to get stable images without additional regularization that
typically requires prior information about σ . The distinguishability grids proposed in [32]
(see also [36, 37]) capture qualitatively the loss of resolution, but they are defined with
a linearization approach whose accuracy is not understood. Here we follow the ideas in
[8, 11, 27] and parameterize σ on optimal grids that are computed as part of the problem. The
name optimal refers to the fact that finite volume discretizations of (1.1) and (1.2) on these
sparse grids give spectrally accurate approximations of the DtN map. The computed grids
turn out to be refined near the accessible boundary, where we make the measurements, and
are coarse away from it, thus capturing the expected loss of the resolution of the images.

Optimal grids were introduced and analyzed in [4, 21, 22, 30] for forward problems.
Then, they were used in [7] for Sturm–Liouville inverse spectral problems in one dimension.
The main result there is that parameterizations on optimal grids are necessary and sufficient
for the convergence of solutions of discrete inverse spectral problems to the true solution of
continuum problems. The first inversion method on optimal grids for two-dimensional EIT
was proposed and analyzed in [8, 27], for the case of full boundary measurements. It is based
on the rigorous theory of discrete inverse problems for circular resistor networks developed
in [14, 15, 17, 18, 29]. These networks arise in five-point stencil finite volume discretizations
of (1.1) and (1.2), on the optimal grids. The networks are critical, which means that they have
no redundant connections and are determined uniquely by the discrete measurements of �σ .

As in [8, 27], our inversion method consists of two steps. In the first step, we use
the optimal grids and the solution of the discrete inverse problem for networks to define
a nonlinear reconstruction mapping Qn from the boundary measurements to the space of
conductivity functions. The mapping is called a reconstruction because it is an approximate
inverse of the forward map that takes σ to the boundary data. In the second step of the
inversion, we use Qn as a preconditioner in a Gauss–Newton iteration for estimating σ , which
typically converges in one or two steps [8, 27]. This second step is the same for full or partial
boundary measurements. It is studied in detail in [8, 27], and we do not repeat it here. The
interesting part is the definition of the optimal grids and therefore of the mapping Qn, which
depends strongly on the measurement setup.

1.1. Motivation and outline of the results in this paper

So far, the construction of the optimal grids has remained essentially one dimensional. This
is the case for the grids introduced in [4, 21, 22, 30] for forward problems, and for the
grids introduced in [8, 27] for two-dimensional full boundary data EIT, with equidistantly
distributed measurement points on B. In all these studies, the grid construction relies on
the rotational symmetry of the problem with constant σ and uses Fourier transforms in all
but the depth (radial) variable. The problem is then reduced to finding the optimal placement
of the points along one direction, and can be cast nicely in terms of rational approximations
of the transformed DtN map.

The EIT problem with partial measurements is not rotationally invariant, so it is not
immediately clear how to use the ideas in [8, 27] to define the optimal grids. The recovery of
networks with topology given in [8, 27] works the same for any placement of the boundary
(measurement) nodes on the entire B, or on proper subsets BA ⊂ B. The problem is that when
we use the approach in [8, 27] to build the grid piece by piece, starting from BA, we do not get
a good result. More explicitly, the grid lines are far from orthogonal at their intersection, and

3
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finite volume discretizations on them have poor approximation properties of the DtN map for
non-constant σ .

The confinement of the measurement points to the accessible boundary BA induces a
coordinate transformation, which must be understood in order to define the grids. This is
done in [11] with conformal or extremal quasi-conformal mappings that take the boundary
points in BA to equidistantly distributed points on B. Then, the grids for the transformed
problem are computed with the approach in [8, 27]. The coordinate transformations used in
[11] are conformal or extremal quasi-conformal to ensure that the transformed conductivity
remains isotropic, or at least to minimize its anisotropy. Otherwise, the EIT problem in the
transformed coordinates does not have a unique solution and the resulting grids do not give
good approximations of σ .

The results in [11] show a trade-off between having undistorted images and resolution
distributed throughout �. To eliminate distortions, the transformed conductivity should remain
isotropic, which means that the coordinate transformation must be conformal. However, the
resulting grids have poor refinement properties, with node accumulation in the vicinity of the
center of BA, and very poor resolution of the images in the remainder of �. The conformal
mappings also require a rigid placement of the measurement points onBA. The extremal quasi-
conformal grids achieve a more uniform resolution in � and allow the arbitrary placement
of the measurement points on BA. However, they induce artifacts in the images because the
transformed conductivity is anisotropic.

The observation that motivates the results in this paper is that the topology of the networks
used in [8, 11, 27] is not the best one for the partial measurement setup. It is because of it and the
essential one-dimensional nature of the grids that we get the trade-off studied in [11]. Our main
result in this paper is the introduction of truly two-dimensional optimal grids, with pyramidal
topology, which is naturally suited for the partial measurements setup. We prove the unique
solvability of the discrete inverse problem for the underlying pyramidal resistor networks, and
give an explicit layer-peeling algorithm for determining them from the partial measurements
of �σ . The algorithm is very fast, and can be regularized by restricting the number of resistors,
thus ensuring the sparsity of the resulting grids. We also define the reconstruction mapping
Qn on the pyramidal optimal grids and show with numerical simulations that it is superior to
the reconstructions in [11].

The paper is organized as follows. We begin in section 2 with the formulation of the
discrete EIT problem for resistor networks and a brief review of results from [14, 15, 17, 18, 29]
and [8, 11, 27]. We include this review to explain where the results of this paper enter the
basic inversion algorithm. Our new results are in the remaining sections 3–5. We prove the
solvability of the inverse problem on pyramidal networks in section 3, and give an algorithm
to find them. Then, we define in section 4 the optimal grids and the reconstruction mapping.
The numerical results are given in section 5. We end with a summary in section 6.

2. Electrical impedance tomography with resistor networks

Our goal is to develop a robust and fast numerical algorithm for approximating the solution
of the continuum EIT problem with partial data, which seeks the scalar-valued, positive and
bounded conductivity function σ(x), given the Cauchy data set

Cσ =
{(

u|BA
, σ

∂u

∂ν

∣∣∣∣
BA

) ∣∣∣∣∣ ∇ · (σ (x)∇u(x)) = 0, x ∈ �, u|BI
= 0

}
. (2.1)

The algorithm makes the connection between discrete inverse problems for resistor networks
and continuum EIT, using the optimal grids. We begin section 2.1 with the formulation of
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the discrete EIT problem for networks, and cite from [14, 15, 17, 18, 29] the necessary and
sufficient conditions for its unique solvability. We motivate the networks in the context of
finite volume discretizations of (1.1) and (1.2) in section 2.2. Then we discuss the connection
between the continuum and the discrete inverse problem in sections 2.3 and 2.5.

2.1. The inverse problem for resistor networks

A resistor network is a pair (
, γ ), where 
 = (Y,E) is a graph with vertices (nodes) Y and
edges E ⊂ Y × Y , and γ : E → R+ is a positive-valued conductance function. The set Y is
the union of two disjoint sets YB and YI of boundary and interior vertices. Let

n = |YB | (2.2)

be the number of boundary nodes, and use hereafter the symbol | · | to denote the cardinality
of finite sets.

Define a potential function u : Y → R and denote by uB and uI its restriction to the
boundary and interior nodes, respectively. The potential satisfies Kirchhoff’s node law[

KII KIB

KBI KBB

] [
uI

uB

]
=
[

0
JB

]
, (2.3)

where JB ∈ Rn is the vector of currents through the boundary nodes, and K is the symmetric
matrix

Kij =

⎧⎪⎨⎪⎩
−γ [(vi, vj )] if i �= j and (vi, vj ) ∈ E,

0, if i �= j and (vi, vj ) /∈ E,∑
k:(vi ,vk)∈E

γ [(vi, vk)] if i = j.
(2.4)

We write in (2.3) the block structure of K, using the notation KXZ for the block with row indices
in X ⊆ Y and column indices in Z ⊆ Y .

The DtN map of the network is the matrix �γ ∈ Rn×n that takes uB to JB. It equals the
Schur complement of KII

�γ = KBB − KBIK
−1
II KIB, (2.5)

which is well defined for non-singular KII. As long as the network has a connected graph5,
the invertibility of KII follows from the discrete analog of the maximum principle, as shown
in [14–16].

The discrete inverse problem is: given a network with a known graph 
 and the DtN map
�γ , find its conductance function γ .

2.1.1. Well-connected planar circular graphs. We study EIT in two dimensions, in a simply
connected domain � in R2. By the Riemann mapping theorem, all such sets are conformally
equivalent, so from now we can think of � as the unit disk in R2. Thus, it is natural to
consider networks with circular planar graphs 
 which can be embedded in the plane, without
self-intersections of the edges, in such a way that all the interior nodes are in the unit disk, and
the boundary nodes are on the unit circle.

Following [14–16], we number the boundary nodes YB = {v1, . . . , vn} so that they appear
in a circular (clockwise or counterclockwise) order on B. Consider a pair (P ;Q) of subsets
of YB, with P = {vi1 , . . . , vik } and Q = {vjk

, . . . , vj1}, belonging to disjoint arcs of B. The
pair is called circular if the nodes {vi1 , . . . , vik ; vjk

, . . . , vj1} appear in the circular order on B.

5 We say that the graph 
 = (Y, E) is connected when each pair of vertices in Y is connected by at least one set of
edges in E.

5
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A circular pair (P ;Q) is called connected, if there exist k disjoint paths αs connecting
vis and vjs

, s = 1, . . . , k. The boundary nodes are allowed in αs only as the first and the last
nodes (the paths must not touch the boundary). Let π(
) be the set of all connected circular
pairs, and say that the graph is well connected if all circular pairs are in π(
).

