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Resistor network approaches to electrical
impedance tomography
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AND ALEXANDER V. MAMONOV

We review a resistor network approach to the numerical solution of the inverse
problem of electrical impedance tomography (EIT). The networks arise in the
context of finite volume discretizations of the elliptic equation for the electric
potential, on sparse and adaptively refined grids that we call optimal. The
name refers to the fact that the grids give spectrally accurate approximations
of the Dirichlet to Neumann map, the data in EIT. The fundamental feature of
the optimal grids in inversion is that they connect the discrete inverse problem
for resistor networks to the continuum EIT problem.

1. Introduction

We consider the inverse problem of electrical impedance tomography (EIT) in
two dimensions [Borcea 2002]. It seeks the scalar valued positive and bounded
conductivity �.x/, the coefficient in the elliptic partial differential equation for
the potential u 2 H 1.�/,

r � Œ�.x/ru.x/�D 0; x 2�: (1-1)

The domain� is a bounded and simply connected set in �2 with smooth boundary
�. Because all such domains are conformally equivalent by the Riemann mapping
theorem, we assume throughout that � is the unit disk,

�D fx D .r cos �; r sin �/; r 2 Œ0; 1�; � 2 Œ0; 2�/g : (1-2)

The EIT problem is to determine �.x/ from measurements of the Dirichlet to
Neumann (DtN) map ƒ� or equivalently, the Neumann to Dirichlet map ƒ|

� .
We consider the full boundary setup, with access to the entire boundary, and the
partial measurement setup, where the measurements are confined to an accessible
subset �A of �, and the remainder �I D � n �A of the boundary is grounded
(uj�I

D 0).
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The DtN mapƒ� W H 1=2.�/! H �1=2.�/ takes arbitrary boundary potentials
u� in the trace space H 1=2.�/ to normal boundary currents

ƒ�u�.x/D �.x/n.x/ � ru.x/; x 2 �; (1-3)

where n.x/ is the outer normal at x 2 � and u.x/ solves (1-1) with Dirichlet
boundary conditions

u.x/D u�.x/; x 2 �: (1-4)

Note that ƒ� has a null space consisting of constant potentials and thus, it is
invertible only on a subset � of H �1=2.�/, defined by

� D

�
J 2 H �1=2.�/ such that

Z

�
J.x/ds.x/D 0

�
: (1-5)

Its generalized inverse is the NtD mapƒ|

� W � ! H 1=2.�/, which takes boundary
currents J� 2 � to boundary potentials

ƒ|

�J�.x/D u.x/; x 2 �: (1-6)

Here u solves (1-1) with Neumann boundary conditions

�.x/n.x/ � ru.x/D J�.x/; x 2 �; (1-7)

and it is defined up to an additive constant, that can be fixed for example by
setting the potential to zero at one boundary point, as if it were connected to the
ground.

It is known that ƒ� determines uniquely � in the full boundary setup [Astala
et al. 2005]. See also the earlier uniqueness results [Nachman 1996; Brown
and Uhlmann 1997] under some smoothness assumptions on � . Uniqueness
holds for the partial boundary setup as well, at least for � 2 C 3C�. N�/ and � > 0,
[Imanuvilov et al. 2008]. The case of real-analytic or piecewise real-analytic �
is resolved in [Druskin 1982; 1985; Kohn and Vogelius 1984; 1985].

However, the problem is exponentially unstable, as shown in [Alessandrini
1988; Barceló et al. 2001; Mandache 2001]. Given two sufficiently regular
conductivities �1 and �2, the best possible stability estimate is of logarithmic
type

k�1 � �2kL1.�/ � c
ˇ̌
log kƒ�1

�ƒ�2
kH 1=2.�/;H �1=2.�/

ˇ̌
�˛
; (1-8)

with some positive constants c and ˛. This means that if we have noisy measure-
ments, we cannot expect the conductivity to be close to the true one uniformly
in �, unless the noise is exponentially small.

In practice the noise plays a role and the inversion can be carried out only
by imposing some regularization constraints on � . Moreover, we have finitely
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many measurements of the DtN map and we seek numerical approximations of
� with finitely many degrees of freedom (parameters). The stability of these
approximations depends on the number of parameters and their distribution in
the domain �.

It is shown in [Alessandrini and Vessella 2005] that if � is piecewise constant,
with a bounded number of unknown values, then the stability estimates on � are
no longer of the form (1-8), but they become of Lipschitz type. However, it is
not really understood how the Lipschitz constant depends on the distribution of
the unknowns in �. Surely, it must be easier to determine the features of the
conductivity near the boundary than deep inside �.

Then, the question is how to parametrize the unknown conductivity in numer-
ical inversion so that we can control its stability and we do not need excessive
regularization with artificial penalties that introduce artifacts in the results. Adap-
tive parametrizations for EIT have been considered for example in [Isaacson
1986; MacMillan et al. 2004] and [Ben Ameur et al. 2002; Ben Ameur and
Kaltenbacher 2002]. Here we review our inversion approach that is based on
resistor networks that arise in finite volume discretizations of (1-1) on sparse
and adaptively refined grids which we call optimal. The name refers to the fact
that they give spectral accuracy of approximations of ƒ� on finite volume grids.
One of their important features is that they are refined near the boundary, where
we make the measurements, and coarse away from it. Thus they capture the
expected loss of resolution of the numerical approximations of � .

Optimal grids were introduced in [Druskin and Knizhnerman 2000b; 2000a;
Ingerman et al. 2000; Asvadurov et al. 2000; 2003] for accurate approximations
of the DtN map in forward problems. Having such approximations is important
for example in domain decomposition approaches to solving second order partial
differential equations and systems, because the action of a subdomain can be
replaced by the DtN map on its boundary [Quarteroni and Valli 1999]. In addition,
accurate approximations of DtN maps allow truncations of the computational
domain for solving hyperbolic problems. The studies in [Druskin and Knizhner-
man 2000b; 2000a; Ingerman et al. 2000; Asvadurov et al. 2000; 2003] work
with spectral decompositions of the DtN map, and show that by just placing grid
points optimally in the domain, one can obtain exponential convergence rates
of approximations of the DtN map with second order finite difference schemes.
That is to say, although the solution of the forward problem is second order
accurate inside the computational domain, the DtN map is approximated with
spectral accuracy. Problems with piecewise constant and anisotropic coefficients
are considered in [Druskin and Moskow 2002; Asvadurov et al. 2007].

Optimal grids are useful in the context of numerical inversion, because they
resolve the inconsistency that arises from the exponential ill posedness of the
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problem and the second order convergence of typical discretization schemes
applied to (1-1), on ad-hoc grids that are usually uniform. The forward problem
for the approximation of the DtN map is the inverse of the EIT problem, so
it should converge exponentially. This can be achieved by discretizing on the
optimal grids.

In this article we review the use of optimal grids in inversion, as it was
developed over the last few years in [Borcea and Druskin 2002; Borcea et al.
2005; 2008; Guevara Vasquez 2006; Borcea et al. 2010a; 2010b; Mamonov
2010]. We present first, in Section 3, the case of layered conductivity � D �.r/

and full boundary measurements, where the DtN map has eigenfunctions eik�

and eigenvalues denoted by f .k2/, with integer k. Then, the forward problem
can be stated as one of rational approximation of f .�/, for � in the complex
plane, away from the negative real axis. We explain in Section 3 how to compute
the optimal grid from such rational approximants and also how to use it in
inversion. The optimal grid depends on the type of discrete measurements that
we make ofƒ� (i.e., f .�/) and so does the accuracy and stability of the resulting
approximations of � .

The two-dimensional problem � D �.r; �/ is reviewed in Sections 4 and 5.
The easier case of full access to the boundary, and discrete measurements at n

equally distributed points on � is in Section 4. There, the grids are essentially
the same as in the layered case, and finite-volume discretization leads to circular
networks with topology determined by the grids. We show how to use the discrete
inverse problem theory for circular networks developed in [Curtis et al. 1994;
1998; Ingerman 2000; Colin de Verdière 1994; Colin de Verdière et al. 1996]
for the numerical solution of the EIT problem. Section 5 considers the more
difficult, partial boundary measurement setup, where the accessible boundary
consists of either one connected subset of � or two disjoint subsets. There, the
optimal grids are truly two-dimensional and cannot be computed directly from
the layered case.

The theoretical review of our results is complemented by some numerical
results. For brevity, all the results are in the noiseless case. We refer the reader
to [Borcea et al. 2011] for an extensive study of noise effects on our inversion
approach.

2. Resistor networks as discrete models for EIT

Resistor networks arise naturally in the context of finite volume discretizations
of the elliptic equation (1-1) on staggered grids with interlacing primary and
dual lines that may be curvilinear, as explained in Section 2.1. Standard finite
volume discretizations use arbitrary, usually equidistant tensor product grids. We
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consider optimal grids that are designed to obtain very accurate approximations
of the measurements of the DtN map, the data in the inverse problem. The
geometry of these grids depends on the measurement setup. We describe in
Section 2.2 the type of grids used for the full measurement case, where we have
access to the entire boundary �. The grids for the partial boundary measurement
setup are discussed later, in Section 5.

2.1. Finite volume discretization and resistor networks. See Figure 1 for an
illustration of a staggered grid. The potential u.x/ in (1-1) is discretized at the
primary nodes Pi;j , the intersection of the primary grid lines, and the finite-
volume method balances the fluxes across the boundary of the dual cells Cij ,

Z

Ci;j

r � Œ�.x/ru.x/� dx D

Z

@Ci;j

�.x/n.x/ � ru.x/ ds.x/D 0: (2-1)

A dual cell Ci;j contains a primary point Pi;j , it has vertices (dual nodes)
P

i˙
1
2 ;j˙

1
2

, and boundary

@Ci;j D†
i;jC

1
2

[†
iC

1
2 ;j [†

i;j�

1
2

[†
i�

1
2 ;j ; (2-2)
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†
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D .P
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1
2 ;j˙
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2 ;j˙
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/ and †

i˙
1
2 ;j D .P

i˙
1
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1
2
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i˙
1
2 ;jC
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2
/:
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Pi,j+1/2

Figure 1. Finite-volume discretization on a staggered grid.
The primary grid lines are solid and the dual ones are dashed.
The primary grid nodes are indicated with � and the dual nodes
with ı. The dual cell Ci;j , with vertices (dual nodes) P

i˙
1
2 ;j˙

1
2

,
surrounds the primary node Pi;j . A resistor is shown as a
rectangle with axis along a primary line, that intersects a dual
line at the point indicated with � .
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Denote by � D fPi;j g the set of primary nodes, and define the potential function
U W � ! � as the finite volume approximation of u.x/ at the points in �:

Ui;j � u.Pi;j /; Pi;j 2 �: (2-3)

The set � is the union of two disjoint sets �� and �� of interior and boundary
nodes, respectively. Adjacent nodes in � are connected by edges in the set
� � � � �. We denote the edges by

E
i;j˙

1
2

D .Pi;j ;Pi;j˙1/ and E
i˙

1
2 ;j D .Pi˙1;j ;Pi;j /:

The finite volume discretization results in a system of linear equations for the
potential:

�
iC

1
2 ;j .UiC1;j � Ui;j /C �

i�
1
2 ;j .Ui�1;j � Ui;j /C

�
i;jC

1
2
.Ui;jC1 � Ui;j /C �

i;j�

1
2
.Ui;j�1 � Ui;j /D 0; (2-4)

with terms given by approximations of the fluxes
Z

†
i;j ˙ 1

2

�.x/n.x/ � ru.x/ ds.x/� �
i;j˙

1
2
.Ui;j˙1 � Ui;j /;

Z

†
i˙ 1

2
;j

�.x/n.x/ � ru.x/ ds.x/� �
i˙

1
2 ;j .Ui˙1;j � Ui;j /:

(2-5)

Equations (2-4) are Kirchhoff’s law for the interior nodes in a resistor network
.�; � / with graph � D .�;�/ and conductance function � W � ! �C, that assigns
to an edge like E

i˙
1
2 ;j in � a positive conductance �

i˙
1
2 ;j . At the boundary nodes

we discretize either the Dirichlet conditions (1-4), or the Neumann conditions
(1-7), depending on what we wish to approximate, the DtN or the NtD map.

To write the network equations in compact (matrix) form, let us number the
primary nodes in some fashion, starting with the interior ones and ending with
the boundary ones. Then we can write � D fpqg, where pq are the numbered
nodes. They correspond to points like Pi;j in Figure 1. Let also U� and U� be
the vectors with entries given by the potential at the interior nodes and boundary
nodes, respectively. The vector of boundary fluxes is denoted by J�. We assume
throughout that there are n boundary nodes, so U�;J� 2 �n. The network
equations are

KU D

�
0

J�

�
; U D

�
U�

U�

�
; K D

�
K�� K��

K�� K��

�
; (2-6)
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where K D

�
Kij

�
is the Kirchhoff matrix with entries

Ki;j D

8
ˆ̂̂
<

ˆ̂̂
:

�� .E/ if i ¤ j and E D .pi ;pj / 2 �;

0 if i ¤ j and .pi ;pj / 62 �;
P

kWED.pi ;pk/2�

� .E/ if i D j:
(2-7)

In (2-6) we write it in block form, with K�� the block with row and column
indices restricted to the interior nodes, K�� the block with row indices restricted
to the interior nodes and column indices restricted to the boundary nodes, and so
on. Note that K is symmetric, and its rows and columns sum to zero, which is
just the condition of conservation of currents.

It is shown in [Curtis et al. 1994] that the potential U satisfies a discrete
maximum principle. Its minimum and maximum entries are located on the
boundary. This implies that the network equations with Dirichlet boundary
conditions

K��U� D �K��U� (2-8)

have a unique solution if K�� has full rank. That is to say, K�� is invertible and
we can eliminate U� from (2-6) to obtain

J� D .K�� � K��K
�1

�� K��/U� D ƒ� U�: (2-9)

The matrix ƒ� 2 �n�n is the Dirichlet to Neumann map of the network. It takes
the boundary potential U� to the vector J� of boundary fluxes, and is given by
the Schur complement of the block K��

ƒ� D K�� � K��K
�1

�� K��: (2-10)

The DtN map is symmetric, with nontrivial null space spanned by the vector
1� 2 �n of all ones. The symmetry follows directly from the symmetry of K .
Since the columns of K sum to zero, K1 D 0, where 1 is the vector of all ones.
Then, (2-9) gives J� D 0 D ƒ� 1�, which means that 1� is in the null space
of ƒ� .

The inverse problem for a network .�; � / is to determine the conductance
function � from the DtN map ƒ� . The graph � is assumed known, and it plays
a key role in the solvability of the inverse problem [Curtis et al. 1994; 1998;
Ingerman 2000; Colin de Verdière 1994; Colin de Verdière et al. 1996]. More
precisely, � must satisfy a certain criticality condition for the network to be
uniquely recoverable from ƒ� , and its topology should be adapted to the type of
measurements that we have. We review these facts in detail in Sections 3–5. We
also show there how to relate the continuum DtN map ƒ� to the discrete DtN
map ƒ� . The inversion algorithms in this paper use the solution of the discrete
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Or1 D r1 D 1
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Or1 D r1 D 1
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Or2
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Or4

m1=2 D 0 m1=2 D 1

Figure 2. Examples of grids. The primary grid lines are solid
and the dual ones are dotted. Both grids have n D 6 primary
boundary points, and index of the layers ` D 3. We have the
type of grid indexed by m1=2 D 0 on the left and by m1=2 D 1

on the right.

inverse problem for networks to determine approximately the solution �.x/ of
the continuum EIT problem.

2.2. Tensor product grids for the full boundary measurements setup. In the
full boundary measurement setup, we have access to the entire boundary �, and
it is natural to discretize the domain (1-2) with tensor product grids that are
uniform in angle, as shown in Figure 2. Let

�j D

2�.j � 1/

n
; O�j D

2� .j � 1=2/

n
; j D 1; : : : ; n; (2-11)

be the angular locations of the primary and dual nodes. The radii of the primary
and dual layers are denoted by ri and Ori , and we count them starting from
the boundary. We can have two types of grids, so we introduce the parameter
m1=2 2 f0; 1g to distinguish between them. We have

1 D r1 D Or1 > r2 > Or2 > � � �> r` > Or` > r`C1 � 0 (2-12)

when m1=2 D 0, and

1 D Or1 D r1 > Or2 > r2 > � � �> r` > Or`C1 > r`C1 � 0 (2-13)

for m1=2 D 1. In either case there are `C 1 primary layers and `C m1=2 dual
ones, as illustrated in Figure 2. We explain in Sections 3 and 4 how to place
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optimally in the interval Œ0; 1� the primary and dual radii, so that the finite volume
discretization gives an accurate approximation of the DtN map ƒ� .

The graph of the network is given by the primary grid. We follow [Curtis
et al. 1994; 1998] and call it a circular network. It has n boundary nodes and
n.2`C m1=2 � 1/ edges. Each edge is associated with an unknown conductance
that is to be determined from the discrete DtN map ƒ� , defined by measurements
of ƒ� , as explained in Sections 3 and 4. Since ƒ� is symmetric, with columns
summing to zero, it contains n.n � 1/=2 measurements. Thus, we have the same
number of unknowns as data points when

2`C m1=2 � 1 D

n � 1

2
; n D odd integer: (2-14)

This condition turns out to be necessary and sufficient for the DtN map to
determine uniquely a circular network, as shown in [Colin de Verdière et al.
1996; Curtis et al. 1998; Borcea et al. 2008]. We assume henceforth that it holds.

3. Layered media

In this section we assume a layered conductivity function �.r/ in �, the unit
disk, and access to the entire boundary �. Then, the problem is rotation invariant
and can be simplified by writing the potential as a Fourier series in the angle
� . We begin in Section 3.1 with the spectral decomposition of the continuum
and discrete DtN maps and define their eigenvalues, which contain all the in-
formation about the layered conductivity. Then, we explain in Section 3.2 how
to construct finite volume grids that give discrete DtN maps with eigenvalues
that are accurate, rational approximations of the eigenvalues of the continuum
DtN map. One such approximation brings an interesting connection between a
classic Sturm–Liouville inverse spectral problem [Gel’fand and Levitan 1951;
Chadan et al. 1997; Hochstadt 1973; Marchenko 1986; McLaughlin and Rundell
1987] and an inverse eigenvalue problem for Jacobi matrices [Chu and Golub
2002], as described in Sections 3.2.3 and 3.3. This connection allows us to
solve the continuum inverse spectral problem with efficient, linear algebra tools.
The resulting algorithm is the first example of resistor network inversion on
optimal grids proposed and analyzed in [Borcea et al. 2005], and we review its
convergence study in Section 3.3.

3.1. Spectral decomposition of the continuum and discrete DtN maps. Be-
cause Equation (1-1) is separable in layered media, we write the potential u.r; �/

as a Fourier series

u.r; �/D v�.0/C

X

k2�
k¤0

v.r; k/eik� ; (3-1)
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with coefficients v.r; k/ satisfying the differential equation

r

�.r/

d

dr

�
r�.r/

dv.r; k/

dr

�
� k2v.r; k/D 0; r 2 .0; 1/; (3-2)

and the condition
v.0; k/D 0: (3-3)

The first term v�.0/ in (3-1) is the average boundary potential

v�.0/D

1

2�

Z
2�

0

u.1; �/ d�: (3-4)

The boundary conditions at r D 1 are Dirichlet or Neumann, depending on which
map we consider, the DtN or the NtD map.