2.1.2. Solvability of the discrete inverse problem for networks. The question of whether the
discrete inverse problem is uniquely solvable is closely related to the topology of the graph

. For circular planar graphs, the question was resolved in [15], using the theory of critical
networks.

Let 
′ be the graph obtained by removing one edge in 
 = (Y,E). The edge can be
removed by deletion or by contraction. Then, the network with the graph 
 is called critical
if removing any edge breaks some connection in π(
), i.e. π(
′) ⊂ π(
)).

It is shown in [15] that the discrete inverse problem for a network with a given circular
planar graph has a unique solution if and only if it is critical and the data matrix �γ belongs to
the set Dn of DtN maps of well-connected networks. The set Dn is defined in [15]. It consists
of all symmetric matrices �γ ∈ Rn×n satisfying the conservation of currents condition,

�γ 1 = 0, (2.6)

and whose circular minors are totally non-positive. A circular minor of �γ is a submatrix
(�γ )PQ with row indices in P and column indices in Q, where (P ;Q) is a circular pair. The
total non-positivity means that

det[−(�γ )PQ] � 0. (2.7)

Equality in (2.7) occurs if and only if (P ;Q) /∈ π(
). Thus, in a well-connected network the
inequality (2.7) is strict for every circular pair (P ;Q).

2.2. Resistor networks and finite volume discretizations

Resistor networks can be motivated in the context of finite volume discretizations of (1.1) and
(1.2) on staggered grids. Such grids consist of intersecting primary and dual grid lines, which
are allowed to be curvilinear. We refer to the intersections of primary (dual) grid lines as the
primary (dual) grid nodes. The potential u is discretized at the primary grid nodes, while the
current fluxes σ∇u are discretized at the dual grid nodes.

We illustrate in figure 1 the vicinity of an interior primary grid node Pi,j . Let Ci,j be the
dual grid cell with the boundary

∂Ci,j = �i,j+ 1
2
∪ �i+ 1

2 ,j ∪ �i,j− 1
2
∪ �i− 1

2 ,j , (2.8)

the union of the four dual grid segments

�i,j± 1
2

= (
Pi− 1

2 ,j± 1
2
, Pi+ 1

2 ,j± 1
2

)
, �i± 1

2 ,j = (
Pi± 1

2 ,j− 1
2
, Pi± 1

2 ,j+ 1
2

)
.

We integrate (1.1) over Ci,j and use the divergence theorem to obtain the balance of fluxes
across the boundary ∂Ci,j :

∫
Ci,j

∇ · (σ∇u) dV =
⎛⎝∫

�
i,j+ 1

2

+
∫

�
i+ 1

2 ,j

+
∫

�
i,j− 1

2

+
∫

�
i− 1

2 ,j

⎞⎠ σ
∂u

∂ν
dS = 0. (2.9)

6
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P
i, j

P
i, j+1

P
i, j−1

P
i+1, j

P
i−1, j

P
i+1/2, j+1/2

P
i+1/2, j−1/2

P
i−1/2, j+1/2

P
i−1/2, j−1/2

P
i, j+1/2

Figure 1. Vicinity of a primary node Pi,j in a staggered grid. The primary grid lines are solid,
and the dual grid lines are dashed. The primary grid nodes are × and the dual grid nodes are
◦ . We show the resistor along the primary edge (Pi,j+1, Pi,j ) is a rectangle and denote by � its
intersection with the dual edge.

The linear algebraic system of equations for the discretized potential is obtained by
approximating the boundary integrals in (2.9) with a one-point quadrature rule, and the normal
derivatives in the integrands with a two-point finite difference. We have∫

�
i,j± 1

2

σ
∂u

∂ν
dS ≈ σ(Pi,j± 1

2
)
L(�i,j± 1

2
)

L(�i,j± 1
2
)
[u(Pi,j±1) − u(Pi,j )], (2.10)

∫
�

i± 1
2 ,j

σ
∂u

∂ν
dS ≈ σ(Pi± 1

2 ,j )
L(�i± 1

2 ,j )

L(�i± 1
2 ,j )

[u(Pi±1,j ) − u(Pi,j )], (2.11)

where Pi,j± 1
2

and Pi± 1
2 ,j are the intersections of the primary grid segments

�i,j± 1
2

= (Pi,j , Pi,j±1), �i± 1
2 ,j = (Pi,j , Pi±1,j ),

with the dual grid segments �i,j± 1
2

and �i± 1
2 ,j , as shown in figure 1. The arc lengths of the

primary and dual grid segments are denoted by L(�) and L(�), respectively.
The algebraic system of equations for the discretized potential ui,j ≈ u(Pi,j ) is

γi,j+ 1
2
(ui,j+1 − ui,j ) + γi+ 1

2 ,j (ui+1,j − ui,j ) + γi,j− 1
2
(ui,j−1 − ui,j ) + γi− 1

2 ,j (ui−1,j − ui,j ) = 0,

(2.12)

where

γα,β = σ(Pα,β)γ
(1)

α,β , (2.13)

(α, β) ∈
{(

i, j +
1

2

)
,

(
i +

1

2
, j

)
,

(
i, j − 1

2

)
,

(
i − 1

2
, j

)}
, (2.14)

7
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and

γ
(1)

α,β = L(�α,β)

L(�α,β)
(2.15)

corresponds to the constant conductivity σ ≡ 1. This is Kirchhoff’s node law for the resistor
network with the graph 
 = (Y,E) given by the primary grid. The set Y consists of the primary
grid nodes and the edges in E are the primary grid segments. The conductance function is
defined in (2.13). For example, γi,j+ 1

2
is the conductance of the edge �i,j+ 1

2
∈ E.

2.3. From the continuum to the discrete DtN map

To connect continuum EIT problems with inverse problems for networks, we relate the matrix-
valued DtN map �γ of a network to the continuum DtN map �σ , using linear measurement
operators

Mn : (H 1/2(B) → H−1/2(B)) → Rn×n.

In [8, 27], the operators Mn are defined with a set of n non-negative measurement
functions χj with disjoint supports on B and normalized by∫

B
χj (x) dSx = 1, j = 1, . . . , n. (2.16)

We can think of them as modeling the support of electrodes attached to the boundary. The
symmetric matrix Mn(�σ ) has off-diagonal entries

(Mn(�σ ))i,j = 〈χi,�σ χj 〉, i �= j, (2.17)

where 〈·, ·〉 is the duality pairing between H 1/2(B) and H−1/2(B), and the diagonal entries are
given by

(Mn(�σ ))i,i = −
∑
j �=i

〈χi,�σ χj 〉, i = 1, . . . , n. (2.18)

The latter ensures that Mn(�σ ) satisfies the conservation of currents condition.
Alternatively, we can consider pointwise measurements of the DtN map. For a sufficiently

regular σ , the first-order pseudodifferential operator �σ can be written in an integral form as

(�σφ)(x) =
∫
B
Kσ (x, y)φ(y) dSy, x ∈ B, (2.19)

where Kσ (x, y) is a symmetric kernel continuous away from the diagonal [31]. The pointwise
measurement operator Mn is defined at the points xj ∈ B, j = 1, . . . , n, by

(Mn(�σ ))i,j =
{Kσ (xi, xj ), i �= j,

−∑
k �=i

Kσ (xi, xk), i = j. (2.20)

These definitions do not distinguish between the full or partial boundary measurement setups.
The partial data case corresponds to suppχj ⊂ BA for (2.17), or xj ∈ BA for (2.20).

Other measurement operators that use more accurate electrode models, such as the
‘complete electrode’ model [42], can be used in principle. The crucial question is whether the
range of the operators belongs to the set Dn of DtN maps of well-connected networks. This is
the case for the operators (2.20) and (2.17), as proved in [31] and [8, 27], respectively. Then,
we can write that

�γ = Mn(�σ ), (2.21)

and conclude based on the results reviewed in section 2.1.2 that there exists a unique network
with a given critical circular planar graph and DtN map �γ [15, 18].

8
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2.4. Solving the discrete inverse problem

Given �γ ∈ Dn and the graph 
, we can find the network (the conductance function γ ), with
either a direct invariant imbedding (layer-peeling) method, or with optimization. We prefer
the first approach, because it is fast and explicit. Optimization may be more robust, but it is
computationally intensive and the algorithm may get stuck in local minima. In any case, both
approaches become unstable as we increase the size (the number of edges) of the network. It is
in general unclear how to regularize optimization methods for network recovery, because we
cannot speak of regularity assumptions as is done, for example, in total variation regularization
approaches for continuum EIT. We have tried in [10] a Gauss–Newton iterative optimization
method regularized with an SVD truncation of the Jacobian.

All the results in this paper are with layer-peeling, which we regularize by restricting n,
i.e. the size of network, as follows. We solve a sequence of discrete inverse problems for
increasing n, until our layer-peeling method fails to produce positive conductances. Then, we
set n to the last but one value in the sequence, and accept as the solution of the inverse problem
the non-negative conductance obtained from the DtN matrix �γ = Mn(�σ ).

2.5. From the discrete to the continuum inversion: the optimal grids

Once we have determined the discrete conductance γ , the question is how to use it to
approximate the conductivity σ , the solution of the continuum EIT problem. As shown
in (2.13), we must also have information about the finite volumes grid to approximate σ(Pα,β)

from the knowledge of γα,β . This leads us to the construction of the optimal grids, which are
computed from the resistor networks with the same graph and the DtN map

�γ (1) = Mn(�1). (2.22)

Here, �1 is the continuum DtN map for constant conductivity σ ≡ 1 and γ (1) is the
conductance (2.15).