3.1.1. The DtN map. The DtN map is determined by the potential v satisfying
(3-2)–(3-3), with Dirichlet boundary condition

v.1; k/D v�.k/; (3-5)

where v�.k/ are the Fourier coefficients of the boundary potential u�.�/. The
normal boundary flux has the Fourier series expansion

�.1/
@u.1; �/

@r
Dƒ�u�.�/D �.1/

X

k2�;k¤0

dv.1; k/

dr
eik� ; (3-6)

and we assume for simplicity that �.1/ D 1. Then, we deduce formally from
(3-6) that eik� are the eigenfunctions of the DtN map ƒ� , with eigenvalues

f .k2/D

dv.1; k/

dr
=v.1; k/: (3-7)

Note that f .0/D 0.
A similar diagonalization applies to the DtN map ƒ� of networks arising in

the finite volume discretization of (1-1) if the grids are equidistant in angle, as
described in Section 2.2. Then, the resulting network is layered in the sense that
the conductance function is rotation invariant. We can define various quadrature
rules in (2-5), with minor changes in the results [Borcea et al. 2010a, Section
2.4]. In this section we use the definitions

�
jC

1
2 ;q D

h�

z.rjC1/� z.rj /
D

h�

j̨

; �
j ;qC

1
2

D

Oz. OrjC1/� Oz. Orj /

h�
D

Ǫj

h�
; (3-8)

derived in Appendix A, where h� D 2�=n and

z.r/D

Z
1

r

dt

t�.t/
; Oz.r/D

Z
1

r

�.t/

t
dt: (3-9)
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The network equations (2-4) become

1

Ǫj

�
UjC1;q � Uj ;q

j̨

�

Uj ;q � Uj�1;q

j̨�1

�
�

2Uj ;q � Uj ;qC1 � Uj ;q�1

h2

�

D 0;

(3-10)
and we can write them in block form as

1

Ǫj

�
UjC1 � Uj

j̨

�

Uj � Uj�1

j̨�1

�
�

�
�@2

�

�
Uj D 0; (3-11)

where
Uj D

�
Uj ;1; : : : ;Uj ;n

�T
; (3-12)

and
�
�@2

�

�
is the circulant matrix

�
�@2

�

�
D

1

h2

�

0

BBB@

2 �1 0 : : : : : : 0 �1

�1 2 1 0 : : : 0 0
: : :

: : :
: : :

: : :
: : :

: : :
: : :

�1 0 : : : : : : 0 �1 2

1

CCCA
; (3-13)

the discretization of the operator �@2

�
with periodic boundary conditions. It has

the eigenvectors
Œeik� �D .eik�1 ; : : : ; eik�n/T ; (3-14)

with entries given by the restriction of the continuum eigenfunctions eik� at
the primary grid angles. Here k is integer, satisfying jkj � .n � 1/=2, and the
eigenvalues are !2

k
, where

!k D jkj

ˇ̌
ˇ̌sinc

�
kh�

2

�ˇ̌
ˇ̌ ; (3-15)

with sinc.x/D sin.x/=x. Note that !2

k
� k2 only for jkj � n.

To determine the spectral decomposition of the discrete DtN map ƒ� we
proceed as in the continuum and write the potential Uj as a Fourier sum

Uj D v�.0/1� C

X

jkj�

n�1
2

k¤0

Vj .k/Œe
ik� �; (3-16)

where we recall that 1� 2 �n is a vector of all ones. We obtain the finite difference
equation for the coefficients Vj .k/:

1

Ǫj

�
VjC1.k/� Vj .k/

j̨

�

Vj .k/� Vj�1.k/

j̨�1

�
�!2

k
Vj .k/D 0; (3-17)
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where j D 2; 3; : : : ; `. It is the discretization of (3-2) that takes the form

d

d Oz

�
dv.z; k/

dz

�
� k2v.z; k/D 0; (3-18)

in the coordinates (3-9), where we let in an abuse of notation v.r; k/ v.z; k/.
The boundary condition at r D 0 is mapped to

lim
z!1

v.z; k/D 0; (3-19)

and it is implemented in the discretization as V`C1.k/ D 0: At the boundary
r D 1, where z D 0, we specify V1.k/ as some approximation of v�.k/.

The discrete DtN map ƒ� is diagonalized in the basis fŒeik� �g
jkj�.n�1/=2, and

we denote its eigenvalues by F.!2

k
/. Its definition depends on the type of grid

that we use, indexed by m1=2, as explained in Section 2.2. In the case m1=2 D 0,
the first radius next to the boundary is r2, and we define the boundary flux at
Or1 D 1 as .V1.k/ � V2.k//=˛1. When m1=2 D 1, the first radius next to the
boundary is Or2, so to compute the flux at Or1 we introduce a ghost layer at r0 > 1

and use (3-17) for j D 1 to define the boundary flux as

V0.k/� V1.k/

˛o

D Ǫ1!
2

k
V1.k/C

V1.k/� V2.k/

˛1

:

Therefore, the eigenvalues of the discrete DtN map are

F.!2

k
/D m1=2 Ǫ1!

2

k
C

V1.k/� V2.k/

˛1V1.k/
: (3-20)

3.1.2. The NtD map. The NtD map ƒ|

� has eigenfunctions eik� for k ¤ 0 and
eigenvalues f |.k2/D 1=f .k2/. Equivalently, in terms of the solution v.z; k/
of (3-18) with boundary conditions (3-19) and

�

dv.0; k/

dz
D

1

2�

Z
2�

0

J�.�/e
�ik�d� D '�.k/; (3-21)

we have

f |.k2/D

v.0; k/

'�.k/
: (3-22)

In the discrete case, let us use the grids with m1=2 D 1. We obtain that the
potential Vj .k/ satisfies (3-17) for j D 1; 2; : : : ; `, with boundary conditions

�

V1.k/� V0.k/

˛0

Dˆ�.k/; V`C1 D 0: (3-23)
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Here ˆ�.k/ is some approximation of '�.k/. The eigenvalues of ƒ|
� are

F|.!2

k
/D

V1.k/

ˆ�.k/
: (3-24)

3.2. Rational approximations, optimal grids and reconstruction mappings. By
analogy to (3-22) and (3-24) define the functions

f |.�/D

v.0/

'�
; F|.�/D

V1

ˆ�
; (3-25)

where v solves Equation (3-18) with k2 replaced by � and Vj solves (3-17)
with !2

k
replaced by �. The spectral parameter � may be complex, satisfying

� 2 � n .�1; 0�. For simplicity, we suppress in the notation the dependence of
v and Vj on �. We consider in detail the discretizations on grids indexed by
m1=2 D 1, but the results can be extended to the other type of grids, indexed by
m1=2 D 0.

Lemma 1. The function f |.�/ is of form

f |.�/D

Z
0

�1

d�.t/

�� t
; (3-26)

where�.t/ is the positive spectral measure on .�1; 0� of the differential operator
d

Ozdz , with homogeneous Neumann condition at z D 0 and limit condition (3-19).
The function F|.�/ has a similar form

F|.�/D

Z
0

�1

d�F .t/

�� t
; (3-27)

where �F .t/ is the spectral measure of the difference operator in (3-17) with
boundary conditions (3-23).

Proof. The result (3-26) is shown in [Kac and Krein 1968] and it says that f |.�/

is essentially a Stieltjes function. To derive the representation (3-27), we write
our difference equations in matrix form for V D .V1; : : : ;V`/

T ,

.A ��I/V D �

ˆ�.�/

Ǫ1

e1: (3-28)

Here I is the `�` identity matrix, e1 D .1; : : : ; 0/T 2 �` and A is the tridiagonal
matrix with entries

Aij D

8
ˆ̂<

ˆ̂:

�

1

Ǫ i

�
1

˛i
C

1

˛i�1

�
ıi;j C

1

Ǫ i ˛i�1
ıi�1;j C

1

Ǫ i ˛i
ıiC1;j

if 1< i � `; 1 � j � `;

�

1

Ǫ1˛1
ı1;j C

1

Ǫ1˛1
ı2;j if i D 1; 1 � j � `:

(3-29)
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The Kronecker delta symbol ıi;j is one when i D j and zero otherwise. Note
that A is a Jacobi matrix when it is defined on the vector space �` with weighted
inner product

ha;bi D

X̀

jD1

Ǫj aj bj ; a D .a1; : : : ; a`/
T ; b D .b1; : : : ; b`/

T : (3-30)

That is to say,

zA D diag. Ǫ

1=2

1
; : : : ; Ǫ

1=2

`
/A diag. Ǫ

�1=2

1
; : : : ; Ǫ

�1=2

`
/ (3-31)

is a symmetric, tridiagonal matrix, with negative entries on its diagonal and
positive entries on its upper/lower diagonal. It follows from [Chu and Golub
2002] that A has simple, negative eigenvalues �ı2

j
and eigenvectors Yj D

.Y1;j ; : : : ;Y`;j /
T that are orthogonal with respect to the inner product (3-30).

We order the eigenvalues as

ı1 < ı2 < � � �< ı`; (3-32)

and normalize the eigenvectors

kYj k

2
D

˝
Yj ;Yj

˛
D

X̀

pD1

Ǫ

2

p
Y 2

p;j D 1: (3-33)

Then, we obtain from (3-25) and (3-28), after expanding V in the basis of the
eigenvectors, that

F|.�/D

X̀

jD1

Y 2

1;j

�C ı2

j

: (3-34)

This is precisely (3-27), for the discrete spectral measure

�F .t/D �

X̀

jD1

�j H.�t � ı2

j
/; �j D Y 2

1;j ; (3-35)

where H is the Heaviside step function. �

Note that any function of the form (3-34) defines the eigenvalues F|.!2

k
/ of

the NtD map ƒ|
� of a finite-volume scheme with `C1 primary radii and uniform

discretization in angle. This follows from the decomposition in Section 3.1 and
the results in [Kac and Krein 1968]. Note also that there is an explicit, continued
fraction representation of F|.�/, in terms of the network conductances, i.e., the
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parameters j̨ and Ǫj ,

F|.�/D

1

Ǫ1�C

1

˛1C

: : : 1

Ǫ`�C

1
˛`

: (3-36)

This representation is known in the theory of rational function approximations
[Nikishin and Sorokin 1991; Kac and Krein 1968] and its derivation is given in
Appendix B.