Thus, the optimal grids are computed so that finite volume discretizations compute �γ (1)

exactly. Then, we can estimate the conductivity at points Pα,β , the intersections of the primary
and dual grid segments, by

σ(Pα,β) ≈ γα,β

γ
(1)

α,β

. (2.23)

The reconstruction mapping Qn : Dn → S is defined on the set Dn of discrete DtN maps,
with values in S, the set of positive and bounded conductivities. It takes the measurements
Mn(�σ ) to the piecewise linear interpolation of (2.23) on the optimal grid.

Finally, the images can be improved further using a Gauss–Newton iteration that
minimizes the objective function

O(σ s) = ∥∥Qn

[
Mn

(
�s

σ

)]− Qn

[
Mn(�σ )

]∥∥2
2 (2.24)

over search conductivities σ s ∈ S. Note that Qn is used here as a nonlinear preconditioner of
the forward map Fn : S → Dn, which takes σ s ∈ S to Mn

(
�s

σ

)
. How good a preconditioner

Qn is depends on the extrapolation properties of the optimal grids. That is to say, how accurate
does the finite volume approximation of Mn(�σ ) remain for a wide class of conductivity
functions that include the constant σ ≡ 1. Illustrations of the good extrapolation properties
of optimal grids, for various measurement setups, are in [7–9, 11, 27].

There is only one part of the inversion algorithm outlined above that is sensitive to the
measurement setup. It is the definition of the optimal grid, and therefore of the reconstruction
mapping Qn. The optimization (2.24) is studied in detail in [8, 27] and we do not repeat it

9
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v1

v2

v3 v4

v5

v6 v1

v2

v3

v4

v5

v6

v7

Figure 2. Pyramidal (standard) graphs 
n. Left: n = 6; right: n = 7. The boundary nodes vj ,
j = 1, . . . , n are ×, and the interior nodes are ◦.

here. The remainder of this paper is concerned with reconstructions on a new class of truly
two-dimensional optimal grids, based on pyramidal resistor networks that are naturally suited
to the partial measurements setup.

3. The inverse problem for pyramidal networks

The pyramidal networks are also known in the literature under the name standard, since they
can be chosen to be the representatives of certain classes of networks equivalent under Y − �

transformations [15]. Keeping the same notation as in the previous section, we denote the
graphs of the pyramidal networks with n boundary nodes by 
n, and illustrate how they look
in figure 2, for even and odd n. Hereafter, we refer to the edges of the graphs as ‘vertical’ or
‘horizontal’ according to their orientation in figure 2.

To use the pyramidal networks for inversion, we need to establish that they are uniquely
recoverable from the DtN map, which is equivalent to showing that the graphs 
n are critical.
We have the following result.

Lemma 1. Pyramidal networks are critical. It is mentioned in [15, proposition 7.3], without
proof, that the networks 
n, n � 2 are critical. We give the proof in appendix A in the case of
even n. The extension of the proof to odd n is straightforward.

3.1. Layer peeling for pyramidal networks

Now, let us show how to solve the inverse problem for the networks with pyramidal
graphs 
n = (Y,E), with a direct (layer-peeling) algorithm that determines the conductance
γ : E → R+ in a finite number of algebraic operations.

For the circular networks considered in [8, 11, 27], such an algorithm was developed in
[14]. It is based on a concept of special solutions, which are the potentials arising from special
choices of boundary data. These potentials limit the current flow to a certain subset of edges
of a network, so that the conductance of these edges can be recovered. The edges are then
‘peeled’, and the method proceeds deeper into the network, until the conductance of all edges
is recovered.

Here we introduce a layer-peeling algorithm for pyramidal networks with the even number
n of the boundary nodes. The extension to odd n is possible.

Algorithm 1. To determine the conductance γ of the pyramidal network (
n, γ ), with the
given DtN map �γ ∈ Dn, we take the following steps:

10
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(1) To compute the conductances of horizontal and vertical edges emanating from the
boundary node vp, for each p = 1, . . . , 2m, define the following sets:
Z = {v1, . . . , vp−1, vp+1, . . . , vm}, C = {vm+2, . . . , v2m}, H = {v1, . . . , vp} and
V = {vp, . . . , vm+1} in the case p � m.
Z = {vm+1, . . . , vp−1, vp+1, . . . , v2m}, C = {v1, . . . , vm−1}, H = {vp, . . . , v2m} and
V = {vm, . . . , vp} for m + 1 � p � 2m.

(2) Compute the conductance γ (ep,h) of the horizontal edge emanating from vp, using

γ (ep,h) = (
�

(n)
p,H − �

(n)
p,C

(
�

(n)
Z,C

)−1
�

(n)
Z,H

)
1H , (3.1)

where 1H is a column vector of 1’s of size |H |.
Compute also the conductance γ (ep,v) of the vertical edge emanating from vp:

γ (ep,v) = (
�

(n)
p,V − �

(n)
p,C

(
�

(n)
Z,C

)−1
�

(n)
Z,V

)
1V . (3.2)

(3) Once γ (ep,h) and γ (ep,v) have been computed, peel the outer layer from 
n to obtain the
subgraph 
n−2 with the set S = {w1, . . . , w2m−2} of the boundary nodes. Assemble the
blocks KS, KSB, KBS and KBB of the Kirchhoff matrix of (
n, γ ), and compute the updated
DtN map �(n−2) of the network (
n−2, γ ), as follows:

�(n−2) = −KS − KSB P T (P (�(n) − KBB) P T )−1 P KBS. (3.3)

Here P ∈ R(n−2)×n is a projection operator: PP T = In−2, and the block KS is defined in
appendix B from an appropriate splitting of the block KSS.

(4) If m = 1 terminate. Otherwise, decrease m by 1, update n = 2m and go back to step 1.

The algorithm consists of two essential operations. First, in steps 1 and 2, we restrict the
current flow to the edges ep,h and ep,v emanating from the boundary node vp by means of
special solutions u(p,h) and u(p,v), respectively. To define the special solutions, we introduce
the sets Z, C, H and V. The currents into the nodes in Z are set to zero. For u(p,h), the potentials
are set to 1 at H and to zero at YB\(C ∪ H). For u(p,v), the potentials are set to 1 at V and
to zero at YB\(C ∪ V ). These conditions determine the special solutions uniquely. Then, the
potential drop on ep,h and ep,v can be shown to be 1, and thus their conductances are just
the currents through vp, which are given by formulas (3.1) and (3.2). Second, we peel the
recovered layer in step 3, and compute the DtN map for the smaller network with the graph

n−2. Recursive application of these two operations recovers the whole network.

The theoretical justification of the algorithm is given in the following theorem, and has
been proved in appendix B.

Theorem 1. The conductance γ of a pyramidal network (
n, γ ), with n = 2m, m ∈ N, is
uniquely recoverable from its DtN map �(n)

γ by algorithm 1.

4. Reconstruction on optimal grids

Let us observe from (2.13) to (2.15) that once we know the conductances γ and γ (1) of the
networks with DtN maps (2.21) and (2.22), we can obtain the pointwise estimates (2.23) of
σ . The remaining question addressed in this section is where to place these estimates in
�. We do not need full knowledge of the optimal grid, just the intersections Pα,β of the
primary and dual grid segments that appear in (2.23). Our approach is to estimate these points
using the sensitivity analysis of both the continuum and the discrete problems, as we show in
sections 4.1–4.3.

11
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4.1. Kernel of the DtN map

We begin the sensitivity analysis with the derivation of the expression of the kernel of the DtN
map. We need Dirichlet Green’s function G(x, y), the solution of

∇x · (σ (x)∇xG(x, y)) = −δ(x − y), x ∈ �, (4.1)

with the homogeneous Dirichlet boundary condition

G(x, y)|x∈B = 0, (4.2)

where y ∈ � is the source location.
Our numerical simulations are for domain � = D, the unit disk, and � = R2

−, the lower
half-plane, respectively. In both cases, we can write G(x, y) explicitly [26] when σ ≡ 1, as
needed in the computation of the optimal grids. For � = D, we have [26]

GD(x, y) = 1

2π
(− log |x − y| + log |y|(|x − ỹ|)), (4.3)

where ỹ = y/|y|2 and | · | is the Euclidean norm. When � = R2
−,

GR2
−
(x, y) = 1

2π
(− log |x − y| + log |x − ŷ|) (4.4)

for ŷ = (
I − 2e2eT

2

)
y, I is the 2 × 2 identity matrix, and e2 = (0, 1)T .

Consider a general σ that we assume regular enough to admit the integral representation
(2.19) of the DtN map, and let us derive the expression of the kernel Kσ (x, y) in terms of G(x,
y). Combining Green’s second identity∫

�

(f ∇ · (σ∇g) − g∇ · (σ∇f ))dV =
∫
B

σ

(
f

∂g

∂ν
− g

∂f

∂ν

)
dS (4.5)

for f = u(x), g = G(x, y), with (4.1), (4.2), (1.1) and (1.2), we obtain

u(y) = −
∫
B

σ(x)φ(x)ν(x) · ∇xG(x, y) dSx, y ∈ �. (4.6)

Then, we can write, formally,

σ(y)
∂u

∂ν

∣∣∣∣
y∈B

= −
∫
B

σ(y)σ (x)(ν(x) · ∇x)(ν(y) · ∇y)G(x, y)φ(x) dSx, (4.7)

and obtain

Kσ (x, y) = −σ(x)σ (y)(ν(x) · ∇x)(ν(y) · ∇y)G(x, y), x, y ∈ B. (4.8)

Note that although G(x, y) is not defined for y ∈ B, equation (4.8) contains the normal
derivative of G(x, y) with respect to y, which is well defined.