Since both f |.�/ and F|.�/ are Stieltjes functions, we can design finite
volume schemes (i.e., layered networks) with accurate, rational approximations
F|.�/ of f |.�/. There are various approximants F|.�/, with different rates of
convergence to f |.�/, as `! 1. We discuss two choices below, in Sections
3.2.2 and 3.2.3, but refer the reader to [Druskin and Knizhnerman 2000a; 2000b;
Druskin and Moskow 2002] for details on various Padé approximants and the
resulting discretization schemes. No matter which approximant we choose,
we can compute the network conductances, i.e., the parameters j̨ and Ǫj for
j D 1; : : : ; `, from 2` measurements of f |.�/. The type of measurements
dictates the type of approximant, and only some of them are directly accessible
in the EIT problem. For example, the spectral measure�.�/ cannot be determined
in a stable manner in EIT. However, we can measure the eigenvalues f |.k2/ for
integer k, and thus we can design a rational, multipoint Padé approximant.

Remark 1. We describe in detail in Appendix D how to determine the parameters
f j̨ ; Ǫj gjD1;:::;` from 2` point measurements of f |.�/, such as f |.k2/, for
k D 1; : : : ; n�1

2
D 2`. The are two steps. The first is to write F|.�/ as the ratio

of two polynomials of �, and determine the 2` coefficients of these polynomials
from the measurements F|.!2

k
/ of f |.k2/, for 1 � k �

n�1

2
. See Section 3.2.2

for examples of such measurements. The exponential instability of EIT comes
into play in this step, because it involves the inversion of a Vandermonde matrix. It
is known [Gautschi and Inglese 1988] that such matrices have condition numbers
that grow exponentially with the dimension `. The second step is to determine
the parameters f j̨ ; Ǫj gjD1;:::;` from the coefficients of the polynomials. This
can be done in a stable manner with the Euclidean division algorithm.

The approximation problem can also be formulated in terms of the DtN map,
with F.�/D 1=F|.�/. Moreover, the representation (3-36) generalizes to both
types of grids, by replacing Ǫ1� with Ǫ1m1=2�. Recall (3-20) and note the
parameter Ǫ1 does not play any role when m1=2 D 0.



70 L. BORCEA, V. DRUSKIN, F. GUEVARA VASQUEZ AND A. V. MAMONOV

3.2.1. Optimal grids and reconstruction mappings. Once we have determined
the network conductances, that is the coefficients

j̨ D

Z
rj

rj C1

dr

r�.r/
; Ǫj D

Z
Orj

Orj C1

�.r/

r
dr; j D 1; : : : ; `; (3-37)

we could determine the optimal placement of the radii rj and Orj , if we knew the
conductivity �.r/. But �.r/ is the unknown in the inverse problem. The key idea
behind the resistor network approach to inversion is that the grid depends only
weakly on � , and we can compute it approximately for the reference conductivity
� .o/

� 1.
Let us denote by f |.o/.�/ the analog of (3-25) for conductivity � .o/, and let

F|.o/.�/ be its rational approximant defined by (3-36), with coefficients ˛.o/
j

and Ǫ

.o/
j

given by

˛
.o/
j

D

Z
r

.o/
j

r
.o/
j C1

dr

r
D log

r
.o/
j

r
.o/
jC1

; Ǫ

.o/
j

D

Z
Orj

Orj C1

dr

r
D log

Or
.o/
j

Or
.o/
jC1

; j D 1; : : : ; `:

(3-38)

Since r
.o/
1

D Or
.o/
1

D 1, we obtain

r
.o/
jC1

D exp
�

�

jX

qD1

˛.o/
q

�
; Or

.o/
jC1

D exp
�

�

jX

qD1

Ǫ

.o/
q

�
; j D 1; : : : ; `:

(3-39)

We call the radii (3-39) optimal. The name refers to the fact that finite vol-
ume discretizations on grids with such radii give an NtD map that matches the
measurements of the continuum map ƒ|

�.o/ for the reference conductivity � .o/.

Remark 2. It is essential that the parameters f j̨ ; Ǫj g and f˛
.o/
j
; Ǫ

.o/
j

g are com-
puted from the same type of measurements. For example, if we measure f |.k2/,
we compute f j̨ ; Ǫj g so that

F|.!2

k
/D f |.k2/;

and f˛
.o/
j
; Ǫ

.o/
j

g so that

F|.o/.!2

k
/D f |.o/.k2/;

where k D 1; : : : ; .n � 1/=2. This is because the distribution of the radii (3-39)
in the interval Œ0; 1� depends on what measurements we make, as illustrated with
examples in Sections 3.2.2 and 3.2.3.

Now let us denote by �n the set in �.n�1/=2 of measurements of f |.�/, and
introduce the reconstruction mapping �n defined on �n, with values in �

.n�1/=2

C

.
It takes the measurements of f |.�/ and returns the .n � 1/=2 positive numbers
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�jC1�m1=2
D Ǫj= Ǫ

.o/
j
; j D 2 � m1=2; : : : ; `;

O�jCm1=2
D ˛

.o/
j
= j̨ ; j D 1; 2; : : : ; `; (3-40)

where we recall the relation (2-14) between ` and n. We call �n a reconstruction
mapping because if we take �j and O�j as point values of a conductivity at nodes
r

.o/
j

and Or
.o/
j

, and interpolate them on the optimal grid, we expect to get a
conductivity that is close to the interpolation of the true �.r/. This is assuming
that the grid does not depend strongly on �.r/. The proof that the resulting
sequence of conductivity functions indexed by ` converges to the true �.r/ as
`! 1 is carried out in [Borcea et al. 2005], given the spectral measure of f |.�/.
We review it in Section 3.3, and discuss the measurements in Section 3.2.3. The
convergence proof for other measurements remains an open question, but the
numerical results indicate that the result should hold. Moreover, the ideas extend
to the two-dimensional case, as explained in detail in Sections 4 and 5.

3.2.2. Examples of rational interpolation grids. Let us begin with an example
that arises in the discretization of the problem with lumped current measurements

Jq D

1

h�

Z
O�qC1

O�q

ƒ�u�.�/d�;

for h� D

2�
n

, and vector U� D .u�.�1/; : : : ;u�.�n//
T of boundary potentials.

If we take harmonic boundary excitations u�.�/D eik� , the eigenfunction of
ƒ� for eigenvalue f .k2/, we obtain

Jq D

1

h�

Z
O�qC1

O�q

ƒ�eik�d�Df .k2/

ˇ̌
ˇ̌sinc

�
kh�

2

�ˇ̌
ˇ̌ eik�q

D

f .k2/

jkj

!keik�q ;

q D 1; : : : ; n: (3-41)

These measurements, for all integers k satisfying jkj �

n�1

2
, define a dis-

crete DtN map Mn.ƒ� /. It is a symmetric matrix with eigenvectors Œeik� � D

.eik�1 ; : : : ; eik�n/T , and eigenvalues .f .k2/=jkj/!k .
The approximation problem is to find the finite volume discretization with

DtN map ƒ� D Mn.ƒ� /. Since both ƒ� and Mn have the same eigenvectors,
this is equivalent to the rational approximation problem of finding the network
conductances (3-8) (i.e., j̨ and Ǫj ), so that

F.!2

k
/D

f .k2/

jkj

!k ; k D 1; : : : ;
n � 1

2
: (3-42)

The eigenvalues depend only on jkj, and the case k D 0 gives no information,
because it corresponds to constant boundary potentials that lie in the null space
of the DtN map. This is why we take in (3-42) only the positive values of k, and
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0 0.2 0.4 0.6 0.8 1
r ∈ [0,1]

m=5, m1/2=1, n=25

0 0.2 0.4 0.6 0.8 1
r ∈ [0,1]

m=8, m1/2=0, n=35

Figure 3. Examples of optimal grids with n equidistant bound-
ary points and primary and dual radii shown with � and ı. On
the left we have n D 25 and a grid indexed by m1=2 D 1, with
`D mC1 D 6. On the right we have n D 35 and a grid indexed
by m1=2 D 0, with `D mC1 D 8. The bottom grid is computed
with formulas (3-44). The top grid is obtained from the rational
approximation (3-50).

obtain the same number .n � 1/=2 of measurements as unknowns: f j̨ gjD1;:::;`

and f Ǫj gjD2�m1=2;:::;`.
When we compute the optimal grid, we take the reference � .o/

� 1, in which
case f .o/.k2/ D jkj. Thus, the optimal grid computation reduces to that of
rational interpolation of f .�/,

F .o/.!2

k
/D !k D f .o/.!2

k
/; k D 1; : : : ;

n � 1

2
: (3-43)

This is solved explicitly in [Biesel et al. 2008]. For example, when m1=2 D 1,
the coefficients ˛.o/

j
and Ǫ

.o/
j

are given by

˛
.o/
j

D h� cot
�

h�

2
.2`� 2j C 1/

�
; Ǫ

.o/
j

D h� cot
�

h�

2
.2`� 2j C 2/

�
;

j D 1; 2 : : : ; `; (3-44)

and the radii follow from (3-39). They satisfy the interlacing relations

1 D Or
.o/
1

D r
.o/
1
> Or

.o/
2
> r

.o/
2
> � � �> Or

.o/
`C1

> r
.o/
`C1

� 0; (3-45)

as can be shown easily using the monotonicity of the cotangent and exponential
functions. We show an illustration of the resulting grids in red, in Figure 3. Note
the refinement toward the boundary r D 1 and the coarsening toward the center
r D 0 of the disk. Note also that the dual points shown with ı are almost half
way between the primary points shown with �. The last primary radii r