Differentiating (4.3) and (4.4) we obtain the kernel K1(x, y) of the DtN map for Laplace’s
equation in the unit disk and in the half-plane, respectively. The Jacobian of ỹ is given by

Dy(̃y) = I

|y|2 − 2yyT

|y|4 , (4.9)

which allows us to compute

(ν(y) · ∇)GD(x, y) = 1

2π
(1 + 2y · (x̃ − y)), |y| = 1. (4.10)

The second differentiation in conjunction with (4.9), (4.8) and |x| = |y| = 1 gives

K1(x, y) = − 1

π |x − y|2 . (4.11)

12
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The expression of the kernel in the case � = R2
− is exactly the same. Moreover, formula

(4.11) is valid for any region conformally equivalent to the unit disk. This follows from the
invariance of the DtN map under conformal coordinate transformations [43].

The behavior of the kernel Kσ (x, y) for general σ is similar to (4.11) in the sense that
away from the diagonal x = y, it admits the representation [31]

Kσ (x, y) = − k(x, y)

π |x − y|2 . (4.12)

Here k(x, y) is a symmetric, positive continuous function on B ×B that does not vanish on the
diagonal.

4.2. Sensitivity functions

Given the kernel of the DtN map, we can now perform the sensitivity analysis with respect to
the changes in σ . Since (4.8) gives Kσ (x, y) in terms of Green’s function, we compute first
the sensitivity of G(x, y).

Let G(x, y) + δG(x, y) be Green’s function corresponding to the perturbed conductivity
σ + δσ . To compute the sensitivity of G, it suffices to assume very small perturbations δσ and
approximate δG(x, y) by the solution of the linearized equation

∇x · (σ (x)∇xδG(x, y)) = −∇x · (δσ (x)∇xG(x, y)), x ∈ �,

δG(x, y) = 0, x ∈ B.
(4.13)

We have

δG(x, y) =
∫

�

G(x, s)∇s · (δσ (s)∇sG(s, y)) ds,= −
∫

�

δσ(s)∇sG(x, s) · ∇sG(s, y) ds,

(4.14)

where we integrated by parts.
Next, let us use linearization in equation (4.8) to write the perturbation δKσ (x, y) of the

kernel

δKσ (x, y) =
(

δσ (x)

σ (x)
+

δσ (y)

σ (y)

)
Kσ (x, y) − σ(x)σ (y)

∂

∂νx

∂

∂νy

δG(x, y). (4.15)

Assuming that δσ |B = 0, we obtain from (4.15) and (4.14) that

δKσ (x, y) =
∫

�

δσ(s)DKσ (s; x, y) ds, (4.16)

with the Jacobian

DKσ (s; x, y) = σ(x)σ (y)

(
∇s

∂

∂νx

G(x, s)

)
·
(

∇s

∂

∂νy

G(s, y)

)
, s ∈ �. (4.17)

Moreover, in the case σ ≡ 1 used to compute the grids, we have

∇s

∂

∂νx

G(x, s) = 1

π |x − s|2
(

I − 2
(x − s)(x − s)T

|x − s|2
)

ν(x), (4.18)

∇s

∂

∂νy

G(s, y) = 1

π |y − s|2
(

I − 2
(y − s)(y − s)T

|y − s|2
)

ν(y). (4.19)

Now, let us derive similar sensitivity formulas for the discrete setting. Given the decomposition
(2.3) of the Kirchhoff matrix, we note that the discrete equivalent of Green’s function is

G = −K−1
II KIB. (4.20)
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Denote by γk the conductances in our critical network, for k = 1, . . . , g, and g = n(n − 1)/2.
Note that the discrete DtN map �γ ∈ Rn×n has precisely g degrees of freedom, since it is
symmetric, and its diagonal is determined by the conservation of currents. Thus, the critical
network, which is uniquely recoverable from �γ , has as many conductances as the number of
degrees of freedom of �γ . We obtain by differentiating (2.5) with respect to γk

∂�γ

∂γk

= [GT I ]
∂K

∂γk

[
G

I

]
. (4.21)

But K is linear in γ , so the partial derivative ∂K
∂γk

is just the Kirchhoff matrix of a network with
all the conductances being zero, except for γk = 1.

We denote by vec(M) the operation of stacking the entries in the strict upper triangular
part of a matrix M ∈ Rn×n in a vector of size g. Then, we can form the Jacobian matrix
Dγ �γ ∈ Rg×g , with entries given by(

Dγ �γ

)
jk

=
(

vec

(
∂�γ

∂γk

))
j

. (4.22)

As the last step before defining the sensitivity functions, let us observe that the measurement
operator Mn can be viewed as acting on the kernel of the DtN map. This is obvious for the
pointwise measurements (2.20), and for measurements (2.17) we have

(Mn(DKσ ))ij (s) =

⎧⎪⎨⎪⎩
∫

B×B
χi(x)DKσ (s; x, y)χj (y) dx dy, i �= j,

−∑
k �=i

∫
B×B

χi(x)DKσ (s; x, y)χk(y) dx dy, i = j.
(4.23)

Definition 1. The sensitivity function of the conductance γk with respect to the changes in
the conductivity σ is the kth component of the vector function

(Dσγ )(s) = (Dγ �γ |�γ =Mn(�σ ))
−1vec(Mn(DKσ )(s)), s ∈ � (4.24)

that we denote by (Dσγk)(s), k = 1, . . . , g.

We are particularly interested in the sensitivity functions D1γk corresponding to σ ≡ 1.
These are used to define the optimal grid, as explained in the following section.

4.3. Definition of sensitivity grids

Given the sensitivity functions (4.24), we define the points

Sα,β = arg maxs∈�(Dσγk(α,β))(s), (4.25)

where the solution γk(α,β) of the discrete inverse problem is most sensitive to changes in the
continuum conductivity σ . Here k is an indexing operator that stacks all the conductances
in a vector in Rg . If the maximum in (4.25) is attained at multiple points in �, we define
Sα,β as the arithmetic average of those points. We use the points Sα,β in (2.23), instead of
the intersections Pα,β of the unknown grid lines, and we call the grids with the nodes Sα,β the
sensitivity grids.

Let us now illustrate the relationship between the points Sα,β and Pα,β in the case of full
boundary measurements, where the optimal grid nodes Pα,β are computed explicitly in [8, 27].
As mentioned in section 2.5, the optimal grid in this case is a tensor product of a uniform grid
in the angular variable θ , and an adaptive non-uniform optimal grid in the radial variable r.
We show in figure 3 the optimal grids and the sensitivity functions for the circular networks
used in [8, 27]. Note that the sensitivity functions of the conductances of various edges are
mostly contained in the corresponding cells of the optimal grid. Moreover, the maxima Sα,β

(the yellow squares in figure 3) are almost indistinguishable from Pα,β (the black circles in the
figure).
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C(8, 17)

R4

C4

R3

C3

R2

C2

R1
C1

Figure 3. Sensitivity functions in D corresponding to the circular network and a tensor product
optimal grid. Top left: circular network with 8 layers, n = 17, the boundary nodes are ×,
sensitivities are computed for the edges R1–R4 and C1–C4 (bold). Left to right, top to bottom:
sensitivity functions for the radial (R1–R4) and angular (C1–C4) conductances. Optimal grid lines:
primary are solid and dual are dotted. Nodes Pα,β are yellow boxes and Sα,β are black •.

4.4. The sensitivity grids for pyramidal networks

One can use the definition above to obtain sensitivity grids from any critical resistor network.
However, not all network topologies give grids with good approximation properties. In
particular, the numerical results in section 5 show that the pyramidal networks work better
than the circular ones, for the partial data problem.
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Note from figure 2 that in the pyramidal networks, the nodes v1 and vn which delimit the
accessible boundary BA, are separated by n − 2 interior nodes connected by the bottommost
n− 1 horizontal edges that we associate with the inaccessible boundary BI . Thus, the number
of nodes associated with BA and BI grows at the same rate as n increases. In comparison,
all the boundary nodes of the circular networks [8, 27] are mapped in [11] to the accessible
boundary conformally or quasi-conformally. The conformal mappings preserve the isotropy
of the conductivity, but give grids with poor resolution away from the center of BA. The
quasi-conformal grids have better resolution at the price of distortions in the reconstruction,
due to the induced anisotropy of the conductivity. We believe that because the pyramidal
networks allow the simultaneous growth of the sets of nodes in association with BA and
BI , they are better suited for partial data EIT. This is supported by the numerical results in
section 5.

We illustrate in figure 4 the sensitivity functions D1γk in the unit disk D for the pyramidal
network with m = 4 layers and n = 8 boundary nodes. We use the notation (t, l, j) to
index the edges of 
n. Here t ∈ {h, v} describes the type of the edge (horizontal/vertical),
and l = 1, . . . , m determines the layer to which the edge belongs (l = m is the outermost
layer). The edges in the layer l are indexed by j , with j = 1, . . . , 2l − 1 for t = h, and
j = 1, . . . , 2l − 2 for t = v.

The supports of the measurement functions χj , used in (2.17) to define Mn(�1), are
centered at uniformly spaced points θj ∈ ∂D, j = 1, . . . , n, on the accessible boundary
BA = {θ | θ ∈ (−β, β)}. Note that θj are symmetric with respect to the middle θ = 0 of
the accessible boundary. This implies that Mn(�1) is symmetric with respect to relabeling
vj → v2m−j+1, j = 1, . . . , 2m, and so are the conductances. Thus, we only show in figure 4
the sensitivity functions for one-half of the conductances in each layer l. The other half can
be obtained from the symmetry θ → −θ .

The sensitivity functions D1γk(s) shown in figure 4 have singularities near the supports
of χj . Once we ‘regularize’ them, by setting them to zero in the vicinity of the singularities,
we observe the well-defined peaks that allow us to determine Sα,β .

In figure 5, we show the grids obtained from the maxima of the regularized sensitivity
function for two different sizes of the accessible boundary. While there is some grid refinement
toward BA, the grids remain remarkably uniform deeper inside the domain. Note also that the
neighboring points Sα,β form very regular quadrilaterals that are close to being rectangular.
This is what is typically expected from grids with good approximation properties.

5. Reconstruction method and numerical results

In this section, we present the numerical results with pyramidal networks and sensitivity
grids. The reconstruction algorithm is discussed in section 5.1. It is followed by a detailed
description of the numerical experiments in section 5.2. The reconstructions are presented for
the unit disk and for the half-plane in sections 5.3 and 5.4, respectively. In the case of the unit
disk, we compare the reconstructions with those obtained with the method in [11].

5.1. Reconstruction algorithm

Recall from section 2.5 that the reconstruction mapping Qn maps the data measurements
Mn(�σ ) ∈ Dn to the set S of positive and bounded conductivities. The algorithm that
computes Qn(Mn(�σ )) is as follows.
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Figure 4. Sensitivity functions in D for the pyramidal network with m = 4, n = 8. The edges
corresponding to each sensitivity function are indexed by (t, l, j), where t ∈ {h, v} is the type of
the edge (horizontal/vertical), l is the layer number, and j is the index of the edge in the layer. θj

are × and β = 0.52π .

Algorithm 2. To compute the reconstruction σ � = Qn(Mn(�σ )) perform the following
steps:

(1) Let β be the size of the accessible boundary, and n the number of measurement functions
χj , j = 1, . . . , n. Let Mn(�σ ) be the measurements for the unknown conductivity.
Compute Mn(�1) for the constant reference conductivity σ ≡ 1.
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Figure 5. Sensitivity grids in D for 
16. Left: β = 0.52; right: β = 0.65. Blue boxes correspond
to vertical edges, red stars correspond to horizontal edges, θj are represented by ×.

(2) Solve the discrete inverse problem (2.22) using algorithm 1, to obtain the conductances
γ

(1)

α,β .
(3) Use the solution of the discrete inverse problem from the previous step to compute the

sensitivity functions D1γ
(1)

α,β as in (4.24). Compute the maxima Sα,β of the regularized
sensitivity functions.

(4) Solve the discrete inverse problem (2.21) using algorithm 1, to obtain the conductances
γα,β .

(5) Compute the reconstruction σ � as the piecewise linear interpolation of the following
quantities:

σ �(Sα,β) = γα,β

γ
(1)

α,β

. (5.1)

We implement the piecewise linear interpolation of (5.1) by computing the Delaunay
triangulation of Sα,β . Then, the reconstruction is defined on the union T of triangles in the
triangulation. In the case of the unit disk, we remove from T the triangles that have all three
vertices at points Sα,β corresponding to the bottommost chain of horizontal resistors in 
n.
For each triangle in T, the vertex values of σ � are interpolated by a linear function.

5.2. Numerical implementation

In the first step of algorithm 2 we choose the number n of measurement functions, which
is the same as the number of the boundary nodes of the pyramidal network used for the
reconstruction. The choice of n has been studied in detail in [8, 27] for the circular networks,
and the results are applicable to the pyramidal networks as well. The main idea is that the
instability of the continuum inverse problem manifests itself as the exponential ill-conditioning
of the discrete problem. Layer-peeling algorithms typically lose about one digit of accuracy
per recovered layer. We regularize them by restricting n as explained in section 2.4. Note
that in comparison with the circular networks, for which the number of layers is roughly one
quarter of n, the pyramidal networks have a number of layers which is roughly n/2, which
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Figure 6. The conductivities used in the numerical experiments. Left: smooth conductivity sigX;
right: piecewise constant chest phantom (phantom1).

makes the layer-peeling procedure less stable. Most of the numerical experiments presented
below use noiseless data and pyramidal networks with n = 16, only for the less stable high
contrast case we set n = 14. A numerical study of the noisy data case is presented in
section 5.3.3.

For the reconstructions in the unit disk we use the same test conductivity functions as
in [8, 11, 27]. The first one is a smooth function sigX, the other is a piecewise constant
chest phantom (phantom1) [39]. Both conductivities are shown in figure 6. The high-contrast
conductivity used in section 5.3.4 is simply

σ(r, θ) =
{

1, θ ∈ [π
2 , 3π

2

]
,

C0, θ ∈ (0, π
2

) ∪ ( 3π
2 , 2π

)
,

(5.2)

where C0 is the contrast factor. In all cases the continuum data �σ were approximated with
a finite volume scheme on a very fine tensor product discretization grid (300 nodes in the
angular direction and 100 nodes in the radial direction).

Since the sensitivity grids in figure 5 only resolve the conductivity in the region T that is
slightly smaller than the convex hull of BA, we rotate the accessible boundary and the grid to
focus the resolution on the different features of the test conductivities. The rotation parameter
ω0 is chosen in such a way that the axis of symmetry of the grid is neither collinear nor
orthogonal to the axes of symmetry of test conductivities.

We compare the reconstructions with those obtained by the method of extremal quasi-
conformal mappings [11]. The method is based on circular resistor networks, which are only
recoverable for an odd n. We let n = 17 for the circular networks, which is close to n = 16
used for the pyramidal networks. The method of extremal quasi-conformal mappings is not
very flexible with respect to the choice of the ‘measurement points’ θj . The locations of
θj are determined by n, β and an additional parameter specific to the method of [11], the
artificial anisotropy factor K ∈ (0, 1]. It measures how much artificial anisotropy the method
introduces to the solution, with smaller values of K corresponding to more anisotropy, and
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Figure 7. Reconstructions of smooth conductivity sigX with m = 8, n = 16. Top row:
ω0 = 6π/10; bottom row: ω0 = 3π/10. Left column: β = 0.52π ; right column: β = 0.65π .
The sensitivity grid nodes are shown by bullets, θj are × and BA is solid red. Percentages: mean
relative errors [E].

K = 1 corresponding to the conformal mapping (no anisotropy). As a thumb rule, the choice
K ≈ β/π gives a mapping with a close to uniform distribution of θj . For the pyramidal
networks, there are no limitations on the choice of θj , which we distribute here uniformly
on BA.

To quantify the quality of the reconstructions we introduce the pointwise relative error

E(z) =
∣∣∣∣σ �(z)

σ (z)
− 1

∣∣∣∣ , z ∈ T , (5.3)
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Figure 8. Comparison of reconstructions of smooth conductivity sigX, ω0 = −π/10. Top row:
β = 0.52π ; bottom row: β = 0.65π . Left column: reconstructions with pyramidal networks and
sensitivity grids with m = 8, n = 16; middle column: conformal mapping reconstructions with
n = 17; right column: quasi-conformal mapping reconstructions with n = 17, K = 0.52 (top),
0.65 (bottom).

and the mean relative error

[E] =
∫
T

E(z) dz∫
T

dz
· 100%, (5.4)

where T is defined in section 5.1. We show the value of [E] in the top-right corner of the plots
of the reconstructions.

5.3. Reconstructions in the unit disk

We present below the reconstructions in D for the smooth and piecewise constant conductivities
of low and high contrasts. The reconstructions are computed for two sizes of the accessible
boundary, β = 0.52π (slightly more than half of ∂D) and β = 0.65π (almost two thirds
of ∂D).

5.3.1. Reconstructions of smooth conductivity. We begin in figure 7 with the reconstructions
of the smooth conductivity for ω0 = 6π/10 and ω0 = 3π/10. Both reconstructions capture
the features of the conductivity without visible distortions of the geometry. There is a slight
loss of contrast in the case ω0 = 3π/10; however, the overall error [E] is still less than 5%.
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Figure 9. Reconstructions of piecewise constant conductivity phantom1 with m = 8, n = 16. Top
row: ω0 = 4π/10; bottom row: ω0 = π/10. Left column: β = 0.52π ; right column: β = 0.65π .
The sensitivity grid nodes are shown by bullets, θj are × and BA is solid red. Percentages: mean
relative errors [E].

In figure 8, we compare the reconstructions on the sensitivity grids with those obtained
using a method of extremal quasi-conformal mappings. As was established in [11], the quality
of the quasi-conformal mapping reconstruction depends greatly on the size of the accessible
boundary. If no artificial anisotropy is introduced (K = 1, the mapping is conformal),
the measurement points are clustered toward the middle of BA, and the method fails to resolve
away from the accessible boundary. If the artificial anisotropy is allowed to spread θj more
uniformly throughout BA, the resolution is more uniform at the price of some distortions in
the geometry of the reconstruction.
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Figure 10. Comparison of reconstructions of piecewise constant conductivity phantom1,
ω0 = −3π/10. Top row: β = 0.52π ; bottom row: β = 0.65π . Left column: reconstructions
with pyramidal networks and sensitivity grids with m = 8, n = 16; middle column: conformal
mapping reconstructions with n = 17; right column: quasi-conformal mapping reconstructions
with n = 17, K = 0.52 (top), 0.65 (bottom).

We observe in figure 8 that in the case β = 0.52π , both the conformal and quasi-conformal
reconstructions have a mean relative error that is three times larger than the reconstruction
on the sensitivity grid. As we expand BA to β = 0.65π , the quasi-conformal solution shows
some improvement, but it still has a larger error [E]. Thus, the approach with pyramidal
networks and sensitivity grids is superior, because it gives a uniform resolution, and it does
not introduce any distortions.