.o/
`C1

are
small, but the points do not reach the center of the domain at r D 0.
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In Sections 4 and 5 we work with slightly different measurements of the DtN
map ƒ� D Mn.ƒ� /, with entries defined by

.ƒ� /p;q D

Z
2�

0

�p.�/ƒ��q.�/ d�; p ¤ q;

.ƒ� /p;p D �

X

q¤p

.ƒ� /p;q;
(3-46)

using nonnegative measurement (electrode) functions �q.�/, that are compactly
supported in . O�q; O�qC1/ and are normalized by

Z
2�

0

�q.�/ d� D 1:

For example, we can take

�q.�/D

�
1=h� if O�q < � < O�qC1;

0 otherwise;

and obtain after a calculation given in Appendix C that the entries of ƒ� are
given by

.ƒ� /p;q D

1

2�

X

k2�

eik.�p��q/f .k2/sinc2

�
kh�

2

�
; p; q;D 1; : : : ; n:

(3-47)
We also show in Appendix C that

ƒ� Œe
ik� �D

1

h�

zF .!2

k
/Œeik� �; jkj �

n � 1

2
; (3-48)

with eigenvectors Œeik� � defined in (3-14) and scaled eigenvalues

zF .!2

k
/D f .k2/sinc2

�
kh�

2

�
D F.!2

k
/

ˇ̌
ˇ̌sinc

�
kh�

2

�ˇ̌
ˇ̌ : (3-49)

Here we recalled (3-42) and (3-15).
There is no explicit formula for the optimal grid satisfying

zF .o/.!2

k
/D F .o/.!2

k
/

ˇ̌
ˇ̌sinc

�
kh�

2

�ˇ̌
ˇ̌
D !k

ˇ̌
ˇ̌sinc

�
kh�

2

�ˇ̌
ˇ̌ ; (3-50)

but we can compute it as explained in Remark 1 and Appendix D. We show in
Figure 3 two examples of the grids, and note that they are very close to those
obtained from the rational interpolation (3-43). This is not surprising because the
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sinc factor in (3-50) is not significantly different from 1 over the range jkj �

n�1

2
,

2

�
<

sin
h

�
2

�
1 �

1

n

�i

�
2

�
1 �

1

n

� �

ˇ̌
ˇ̌sinc

�
kh�

2

�ˇ̌
ˇ̌
� 1:

Thus, many eigenvalues zF .o/.!2

k
/ are approximately equal to !k , and this is

why the grids are similar.

3.2.3. Truncated measure and optimal grids. Another example of rational ap-
proximation arises in a modified problem, where the positive spectral measure �
in Lemma 1 is discrete:

�.t/D �

1X

jD1

�j H.�t � ı2

j
/: (3-51)

This does not hold for (3-2) or equivalently (3-18), where the origin of the disc
r D 0 is mapped to 1 in the logarithmic coordinates z.r/, and the measure �.t/
is continuous. To obtain a measure like (3-51), we change the problem here and
in the next section to

r

�.r/

d

dr

�
r�.r/

dv.r/

dr

�
��v.r/D 0; r 2 .�; 1/; (3-52)

with � 2 .0; 1/ and boundary conditions

@v.o/

@r
D '�; v.�/D 0: (3-53)

The Dirichlet boundary condition at r D � may be realized if we have a perfectly
conducting medium in the disk concentric with � and of radius �. Otherwise,
v.�/D 0 gives an approximation of our problem, for small but finite �.

Coordinate change and scaling. It is convenient here and in the next section to
introduce the scaled logarithmic coordinate

�.r/D

z.o/.r/

Z
D

1

Z

Z
1

r

dt

t
; Z D � log.�/D z.o/.�/; (3-54)

and write (3-9) in the scaled form

z.r/

Z
D

Z �

0

dt

�.r.t//
D z0.�/;

Oz.r/

Z
D

Z �

0

�.r.t// dt D Oz 0.�/: (3-55)

The conductivity function in the transformed coordinates is

� 0.�/D �.r.�//; r.�/D e�Z� ; (3-56)
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and the potential

v0.z0/D

v.r.z0//

'�
(3-57)

satisfies the scaled equations

d

d Oz
0

�
dv0

dz0

�
��0v0

D 0; z0

2 .0;L0/;

dv.0/

dz0

D �1; v.L0/D 0; (3-58)

where we let �0

D �=Z2 and

L0

D z0.1/D

Z
1

0

dt

� 0.t/
: (3-59)

Remark 3. We assume in the remainder of this section and in Section 3.3 that
we work with the scaled equations (3-58) and drop the primes for simplicity of
notation.

The inverse spectral problem. The differential operator d

d Oz

d

dz
acting on the vector

space of functions with homogeneous Neumann conditions at z D 0 and Dirichlet
conditions at z D L is symmetric with respect to the weighted inner product

.a; b/D

Z
yL

0

a.z/b.z/ d Oz D

Z
1

0

a.z.�//b.z.�//�.�/ d�; yL D Oz.1/: (3-60)

It has negative eigenvalues f�ı2

j
gjD1;2;:::, the points of increase of the measure

(3-51), and eigenfunctions yj .z/. They are orthogonal with respect to the inner
product (3-60), and we normalize them by

kyj k

2
D

�
yj ;yj

�
D

Z
yL

0

y2

j
.z/ d Oz D 1: (3-61)

The weights �j in (3-51) are defined by

�j D y2

j
.0/: (3-62)

For the discrete problem we assume in the remainder of the section that
m1=2 D 1, and work with the NtD map, that is with F|.�/ represented in
Lemma 1 in terms of the discrete measure �F .t/. Comparing (3-51) and (3-35),
we note that we ask that �F .t/ be the truncated version of �.t/, given the
first ` weights �j and eigenvalues �ı2

j
, for j D 1; : : : ; `. We arrived at the

classic inverse spectral problem [Gel’fand and Levitan 1951; Chadan et al. 1997;
Hochstadt 1973; Marchenko 1986; McLaughlin and Rundell 1987], that seeks
an approximation of the conductivity � from the truncated measure. We can
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solve it using the theory of resistor networks, via an inverse eigenvalue problem
[Chu and Golub 2002] for the Jacobi like matrix A defined in (3-29). The key
ingredient in the connection between the continuous and discrete eigenvalue
problems is the optimal grid, as was first noted in [Borcea and Druskin 2002]
and proved in [Borcea et al. 2005]. We review this result in Section 3.3.

The truncated measure optimal grid. The optimal grid is obtained by solving
the discrete inverse problem with spectral data for the reference conductivity
� .o/.�/:

�.o/
n

D

n
�

.o/
j

D 2; ı
.o/
j

D �
�
j �

1
2

�
; j D 1; : : : ; `

o
: (3-63)

The parameters f˛
.o/
j
; Ǫ

.o/
j

gjD1;:::;` can be determined from �.o/
n with the Lanc-

zos algorithm [Trefethen and Bau 1997; Chu and Golub 2002], which is reviewed
briefly in Appendix E. The grid points are given by

�
.o/
jC1

D˛
.o/
j

C�
.o/
j

D

jX

qD1

˛.o/
q
; O�

.o/
jC1

D Ǫ

.o/
j

C

O�
.o/
j

D

jX

qD1

Ǫ

.o/
q
; j D 1; : : : ; `;

(3-64)

where �.o/
1

D

O�
.o/
1

D 0. This is in the logarithmic coordinates that are related to
the optimal radii as in (3-56). The grid is calculated explicitly in [Borcea et al.
2005, Appendix A]. We summarize its properties in the next lemma, for large `.

Lemma 2. The steps f˛
.o/
j
; Ǫ

.o/
j

gjD1;:::;` of the truncated measure optimal grid
satisfy the monotone relation

Ǫ

.o/
1
< ˛

.o/
1
< Ǫ

.o/
2
< ˛

.o/
2
< � � �< Ǫ

.o/
k
< ˛

.o/
k
: (3-65)

Moreover, for large `, the primary grid steps are

˛
.o/
j

D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

2 C O
�
.`� j /�1

C j �2
�

�
p
`2

� j 2
if 1 � j � `� 1;

p

2 C O.`�1/
p

�`
if j D `;

(3-66)

and the dual grid steps are

Ǫ

.o/
j

D

2 C O
�
.`C 1 � j /�1

C j �2
�

�
p
`2

� .j � 1=2/2
; 1 � j � `: (3-67)

We show in Figure 4 an example for the case `D 6. To compare it with the grid
in Figure 3, we plot in Figure 5 the radii given by the coordinate transformation
(3-56), for three different parameters �. Note that the primary and dual points
are interlaced, but the dual points are not half way between the primary points,



RESISTOR NETWORKS FOR ELECTRICAL IMPEDANCE TOMOGRAPHY 77

0 0.2 0.4 0.6 0.8 1

Figure 4. Example of a truncated measure optimal grid with
` D 6. This is in the logarithmic scaled coordinates � 2 Œ0; 1�.
The primary points are denoted with � and the dual ones with ı.

0 0.2 0.4 0.6 0.8 1

Figure 5. The radial grid obtained with the coordinate change
r D e�Z� . The scale Z D � log � affects the distribution of the
radii. The choice � D 0:1 is on top, � D 0:05 is in the middle
and � D 0:01 is at the bottom. The primary radii are indicated
with � and the dual ones with ı.

as was the case in Figure 3. Moreover, the grid is not refined near the boundary
at r D 1. In fact, there is accumulation of the grid points near the center of the
disk, where we truncate the domain. The smaller the truncation radius �, the
larger the scale Z D � log �, and the more accumulation near the center.