5.3.2. Reconstructions of piecewise constant conductivity. Let us now consider
reconstructions of the piecewise constant chest phantom. We refer to the low- and high-
conductivity regions of the phantom as the lungs and the heart, respectively. In figure 9, we
show the reconstructions for ω0 = 4π/10 and ω0 = π/10.

We observe that the reconstructions have a much larger error [E] compared to those for
the smooth conductivity sigX. This is due to an analog of the Gibbs phenomenon, as the
method overestimates or underestimates the discontinuous conductivity near the interfaces of
discontinuity6. In figure 9, this phenomenon is more pronounced in the case ω0 = π/10,
especially for β = 0.52π , where we observe three overshoots near the right lung.

6 These oscillations may be removed later, by adding a total variation penalty term when implementing the Gauss–
Newton iteration to solve (2.24), as was done in [8, 27].
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Figure 11. Reconstructions of high contrast piecewise constant conductivity with m = 7, n = 14,
ω0 = −11π/20. Top row: reconstructions; bottom row: pointwise relative error E(z). Left
column: β = 0.52; right column: β = 0.65. The sensitivity grid nodes are shown by bullets, θj

are × and BA is solid red.

In figure 10, we compare the performance of our method with the method of extremal
quasi-conformal mappings. Similar to the case of smooth conductivity, the reconstructions
on the sensitivity grids are superior, with a mean relative error that is half of the error of the
conformal and quasi-conformal reconstructions.

5.3.3. Noisy data reconstructions. Following [8], we study the reconstructions from noisy
data by adding multiplicative mean zero Gaussian noise to the approximated kernel of �σ .
Then, we choose the largest network size n for which algorithm 1 yields positive conductances.
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Table 1. Noisy data reconstruction errors. Piecewise constant conductivity phantom1, ω0 =
−3π/10, β = 0.52π .

Noise level 0% 0.1% 0.5% 1% 5%

n 16 12 10 10 8
Error [E] 14.7% 15.9% 17.2% 18.6% 19.0%
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Figure 12. Optimal grids in the half-plane. Left: sensitivity grid computed directly (n = 14);
right: sensitivity grid mapped conformally from the unit disk (n = 16). Blue boxes correspond to
vertical edges, red stars correspond to horizontal edges and measurement points xj are black ×.

In table 1, we present mean relative errors [E] for the reconstructions from the noisy data in
the same setting as in the top row of figure 10 for a typical realization of Gaussian noise.

As expected from the exponential ill-conditioning of the problem, the network size quickly
decreases. However, the reconstruction error [E] does not grow exponentially with the noise
level.

5.3.4. High contrast reconstructions. An advantage of the reconstruction mapping based on
resistor networks is that it is obtained from the full nonlinear inverse problem, without artificial
regularization, aside from limiting the size of the networks. Thus, it avoids the problems of
many other approaches that often struggle to recover high-contrast features of σ(x). The
numerical results in this section show that our reconstructions capture contrasts that are orders
of magnitude larger than those recoverable by traditional approaches.

In the top row of figure 11, we present reconstructions of the piecewise constant
conductivity 5.2, with exceptionally large contrast C0 = 104. The mean relative error does
not give a clear estimate of the quality of the reconstruction for such a large contrast, so we
use the pointwise relative error E(z) instead, which we show in the bottom row of figure 11.

Our method is able to capture both the location of the interface of discontinuity and the
values of the conductivity on both sides of the interface. While the relative error is large
near the interface due to the spurious oscillations, away from the interface the error is less
than 5%. Note that these reconstructions are achieved without any special assumptions on the
conductivity, which shows the versatility of the method.
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Figure 13. Reconstruction in the half-plane with m = 8, n = 16. Top row: smooth conductivity
σg ; bottom row: piecewise constant conductivity σl . Left column: true conductivities; right
column: reconstructions. The grid nodes are shown by bullets, xj are black × and percentages are
[E].

5.4. Reconstructions in the half-plane

We already mentioned in section 4.4 that the pyramidal networks are better suited for the
partial data EIT problem, because of the fixed ratio of the number of nodes associated
with the accessible and inaccessible parts of the boundary. The sensitivity grids obtained
from these networks have good approximation properties for order 1 ratios of the accessible
and inaccessible boundary, as illustrated with the numerical results above. When this ratio
approaches infinity, we are basically in the full boundary measurement case, where the circular
networks are more appropriate [8, 11, 27]. Here we discuss the other limit, where the ratio
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tends to zero. This limit arises when considering the EIT problem in the lower half-plane R2
−,

with measurements limited to a finite segment of the horizontal axis.
Let BA = [−1, 1] be the accessible boundary, and let the ‘measurement points’ xj ∈ BA

be the centers of the supports of the measurement functions χj (x). It was observed in [11]
that the distribution of the measurement points had a profound influence on the optimal grids
obtained with circular networks. Here, we show that the same is true for the pyramidal
ones.

If we attempt to compute the sensitivity grid for an arbitrarily chosen distribution of xj,
it will likely have poor properties for inversion. See, for example, the grid shown in the
left plot of figure 12. To get a good grid, in this limit case of zero ratio of accessible to
inaccessible boundary, we use conformal mappings. Explicitly, we map conformally a grid
that has good properties in one domain (e.g. the unit disk with measurements at points θj ,
uniformly distributed on half of the boundary) to the half-plane, with measurements in BA.
We use conformal mappings to preserve the isotropy of the conductivity and the angles of the
grid lines, as explained in [11].

The grid in the right plot of figure 12 is obtained with the conformal fractional linear
transform w : D → R2

− given by

w(z) = ih
z̄ − 1

z̄ + 1
, h = tan

(
π − β

2

)
(5.5)

for which the distribution of xj is

xj = h cot

(
π − θj

2

)
, j = 1, . . . , n. (5.6)

We observe that the distribution of the nodes of the resulting grid is very regular, and
there is greater penetration depth compared to that of the grid computed directly from the
regularized sensitivity functions. The numerical reconstructions in figure 13 are obtained with
the conformally mapped grid.

Similar to the study in D, we reconstruct both a smooth and a piecewise constant
conductivities in R2

−. The smooth conductivity σg consists of a single inclusion in
the homogeneous background medium modeled by a Gaussian. The piecewise constant
conductivity σl has three horizontal layers. Both test conductivities are shown in the left
column of figure 13. The reconstructions are shown in the right column.

As in the case of the unit disk, we observe a much smaller error [E] for the reconstruction
of a smooth conductivity compared to that of the reconstruction of the piecewise constant
σl . While both the position and the magnitude of the Gaussian inclusion are determined
with high precision, the magnitude of the middle layer of σl is somewhat overestimated, and
there are also two symmetric overshoots in the top layer. However, the overall quality of the
reconstruction is comparable to what we observe in the unit disk, which shows that our method
is versatile with respect to the choice of the domain.

6. Summary

We have introduced a novel reconstruction method for two-dimensional EIT with partial
boundary measurements. The reconstruction is to be used in the inversion algorithm presented
in [8, 27]. It is based on a model reduction approach that encodes the information about the
unknown conductivity function σ in few parameters. As in [8, 11, 27], the reduced models
are well connected, critical resistor networks that arise in finite volume discretizations of the
elliptic partial differential equation for the potential. The networks are consistent with the
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discrete measurements of the DtN map �σ , and since they are critical (they have no redundant
connections), they are uniquely recoverable from them. The pyramidal network topology
considered here is different than the circular one in [8, 11, 27], and it is better suited for the
partial measurement setup.

We have shown the unique solvability of the inverse problem for pyramidal resistor
networks, and have introduced a layer-peeling algorithm that recovers them from the
measurements Mn(�σ ) of the DtN map at n boundary points, in a finite number of algebraic
steps. We regularize the algorithm by limiting the size of the network, thus obtaining a sparse
parameterization of the unknown conductivity function.

The reconstruction of σ amounts to defining a mapping Qn from the measurements
Mn(�σ ) to the set of positive and bounded scalar conductivity functions. This mapping is
obtained from the conductances of the pyramidal network (the reduced model), interpreted as
averages of σ on an optimal grid.

Unlike the optimal grids introduced in [4, 21, 22, 30] for forward problems, or the
ones considered in [7, 8, 11, 27] for inverse problems, the grids defined here are truly
two dimensional. We call them sensitivity optimal grids because they are computed using
the sensitivity functions of conductances of pyramidal networks obtained by solving the
inverse problem for measurements Mn(�1). These grids are defined so that finite volume
approximations on them compute the measurements of the DtN map exactly for the case
of constant conductivity σ ≡ 1. What is crucial for inversion is that they have very good
extrapolation properties for a wide class of conductivity functions, not just σ ≡ 1. This is why
the reconstruction mapping defined on them is an approximate inverse of the forward map,
and can be used as a preconditioner in the inversion algorithm [8, 27].

We have demonstrated the versatility of our reconstruction approach with numerical
simulations that include cases of discontinuous conductivity with exceptionally high contrast.
We have also compared our results with those given by an alternative approach presented
in a recent paper [11]. The method in [11] shows how to extend the reconstruction method
introduced in [8, 27] to the partial measurements case. It uses circular resistor networks
and extremal quasi-conformal mappings to transform the problem with measurements on
the accessible boundary BA ⊂ B to one with measurement points distributed uniformly on
the entire boundary B. It is shown in [11] that the restriction of the measurements to BA

induces a coordinate transformation of the optimal grids resulting from the circular networks,
which must be undone by the quasi-conformal mappings. This in turn induces an artificial
anisotropy of the transformed conductivity, which is why the reconstructions have distortions.
The smaller BA is, the worse the reconstructions are in [11].

Our motivation for this paper came from the realization that the problems of the
reconstructions in [11] are due to the essentially one-dimensional structure of the optimal
grids, and the inadequate topology of the reduced models, the circular resistor networks, for
the partial measurements setup. The pyramidal networks presented here are much better
suited for this problem. The resulting two-dimensional grids are far superior to those in [11],
in terms of distribution and refinement properties in the domain, and they give more accurate
reconstructions.
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Appendix A. Proof of lemma 1

Our proof is based on the observation that the pyramidal graphs have a self-similarity property.
If we remove (peel) the layer of edges of 
n that emanate from the boundary nodes, the resulting
graph is 
n−2. The number of layers that we can peel until no edges is left is m, and it is
related to the number of the boundary nodes as n = 2m or n = 2m − 1. Here, we give the
proof in the case of even n. Its extension to odd n is straightforward.

Proof. To prove that the network is critical we must construct for every edge e ∈ E a
circular pair (Pe;Qe) ∈ π(
n), such that the connection between Pe and Qe is broken when
e is removed (deleted) from 
n. We do so in two steps. First, we show that circular pairs
(P ;Q) of maximal size |P | = |Q| = m are uniquely connected. Then, we demonstrate how
to construct such a pair, whose unique connection passes through a given edge e. Therefore,
the deletion of e must break the connection.
Unique connectivity of maximal circular pairs: we show by induction over n = 2m that any
circular pair (P ;Q) of maximal size |P | = |Q| = m is uniquely connected through 
n. Since

|P | + |Q| = 2m = n = |YB |,
we have YB = P ∪ Q and we can write, without loss of generality,

P = {vs+1, . . . , vs+m}, Q = {vs+m+1, . . . , v2m, v1, . . . , vs}, (A.1)

for some integer s satisfying 1 < s � m. The induction step is 4, so we consider two base
cases: n = 2 and n = 4. The case n = 2 is trivial, because 
2 is a single resistor connecting
the two boundary nodes v1 and v2. In the case n = 4, there exist two maximal circular pairs
(up to swapping P and Q) P = {v2, v3}, Q = {v1, v4}, and P = {v3, v4}, Q = {v1, v2}. The
unique connections are illustrated in figure A1.

Now, the subgraphs 
j of 
n, for j = 2, 4, . . . , n−2, are obtained by repeated peeling of
the layers of edges adjacent to the boundary, and subsequent relabeling of the nodes adjacent
to the peeled edges as the boundary nodes. In particular, we obtain 
n−4 by peeling two layers
from 
n.

The inductive hypothesis says that every maximal circular pair (P ′;Q′) of 
n−4 is
connected by a unique set of disjoint paths in 
n−4. To show that the maximal pair (A.1) of

n is uniquely connected through the graph 
n, we must show that (P ;Q) must be connected
to a maximal pair (P ′;Q′) of 
n−4, which we denote by

P ′ = {ws,ws+1, . . . , ws+m−3}, Q′ = {ws+m−2, . . . , w2m−4, w1, . . . , ws−1}. (A.2)
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Figure A2. Induction step from 
n−4 to 
n: the connection between (P ; Q) and (P ′; Q′). Nodes
in P and P ′ are ◦ and nodes in Q and Q′ are ×. Edges not in the connection are thin solid, edges
in the connection are thick solid. Dashed–dotted lines bound 
n−4 (not actual edges).

Furthermore, the connection is unique. The construction is illustrated in figure A2, and we
distinguish two cases.

Case 1 < s < m. The connection is constructed starting with v1, v2m ∈ Q. Since these nodes
are connected to 
n by horizontal edges only, these edges must be added to the connecting
paths. Moreover, the paths must continue along horizontal edges to w1 and w2m−4, because if
we take vertical edges, we reach the boundary nodes v2, v2m−1, which we are not allowed to
touch.

Next, we observe that there is a unique way of connecting v2 and v2m−1 to w2 and w2m−5,
which is also by horizontal edges. Indeed, if we added the vertical edges to the paths, the
paths would intersect with the horizontal edges added at the previous step. Similarly, we build
the paths connecting the nodes from Q to Q′, until we reach vs and vs+m+1. Arguing as before,
all the edges must be horizontal.

It remains to connect the nodes in P. We start from vm, vm+1 ∈ P , and since they are not
allowed to be connected by a common horizontal edge, we add two vertical edges to the paths.
The next two edges must also be vertical, otherwise the paths would either intersect, or touch
the boundary at vm−1 or vm+2. We repeat this argument for other nodes in P until we reach vs+1

and vs+m. For each of the nodes vs+1 ∈ P and vs+m ∈ P we add one vertical edge, at which
point they meet with the horizontal edges added for vs ∈ Q and vs+m+1 ∈ Q, which completes
the paths for these two pairs of nodes.

Thus, we have constructed the paths between vs+1 ∈ P and vs ∈ Q, and between vs+m ∈ P

and vs+m+1 ∈ Q, while the remaining nodes in P and Q are connected by a unique set of paths
(horizontal for Q and vertical for P) to the nodes in P ′ and Q′. Invoking the induction
hypothesis for the maximal pair (P ′;Q′) in 
n−4, we conclude that (P ;Q) is connected by a
unique set of paths through 
n, for 1 < s < m.

Case s = m. Arguing as above, the nodes of P = {vm+1, . . . , v2m} and Q = {v1, . . . , vm}
are connected to P ′ and Q′ by horizontal edges, since v1 ∈ Q and v2m ∈ P . A circular
pair (P ′;Q′) has the form P ′ = {wm−1, . . . , w2m−4}, Q′ = {w1, . . . , wm−2}, and vm ∈ Q

is connected to vm+1 ∈ P by a common horizontal edge. Then, the result follows by the
induction hypothesis for the maximal pair (P ′;Q′) in 
n−4. Connection through a given edge.
To complete the proof we need to show how to construct a maximal circular pair (Pe;Qe) for
any given edge e, such that the unique connection passes through e. First, consider a horizontal
edge e. As we showed above for P = {vm+1, . . . , v2m} and Q = {v1, . . . , vm}, the unique
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Figure A3. Left: two circular subsets of boundary nodes to choose from. Nodes in an even subset
are �, nodes in the odd subset are boxes. Right: construction of (Pe, Qe), nodes in Pe are ◦, nodes
in Qe are ×.

connection passes through all horizontal edges of 
n. Thus, the deletion of any horizontal
edge breaks the connection.

Let e = (t, b) be a vertical edge with end nodes t (top) and b (bottom). We follow the
vertical edges from t up to the boundary node p that we add to Pe. We also consider a horizontal
line of edges passing through the node b. We denote the boundary end nodes of this line by
ql ∈ B (left one) and qr ∈ B (right one), as shown in the left plot in figure A3.

Consider a subgraph of 
n consisting of its upper part lying on and above the horizontal
line of edges connecting ql and qr. This subgraph is itself pyramidal with an even number of
the boundary nodes. Thus, one of the two subsets of the boundary nodes lying either between
p and qr, or between ql and p, must have an even number of nodes (zero is considered even).
We choose the subset with the even number of nodes and let q be either qr or ql depending on
which subset we chose. Then, we add q to Qe.

The rest of Pe and Qe is populated as follows. Consider the two circular subsets of the
boundary nodes between p and q, and between q and p. Both subsets have an even number of
nodes. Half of the nodes in each subset we add to Pe, and another half we add to Qe, depending
on whether the node is closest to p or q, respectively. This is illustrated in figure A3.

Now, we have constructed the maximal pair (Pe;Qe), which must be connected by a
unique set of m disjoint paths, as proved at step 1. Moreover, the path from p to q must consist
of the following two segments: the line of vertical edges from b to p (this includes e) and the
line of horizontal edges from b to q. Indeed, since p ∈ Pe, the construction of the unique
path (step 1) shows that it should be connected to P ′

e by vertical edges, which in turn is also
connected to P ′′

e by vertical edges, and so on. Here, we use the notation at step 1, with P ′
e

being the set of m − 2 points on the boundary of 
n−4 and P ′′
e being the set of m − 4 points

on the boundary of 
n−8.
A similar argument for q ∈ Qe shows that its segment of the path consists of the horizontal

edges. By the construction of p and q, these two path segments intersect at b. Finally, since
the connection for (Pe;Qe) is unique, and the path between p ∈ Pe and q ∈ Qe contains
e ∈ E, deleting e from 
n breaks the connection, which completes the proof. �

Appendix B. Proof of theorem 1

The outline of the proof is as follows. First, we show that special solutions corresponding to
the excitations defined at steps 1 and 2 of the algorithm, if they exist, give a unit potential drop
on the edges emanating from the boundary node vp. Then, we show the existence of such
solutions. Finally, we establish formula (3.3) for the updated DtN map.

Proof. Special solutions with a unit potential drop: recall that YB = {v1, . . . , v2m} is the set
of the boundary nodes of 
n, and S = {w1, . . . , w2m−2} is the set of the boundary nodes of

n−2. This is the subgraph of 
n obtained by peeling the edges emanating from the nodes in
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Figure B1. Special solutions. Left: special solution for γ (ep,h); right: special solution for
γ (ep,v). Nodes with zero potential are ◦ and nodes with unit potential are ×. Edges to be peeled
are thick solid. Narrow solid lines bound 
n−2 (not actual edges).

YB. Let ep,h = (vp,wp), ep,v = (vp,wp−1), respectively, be the horizontal and vertical edges
emanating from vp ∈ YB .