Intuitively, we can say that the grids in Figure 3 are much superior to the
ones computed from the truncated measure, for both the forward and inverse
EIT problem. Indeed, for the forward problem, the rate of convergence of F|.�/

to f |.�/ on the truncated measure grids is algebraic [Borcea et al. 2005]

ˇ̌
f |.�/� F|.�/

ˇ̌
D

ˇ̌
ˇ̌
ˇ

1X

jD`C1

�j

�C ı2

j

ˇ̌
ˇ̌
ˇD O

�
1X

jD`C1

1

j 2

�
D O

�
1

`

�
:

The rational interpolation grids described in Section 3.2.2 give exponential
convergence of F|.�/ to f |.�/ [Mamonov 2009]. For the inverse problem, we
expect that the resolution of reconstructions of � decreases rapidly away from
the boundary where we make the measurements, so it makes sense to invert on
grids like those in Figure 3, that are refined near r D 1.

The examples in Figures 3 and 5 show the strong dependence of the grids on
the measurement setup. Although the grids in Figure 5 are not good for the EIT
problem, they are optimal for the inverse spectral problem. The optimality is in
the sense that the grids give an exact match of the spectral measurements (3-63)
of the NtD map for conductivity � .o/. Furthermore, they give a very good match
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of the spectral measurements (3-68) for the unknown � , and the reconstructed
conductivity on them converges to the true � , as we show next.

3.3. Continuum limit of the discrete inverse spectral problem on optimal grids.
Let �n W �n ! �2`

C

be the reconstruction mapping that takes the data

�n D

˚
�j ; ıj ; j D 1; : : : ; `

�
(3-68)

to the 2`D

n�1
2

positive values f�j ; O�j gjD1;:::;` given by

�j D

Ǫj

Ǫ

.o/
j

; O�jC1 D

˛
.o/
j

j̨

; j D 1; 2; : : : ; `: (3-69)

The computation of f j̨ ; Ǫj gjD1;:::;` requires solving the discrete inverse spectral
problem with data �n, using for example the Lanczos algorithm reviewed in
Appendix E. We define the reconstruction �`.�/ of the conductivity as the
piecewise constant interpolation of the point values (3-69) on the optimal grid
(3-64). We have

�`.�/D

8
ˆ̂̂
<

ˆ̂̂
:

�j if � 2 Œ�
.o/
j
; O�

.o/
jC1

/; j D 1; : : : ; `;

O�j if � 2 Œ O�
.o/
j
; �

.o/
j
/; j D 2; : : : ; `C 1;

O�`C1 if � 2 Œ�
.o/
lC1

; 1�;

(3-70)

and we discuss here its convergence to the true conductivity function �.�/, as
`! 1.

To state the convergence result, we need some assumptions on the decay with
j of the perturbations of the spectral data

�ıj D ıj � ı
.o/
j
; ��j D �j � �

.o/
j
: (3-71)

The asymptotic behavior of ıj and �j is well known, under various smoothness
requirements on �.z/ [McLaughlin and Rundell 1987; Pöschel and Trubowitz
1987; Coleman and McLaughlin 1993]. For example, if �.�/ 2 H 3Œ0; 1�, we
have

�ıj D ıj � ı
.o/
j

D

R
1

0
q.�/ d�

.2j � 1/�
C O.j �2/ and ��j D �j � �

.o/
j

D O.j �2/;

(3-72)
where q.�/ is the Schrödinger potential

q.�/D �.�/�
1
2

d2�.�/
1
2

d�2
: (3-73)

We have the following convergence result proved in [Borcea et al. 2005].
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Theorem 1. Suppose that �.�/ is a positive and bounded scalar conductivity
function, with spectral data satisfying the asymptotic behavior

�ıj D O

�
1

j s log.j /

�
; ��j D O

�
1

j s

�
; for some s > 1; as j ! 1:

(3-74)
Then �`.�/ converges to �.�/ as `! 1, pointwise and in L1Œ0; 1�.

Before we outline the proof, let us note that it appears from (3-72) and (3-74)
that the convergence result applies only to the class of conductivities with zero
mean potential. However, if

q D

Z
1

0

q.�/ d� ¤ 0; (3-75)

we can modify the point values (3-69) of the reconstruction �`.�/ by replacing
˛

.o/
j

and Ǫ

.o/
j

with ˛.q/
j

and Ǫ

.q/
j

, for j D 1; : : : ; `. These are computed by
solving the discrete inverse spectral problem with data

�.q/
n

D f�
.q/
j
; ı

.q/
j
; j D 1; : : : ; `g;

for the conductivity function

� .q/.�/D

1

4

�
e

p

q �
C e�

p

q �
�2
: (3-76)

This conductivity satisfies the initial value problem

d2
p
� .q/.�/

d�2
D q

p
� .q/.�/ for 0< � � 1;

d� .q/.0/

d�
D 0 and � .q/.0/D 1;

(3-77)

and we assume that

q > �

�2

4
; (3-78)

so that (3-76) stays positive for � 2 Œ0; 1�.
As seen from (3-72), the perturbations ıj � ı

.q/
j

and �j � �
.q/
j

satisfy the
assumptions (3-74), so Theorem 1 applies to reconstructions on the grid given by
� .q/. We show below in Corollary 1 that this grid is asymptotically the same as
the optimal grid, calculated for � .o/. Thus, the convergence result in Theorem 1
applies after all, without changing the definition of the reconstruction (3-70).
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3.3.1. The case of constant Schrödinger potential. The equation (3-58) for � 
� .q/ can be transformed to Schrödinger form with constant potential q

d2w.�/

d�2
� .�C q/w.�/D 0; � 2 .0; 1/;

dw.0/

d�
D �1; w.1/D 0;

(3-79)

by letting w.�/D v.�/
p
� .q/.�/. Thus, the eigenfunctions y

.q/
j
.�/ of the differ-

ential operator associated with � .q/.�/ are related to y
.o/
j
.�/, the eigenfunctions

for � .o/
� 1, by

y
.q/
j
.�/D

y
.o/
j
.�/

p
� .q/.�/

: (3-80)

They satisfy the orthonormality condition
Z

1

0

y
.q/
j
.�/y.q/

p
.�/� .q/.�/ d� D

Z
1

0

y
.o/
j
.�/y.o/

p
.�/ d� D ıjp; (3-81)

and since � .q/.0/D 1,

�
.q/
j

D

�
y

.q/
j
.0/
�2

D

�
y

.o/
j
.0/
�2

D �
.o/
j
; j D 1; 2; : : : (3-82)

The eigenvalues are shifted by q:

�

�
ı

.q/
j

�2
D �

�
ı

.o/
j

�2
� q; j D 1; 2; : : : (3-83)

Let f˛
.q/
j
; Ǫ

.q/
j

gjD1;:::;` be the parameters obtained by solving the discrete
inverse spectral problem with data �.q/

n . The reconstruction mapping

�n W �.q/
n

! �2`

gives the sequence of 2`D

n�1
2

pointwise values

�
.q/
j

D

Ǫ

.q/
j

Ǫ

.o/
j

; O�
.q/
jC1

D

˛
.o/
j

˛
.q/
j

; j D 1; : : : ; `: (3-84)

We have the following result stated and proved in [Borcea et al. 2005]. See the
review of the proof in Appendix F.

Lemma 3. The point values � .q/
j

satisfy the finite difference discretization of
initial value problem (3-77), on the optimal grid, namely
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1

Ǫ

.o/
j

 q
�

.q/
jC1

�

q
�

.q/
j

˛
.o/
j

�

q
�

.q/
j

�

q
�

.q/
j�1

˛
.o/
j

� 1

�
� q

q
�

.q/
j

D 0 (3-85)

for j D 2; 3; : : : ; `, and

1

Ǫ

.o/
1

q
�

.q/
2

�

q
�

.q/
1

˛
.o/
1

� q

q
�

.q/
1

D 0; �
.q/
1

D 1: (3-86)

Moreover, O�
.q/
jC1

D

q
�

.q/
j
�

.q/
jC1

, for j D 1; : : : ; `.

The convergence of the reconstruction � .q/;`.�/ follows from this lemma and
a standard finite-difference error analysis [Godunov and Ryabenki 1964] on the
optimal grid satisfying Lemma 2. The reconstruction is defined as in (3-70), by
the piecewise constant interpolation of the point values (3-84) on the optimal
grid.

Theorem 2. As `! 1 we have

max
1�j�`

ˇ̌
�

.q/
j

� � .q/.�
.o/
j
/
ˇ̌
! 0 and max

1�j�`

ˇ̌
O�

.q/
jC1

� � .q/. O�
.o/
jC1

/
ˇ̌
! 0;

and the reconstruction � .q/;`.�/ converges to � .q/.�/ in L1Œ0; 1�.

As a corollary to this theorem, we can now obtain that the grid induced by
� .q/.�/, with primary nodes �.q/

j
and dual nodes O�

.q/
j

, is asymptotically close to
the optimal grid. The proof is in Appendix F.

Corollary 1. The grid induced by � .q/.�/ is defined by the equations

Z �.q/
j C1

0

d�

� .q/.�/
D

jX

pD1

˛.q/
p
;

Z
O�.q/
j C1

0

� .q/.�/ d� D

jX

pD1

Ǫ

.q/
p
; j D 1; : : : ; `;

�
.q/
1

D

O�
.q/
1

D 0; (3-87)

and satisfies

max
1�j�`C1

ˇ̌
�

.q/
j

� �
.o/
j

ˇ̌
! 0; max

1�j�`C1

ˇ̌
O�
.q/
j

�

O�
.o/
j

ˇ̌
! 0; as `! 1: (3-88)

3.3.2. Outline of the proof of Theorem 1. The proof given in detail in [Borcea
et al. 2005] has two main steps. The first step is to establish the compactness
of the set of reconstructed conductivities. The second step uses the established
compactness and the uniqueness of solution of the continuum inverse spectral
problem to get the convergence result.
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Step 1: Compactness. We show here that the sequence f�`.�/g`�1 of recon-
structions (3-70) has bounded variation.