We construct the special solutions u(p,h) and u(p,v) so that the potential drop on ep,h and
ep,v is 1, and we can recover γ (ep,h) and γ (ep,v) from the measured current J (h)

p and J (v)
p ,

respectively. The behavior of the special solutions is illustrated in figure B1.
Consider first the case 1 � p � m, and begin the construction of the special solution

u(p,h) by setting the boundary conditions. The boundary conditions are stated in terms
of the following subsets of YB: H = {v1, . . . , vp}, Z = {v1, . . . , vp−1, vp+1, . . . , vm},
F = {vp+1, . . . , vm+1} and C = {vm+2, . . . , v2m}. If we denote by φ the boundary potential,
then its restriction to C, denoted by φC , is determined from the combination of the Dirichlet
and Neumann data⎧⎨⎩

φH = 1,

φF = 0,

JZ = 0.

(B.1)

This is shown later in the proof, where we establish the existence of special solutions.
Now, let us denote by ψ the restriction of the potential to S. The current at the boundary

node vj is given by

Jj = γ (ej,h)(φj − ψj) + γ (ej,v)(φj − ψj−1), (B.2)

for all nodes in YB, except v1 and v2m, where only the first term is present. This is because there
is only one horizontal edge emanating from each of these two nodes. We show by induction
that u(p,h), the potential drop on ep,h is one, and the drop on ep,v is zero. Thus, according
to (B.2),

γ (ep,h) = J (h)
p . (B.3)

Let us first show that ψp−1 = 1. Since v1 ∈ Z ∩ H , equation (B.2) for j = 1 gives

0 = J
(h)
1 = γ (e1,h)(1 − ψ1); therefore, ψ1 = 1.

Next, we proceed by induction in j = 2, . . . , p − 1, vj ∈ Z ∩ H . Suppose that ψj−1 = 1,
then (B.2) becomes

0 = γ (ej,h)(1 − ψj),

which becomes ψp−1 = 1 for j = p − 1.
Now we use another induction argument to show that ψp = 0. Since vm ∈ Z ∩ F and

vm+1 ∈ F , equation (B.2) for j = m gives

0 = J (h)
m = γ (em,h)(φm − φm+1) + γ (em,v)(φm − ψm−1) = −γ (em,v)ψm−1;
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v1

vp−1

vp

vp+1

vm

wp

wm−1
vm+2

v2m−p+1

v2m−p+2

v2m

Figure B2. Connection for (Z; C). Nodes in Z are ◦ and nodes in C are ×. The paths are thick
solid lines, and edges not in the paths are narrow solid lines. Nodes at the intersections of the
vertical and horizontal path segments are ∇.

thus, ψm−1 = 0. We proceed by induction in j = m − 1, . . . , p + 1, where vj ∈ Z ∩ F .
Suppose that ψj = 0, then (B.2) gives

0 = γ (ej,v)(0 − ψj−1),

and if we set j = p + 1, we get ψp = 0. We have just established that ψp−1 = 1, ψp = 0, and
since φp = 1, (B.3) holds.

To determine γ (ep,v), we construct a special solution u(p,v) in a similar manner. Sets Z
and C are the same as for u(p,h), while V = {vp, . . . , vm+1} and F = {v1, . . . , vp−1}. The
boundary conditions are determined by (B.1), with H being replaced by V. An induction
argument similar to the one above shows that the potential drop on ep,h is zero, and the drop
on ep,v is 1. Thus,

γ (ep,v) = J (v)
p . (B.4)

Existence of special solutions. We now establish the existence of solutions with the boundary
conditions (B.1), by converting them to the Dirichlet conditions, for which existence and
uniqueness are known [15]. Since conditions on φH and φF are Dirichlet, we need to convert
JZ = 0 to a Dirichlet condition on φC , C = YB\(H ∪ F). We rewrite JZ = 0 using the DtN
map as

0 = �
(n)
Z,F φF + �

(n)
Z,H φH + �

(n)
Z,CφC, (B.5)

which is combined with (B.1) to get

φC = −(�(n)
Z,C

)−1
�Z,H 1H , (B.6)

where 1H is a column vector of 1’s of size |H |. Thus, the question of the existence of the
special solution is equivalent to det �(n)

Z,C �= 0.

To show the invertibility of �
(n)
Z,C , we use the result from [15, theorem 4.2], which says that

for a circular pair (P ;Q) with |P | = |Q| = k, the condition (−1)k det �P,Q > 0 is satisfied if
and only if (P ;Q) is connected through the network; otherwise det �P,Q = 0. We demonstrate
that (Z;C) ∈ π(
n) by constructing the connection explicitly, as shown in figure B2.

For j = 1, . . . , p − 1, we connect vj ∈ Z and v2m−j+1 ∈ C with paths of horizontal
edges. For j = p + 1, . . . , m, we connect vj ∈ Z and v2m−j+2 ∈ C with paths consisting
of one vertical edge ej,v = (vj , wj−1) and a path of horizontal edges connecting wj−1

and v2m−j+2.
Recall that so far we considered the case 1 � p � m. The case m + 1 � p � 2m is

similar. In fact, since 
n is symmetric with respect to the vertical axis, the argument becomes
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identical to the previous one if we relabel the boundary nodes vj → v2m−j+1, j = 1, . . . , 2m.
This exhausts all possible vp ∈ B, and we can finally obtain the formulas (3.1) and (3.2) by
substituting (B.6) into

Jp = �
(n)
p,H φH + �

(n)
p,CφC, and Jp = �

(n)
p,V φV + �

(n)
p,CφC.

DtN map update formula. Once we know the conductances of the edges emanating from
YB, we peel the outer layer and reduce the inverse problem to the 1 for the smaller network
(
n−2, γ ). It remains to derive the DtN map �(n−2) ∈ R(n−2)×(n−2) of this network.

We rewrite equation (2.5) using the specific structure of the DtN map of (
n, γ ). The
graph 
n consists of m layers of nodes. Each layer is a set of boundary nodes of 
2j ,
j = 1, . . . , m. The layer j is connected by paths of length 1 only to the two adjacent layers
j − 1 and j + 1 (except for j = 1,m). Thus, the Kirchhoff matrix K of (
n, γ ) has a block
tridiagonal structure

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

K11 K12 0 · · · 0
K21 K22 K23 · · · 0

0 K32
. . .

. . .
...

...
...

. . . KSS KSB

0 0 · · · KBS KBB

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
[
KII KIB

KBI KBB

]
. (B.7)

Here Kjj ∈ R2j×2j , j = 1, . . . , m, are the diagonal blocks with Km−1,m−1 = KSS ,
Km,m = KBB . Furthermore, Kj,j+1 ∈ R2j×(2j+2), Kj,j+1 = KT

j+1,j , j = 1, . . . , m − 1,
are the off-diagonal blocks corresponding to the connections between the layers j and j + 1.

Using (B.7) we rewrite (2.5) as

�(n) = KBB − KBS

(
K−1

II

)
SS

KSB. (B.8)

We can also relate the potential φ at the boundary YB of 
n to the potential ψ at the boundary
S of 
n−2 via

KBSψ = (�(n) − KBB)φ. (B.9)

Recall that the matrix of the DtN map is defined as the current response for boundary potential
excitations that are the columns of an identity matrix. Thus, we rewrite (B.9) in the matrix form
with an identity matrix � = In−2 and an unknown � ∈ Rn×(n−2), to obtain an overdetermined
matrix equation

KBS = (�(n) − KBB)�, (B.10)

that we now show to be solvable.
Note that once we recover the conductance for the edges emanating from YB, we know

the blocks KBS and KBB of the Kirchhoff matrix K. Let M = (�(n) − KBB), and obtain from
(B.8) that

M = −KBS

(
K−1

II

)
SS

KSB. (B.11)

To show that (B.10) is solvable, we need to show that M is a full rank. We do so by considering
a block LDU decomposition of KII. Since KII is a block tridiagonal, it admits the decomposition

KII =

⎡⎢⎢⎢⎢⎣
I 0

L1 I
. . .

. . .
. . . 0

Lm−2 I

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

D1 0

0 D2
. . .

. . .
. . . 0
0 Dm−1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

I U1

0 I
. . .

. . .
. . . Um−2

0 I

⎤⎥⎥⎥⎥⎦ , (B.12)
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where all blocks Dj, j = 1, . . . , m−1, are non-singular, because KII is invertible. If we denote
the diagonal blocks of K−1

II by Zj, j = 1, . . . , m − 1, it can be shown [23, 25, 44] that they
satisfy

Zm−1 = D−1
m−1, (B.13)

Zj = D−1
j + UjZj+1Lj , j = m − 2, . . . , 1. (B.14)

Of particular interest to us is (B.13), which gives Zm−1 = D−1
m−1 = (

K−1
II

)
SS

; hence,
(
K−1

II

)
SS

is invertible. Since 
n is connected, the blocks KBS and KSB are of full rank. This establishes
that M is of full rank.

We can now solve equation (B.10). Let P ∈ R(n−2)×n be of a full rank projector, so that
PP T = In−2. Then, if we search for � in the form � = P T �̂, we obtain from (B.10) that

PKBS = PMP T �̂, (B.15)

� = P T (PMP T )−1PKBS. (B.16)

The final step in deriving �(n−2) is to write the Kirchhoff law for the nodes in S. If
G = YI\S, then

KSGuG + (KS + KG)ψ + KSBφ = 0, (B.17)

where we split KSS in two parts KSS = KS + KG, corresponding to the edges connecting S to
YB and S to G, respectively. The DtN map of (
n−2, γ ) is then the current from S to B, given
by

JSB = −KSψ − KSBφ,

which we rewrite in the matrix form using � = In−2 and (B.16), to obtain (3.3). �

References

[1] Alessandrini G 1988 Stable determination of conductivity by boundary measurements Appl. Anal. 27 153–72
[2] Allers A and Santosa F 1991 Stability and resolution analysis of a linearized problem in electrical impedance

tomography Inverse Problems 7 515–33
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