Lemma 4. The sequence f�j ; O�jC1gjD1;:::;` of (3-69) returned by the reconstruc-
tion mapping �n satisfies

X̀

jD1

ˇ̌
log O�jC1 � log �j

ˇ̌
C

X̀

jD1

ˇ̌
log O�jC1 � log �jC1

ˇ̌
� C; (3-89)

where the constant C is independent of `. Therefore the sequence of reconstruc-
tions f�`.�/g`�1 has uniformly bounded variation.

Our original formulation is not convenient for proving (3-89), because when
written in Schrödinger form, it involves the second derivative of the conductivity,
as seen from (3-73). Thus, we rewrite the problem in first order system form,
which involves only the first derivative of �.�/, which is all we need to show
(3-89). At the discrete level, the linear system of ` equations

AV ��V D �

e1

Ǫ1

(3-90)

for the potential V D .V1; : : : ;V`/
T is transformed into the system of 2` equations

BH
1
2 W �

p

�H
1
2 W D �

e1p
� Ǫ1

(3-91)

for the vector W D .W1; yW2; : : : ;W`; yW`C1/
T with components

Wj D

p

�j Vj ; yWjC1 D

O�jC1p
��j

VjC1 � Vj

˛
.o/
j

; j D 1; : : : ; `: (3-92)

Here H D diag . Ǫ

.o/
1
; ˛

.o/
1
; : : : ; Ǫ

.o/
`
; ˛

.o/
`
/ and B is the tridiagonal, skew-sym-

metric matrix

B D

0

BBBBBB@

0 ˇ1 0 0 : : :

�ˇ1 0 ˇ2 0 : : :

0 �ˇ2 0
: : :

:::
:::

0 : : : �ˇ2`�1 0

1

CCCCCCA
(3-93)

with entries

ˇ2p D

1
p

p̨ ǪpC1

D

1
q
˛

.o/
p Ǫ

.o/
p C 1

s
O�pC1

�p

D ˇ
.o/
2p

s
O�pC1

�pC1

(3-94)
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and

ˇ2p�1 D

1
p

p̨ Ǫp

D

1
q
˛

.o/
p Ǫ

.o/
p

s
O�pC1

�p

D ˇ
.o/
2p�1

s
O�pC1

�p

: (3-95)

Note that we have
2`�1X

pD1

ˇ̌
ˇ̌
ˇlog p̌

ˇ
.o/
p

ˇ̌
ˇ̌
ˇ

D

1

2

X̀

pD1

ˇ̌
log O�pC1 � log �p

ˇ̌
C

1

2

X̀

pD1

ˇ̌
log O�pC1 � log �pC1

ˇ̌
; (3-96)

and we can prove (3-89) using the method of small perturbations. Recall defini-
tions (3-71) and let

�ır

j
D r�ıj ; ��r

j
D r��j ; j D 1; : : : ; `; (3-97)

where r 2 Œ0; 1� is an arbitrary continuation parameter. Let also ˇr

j
be the entries

of the tridiagonal, skew-symmetric matrix B
r determined by the spectral data

ır

j
D ı

.o/
j

C�ır

j
and �r

j
D �

.o/
j

C��r

j
, for j D 1; : : : ; `. We explain in Appendix

G how to obtain explicit formulae for the perturbations d logˇr

j
in terms of the

eigenvalues and eigenvectors of matrix B
r and perturbations dır

j
D�ıj dr and

d�r

j
D��j dr . These perturbations satisfy the uniform bound

2`�1X

jD1

ˇ̌
d logˇr

j

ˇ̌
� C1jdr j; (3-98)

with constant C1 independent of ` and r . Then,

log ǰ

ˇ
.o/
j

D

Z
1

0

d logˇr

j
(3-99)

satisfies the uniform bound
2`�1X

jD1

ˇ̌
ˇ̌
ˇlog ǰ

ˇ
.o/
j

ˇ̌
ˇ̌
ˇ� C1 and (3-89) follows from (3-96).

Step 2: Convergence. Recall from Section 3.2 that the eigenvectors Yj of A are
orthonormal with respect to the weighted inner product (3-30). Then, the matrix
zY with columns diag

�
Ǫ

1=2

1
; : : : ; Ǫ

1=2

`

�
Yj is orthogonal and we have

. zY zY
T /11 D Ǫ1

X̀

jD1

�j D 1: (3-100)
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Similarly

Ǫ

.o/
1

X̀

jD1

�
.o/
j

D 2` Ǫ

.o/
1

D 1; (3-101)

where we used (3-63), and since ��j are summable by assumption (3-74),

�1 D

Ǫ1

Ǫ

.o/
1

D

�
1 C Ǫ

.o/
1

X̀

jD1

��j

�
�1

D 1 C O. Ǫ

.o/
1
/D 1 C O

�
1

`

�
: (3-102)

But �`.0/D�1, and since �`.�/ has bounded variation by Lemma 4, we conclude
that �`.�/ is uniformly bounded in � 2 Œ0; 1�.

Now, to show that �`.�/! �.�/ in L1Œ0; 1�, suppose for contradiction that it
does not. Then, there exists " > 0 and a subsequence �`k such that

k�`k
� �kL1Œ0;1� � ":

But since this subsequence is bounded and has bounded variation, we conclude
from Helly’s selection principle and the compactness of the embedding of the
space of functions of bounded variation in L1Œ0; 1� (see [Natanson 1955]) that
it has a subsequence that converges pointwise and in L1Œ0; 1�. Call again this
subsequence �`k and denote its limit by �?

¤ � . Since the limit is in L1Œ0; 1�,
we have by definitions (3-55) and Remark 3,

z.�I �`k /D

Z �

0

dt

�`k .t/
! z.�I �/D

Z �

0

dt

�?.t/
;

Oz.�I �`k /D

Z �

0

�`k .t/ dt ! Oz.�I �?/D

Z �

0

�.t/ dt:

(3-103)

The continuity of f | with respect to the conductivity gives f |.�I �`k / !

f |.�I �?/. However, Lemma 1 and (3-51) show that f |.�I �`/ ! f |.�I �/

by construction, and since the inverse spectral problem has a unique solution
[Gel’fand and Levitan 1951; Levitan 1987; Coleman and McLaughlin 1993;
Pöschel and Trubowitz 1987], we must have �?

D � . We have reached a
contradiction, so �`.�/! �.�/ in L1Œ0; 1�. The pointwise convergence can be
proved analogously.

Remark 4. All the elements of the proof presented here, except for establishing
the bound (3-98), apply to any measurement setup. The challenge in proving
convergence of inversion on optimal grids for general measurements lies entirely
in obtaining sharp stability estimates of the reconstructed sequence with respect
to perturbations in the data. The inverse spectral problem is stable, and this is
why we could establish the bound (3-98). The EIT problem is exponentially
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unstable, and it remains an open problem to show the compactness of the function
space of reconstruction sequences �` from measurements such as (3-49).

4. Two-dimensional media and full boundary measurements

We now consider the two-dimensional EIT problem, where � D �.r; �/ and we
cannot use separation of variables as in Section 3. More explicitly, we cannot
reduce the inverse problem for resistor networks to one of rational approximation
of the eigenvalues of the DtN map. We start by reviewing in Section 4.1 the
conditions of unique recovery of a network .�; � / from its DtN map ƒ� , defined
by measurements of the continuum ƒ� . The approximation of the conductivity
� from the network conductance function � is described in Section 4.2.

4.1. The inverse problem for planar resistor networks. The unique recoverabil-
ity from ƒ� of a network .�; � /with known circular planar graph � is established
in [Colin de Verdière 1994; Colin de Verdière et al. 1996; Curtis et al. 1994;
Curtis et al. 1998]. A graph � D .�;�/ is called circular and planar if it can be
embedded in the plane with no edges crossing and with the boundary nodes lying
on a circle. We call by association the networks with such graphs circular planar.
The recoverability result states that if the data is consistent and the graph � is
critical then the DtN map ƒ� determines uniquely the conductance function � .
By consistent data we mean that the measured matrix ƒ� belongs to the set of
DtN maps of circular planar resistor networks.

A graph is critical if and only if it is well-connected and the removal of any
edge breaks the well-connectedness. A graph is well-connected if all its circular
pairs .P;Q/ are connected. Let P and Q be two sets of boundary nodes with the
same cardinality jP j D jQj. We say that .P;Q/ is a circular pair when the nodes
in P and Q lie on disjoint segments of the boundary �. The pair is connected if
there are jP j disjoint paths joining the nodes of P to the nodes of Q.

A symmetric n�n real matrix ƒ� is the DtN map of a circular planar resistor
network with n boundary nodes if its rows sum to zero ƒ� 1 D 0 (conservation
of currents) and all its circular minors .ƒ� /P;Q have nonpositive determinant.
A circular minor .ƒ� /P;Q is a square submatrix of ƒ� defined for a circular
pair .P;Q/, with row and column indices corresponding to the nodes in P and
Q, ordered according to a predetermined orientation of the circle �. Since
subsets of P and Q with the same cardinality also form circular pairs, the
determinantal inequalities are equivalent to requiring that all circular minors
be totally nonpositive. A matrix is totally nonpositive if all its minors have
nonpositive determinant.

Examples of critical networks were given in Section 2.2, with graphs �
determined by tensor product grids. Criticality of such networks is proved in
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Y
q r

s

p

q r
�

p

Figure 6. Given some conductances in the Y network, there is
a choice of conductances in the � network for which the two
networks are indistinguishable from electrical measurements at
the nodes p, q and r .

[Curtis et al. 1994] for an odd number n of boundary points. As explained in
Section 2.2 (see in particular (2-14)), criticality holds when the number of edges
in � is equal to the number n.n�1/=2 of independent entries of the DtN map ƒ� .

The discussion in this section is limited to the tensor product topology, which is
natural for the full boundary measurement setup. Two other topologies admitting
critical networks (pyramidal and two-sided), are discussed in more detail in
Sections 5.2.1 and 5.2.2. They are better suited for partial boundary measurements
setups [Borcea et al. 2010b; 2011].

Remark 5. It is impossible to recover both the topology and the conductances
from the DtN map of a network. An example of this indetermination is the
so-called Y �� transformation given in Figure 6. A critical network can be
transformed into another by a sequence of Y �� transformations without affecting
the DtN map [Curtis et al. 1998].

4.1.1. From the continuum to the discrete DtN map. Ingerman and Morrow
[1998] showed that pointwise values of the kernel of ƒ� at any n distinct
nodes on � define a matrix that is consistent with the DtN map of a circular
planar resistor network, as defined above. We consider a generalization of these
measurements, taken with electrode functions �q.�/, as given in (3-46). It is
shown in [Borcea et al. 2008] that the measurement operator Mn in (3-46) gives
a matrix Mn.ƒ� / that belongs to the set of DtN maps of circular planar resistor
networks. We can equate therefore

Mn.ƒ� /D ƒ� ; (4-1)

and solve the inverse problem for the network .�; � / to determine the conductance
� from the data ƒ� .
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4.2. Solving the 2D problem with optimal grids. To approximate �.x/ from
the network conductance � we modify the reconstruction mapping introduced in
Section 3.2 for layered media. The approximation is obtained by interpolating
the output of the reconstruction mapping on the optimal grid computed for the
reference � .o/

� 1. This grid is described in Sections 2.2 and 3.2.2. But which
interpolation should we take? If we could have grids with as many points as
we wish, the choice of the interpolation would not matter. This was the case
in Section 3.3, where we studied the continuum limit n ! 1 for the inverse
spectral problem. The EIT problem is exponentially unstable and the whole
idea of our approach is to have a sparse parametrization of the unknown � .
Thus, n is typically small, and the approximation of � should go beyond ad-hoc
interpolations of the parameters returned by the reconstruction mapping. We
show in Section 4.2.3 how to approximate � with a Gauss–Newton iteration
preconditioned with the reconstruction mapping. We also explain briefly how
one can introduce prior information about � in the inversion method.

4.2.1. The reconstruction mapping. The idea behind the reconstruction mapping
is to interpret the resistor network .�; � / determined from the measured ƒ� D

Mn.ƒ� / as a finite-volume discretization of the equation (1-1) on the optimal
grid computed for � .o/

� 1. This is what we did in Section 3.2 for the layered
case, and the approach extends to the two-dimensional problem.

The conductivity is related to the conductances � .E/, for E 2�, via quadrature
rules that approximate the current fluxes (2-5) through the dual edges. We could
use for example the quadrature in [Borcea et al. 2010a; 2010b; Mamonov 2010],
where the conductances are

�a;b D �.Pa;b/
L.†a;b/

L.Ea;b/
; .a; b/ 2

˚�
i; j ˙

1

2

�
;
�
i ˙

1

2
; j
��
; (4-2)

where L denotes the arc length of the primary and dual edges E and † (see
Section 2.1 for the indexing and edge notation). Another example of quadrature
is given in [Borcea et al. 2008]. It is specialized to tensor product grids in a
disk, and it coincides with the quadrature (3-8) in the case of layered media. For
inversion purposes, the difference introduced by different quadrature rules is
small (see [Borcea et al. 2010a, Section 2.4]).

To define the reconstruction mapping �n, we solve two inverse problems for
resistor networks. One with the measured data ƒ� D Mn.ƒ� /, to determine
the conductance � , and one with the computed data ƒ� .o/ D Mn.ƒ�.o//, for the
reference � .o/

� 1. The latter gives the reference conductance � .o/ which we
associate with the geometrical factor in (4-2)

�
.o/
a;b

�

L.†a;b/

L.Ea;b/
; (4-3)
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so that we can write

�.Pa;b/� �a;b D

�a;b

�
.o/
a;b

: (4-4)

Note that (4-4) becomes (3-40) in the layered case, where (3-8) gives j̨ D

h�=�jC

1
2 ;q and Ǫj D h��j ;qC

1
2

. The factors h� cancel out.
Let us call �n the set in �e of e D n.n � 1/=2 independent measurements

in Mn.ƒ� /, obtained by removing the redundant entries. Note that there are
e edges in the network, as many as the number of the data points in �n, given
for example by the entries in the upper triangular part of Mn.ƒ� /, stacked
column by column in a vector in �e. By the consistency of the measurements
(Section 4.1.1), �n coincides with the set of the strictly upper triangular parts of
the DtN maps of circular planar resistor networks with n boundary nodes. The
mapping �n W �n ! �e

C

associates to the measurements in �n the e positive
values �a;b in (4-4).

We illustrate in Figure 7(b) the output of the mapping �n, linearly interpolated
on the optimal grid. It gives a good approximation of the conductivity that
is improved further in Figure 7(c) with the Gauss–Newton iteration described
below. The results in Figure 7 are obtained by solving the inverse problem for the
networks with a fast layer peeling algorithm [Curtis et al. 1994]. Optimization
can also be used for this purpose, at some additional computational cost. In any
case, because we have relatively few n.n�1/=2 parameters, the cost is negligible
compared to that of solving the forward problem on a fine grid.

4.2.2. The optimal grids and sensitivity functions. The definition of the tensor
product optimal grids considered in Sections 2.2 and 3 does not extend to partial
boundary measurement setups or to nonlayered reference conductivity functions.
We present here an alternative approach to determining the location of the
points Pa;b at which we approximate the conductivity in the output (4-4) of
the reconstruction mapping. This approach extends to arbitrary setups, and it is
based on the sensitivity analysis of the conductance function � to changes in the
conductivity [Borcea et al. 2010b].

The sensitivity grid points are defined as the maxima of the sensitivity functions
D��a;b.x/. They are the points at which the conductances �a;b are most sensitive
to changes in the conductivity. The sensitivity functions D�� .x/ are obtained
by differentiating the identity ƒ� .�/ D Mn.ƒ� / with respect to � :

.D�� / .x/D

�
D� ƒ�

ˇ̌
ƒ� DMn.ƒ� /

�
�1vec .Mn.D�� /.x// ; x 2�: (4-5)

The left-hand side is a vector in �e. Its k�th entry is the Fréchet derivative of
conductance �k with respect to changes in the conductivity � . The entries of the
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Figure 7. (a) True conductivity phantoms. (b) The output of
the reconstruction mapping �n, linearly interpolated on a grid
obtained for layered media as in Section 3.2.2. (c) One step of
Gauss–Newton improves the reconstructions.

Jacobian D� ƒ� 2 �e�e are

�
D� ƒ�

�
jk

D

�
vec

�
@ƒ�

@�k

��

j

; (4-6)

where vec.A/ denotes the operation of stacking in a vector in �e the entries in
the strict upper triangular part of a matrix A 2 �n�n. The last factor in (4-5) is
the sensitivity of the measurements to changes of the conductivity, given by

.Mn.D�� //ij .x/D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Z

���

�i.x/D�� .xI x;y/�j .y/ dx dy, i ¤ j ,

�

X

k¤i

Z

���

�i.x/D�� .xI x;y/�k.y/ dx dy, i D j .

(4-7)

Here �� .x;y/ is the kernel of the DtN map evaluated at points x and y 2 �. Its
Jacobian to changes in the conductivity is

D�� .xI x;y/

D �.x/�.y/
˚
rx.n.x/ � rxG.x;x//

�
�

˚
rx.n.y/ � ryG.x;y//

�
; (4-8)
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D��1;1=2=�
.0/
1;1=2

D��3=2;0=�
.0/
3=2;0

D��2;1=2=�
.0/
2;1=2

D��5=2;0=�
.0/
5=2;0

D��3;1=2=�
.0/
3;1=2

D��7=2;0=�
.0/
7=2;0

Figure 8. Sensitivity functions diag.1=� .0//D�� computed
around the conductivity � D 1 for n D 13. The images have a lin-
ear scale from dark blue to dark red spanning ˙ their maximum
in absolute value. Light green corresponds to zero. We only
display 6 sensitivity functions, the other ones can be obtained
by integer multiple of 2�=13 rotations. The primary grid is
displayed in solid lines and the dual grid in dotted lines. The
maxima of the sensitivity functions are very close to those of
the optimal grid (intersection of solid and dotted lines).

where G is the Green’s function of the differential operator u ! r � .�ru/ with
Dirichlet boundary conditions, and n.x/ is the outer unit normal at x 2 �. For
more details on the calculation of the sensitivity functions see [Borcea et al.
2010b, Section 4].

The definition of the sensitivity grid points is

Pa;b D arg max
x2�

.D��a;b/.x/; evaluated at � D � .o/
� 1: (4-9)

We display in Figure 8 the sensitivity functions with the superposed optimal grid
obtained as in Section 3.2.2. Note that the maxima of the sensitivity functions
are very close to the optimal grid points in the full measurements case.

4.2.3. The preconditioned Gauss–Newton iteration. Since the reconstruction
mapping �n gives good reconstructions when properly interpolated, we can think
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of it as an approximate inverse of the forward map Mn.ƒ� / and use it as a
nonlinear preconditioner. Instead of minimizing the misfit in the data, we solve
the optimization problem

min
�>0

���n.vec.Mn.ƒ� ///� �n.vec.Mn.ƒ��///
��2

2
: (4-10)

Here �
�

is the conductivity that we would like to recover. For simplicity the
minimization (4-10) is formulated with noiseless data and no regularization. We
refer to [Borcea et al. 2011] for a study of the effect of noise and regularization
on the minimization (4-10).

The positivity constraints in (4-10) can be dealt with by solving for the
log-conductivity � D ln.�/ instead of the conductivity � . With this change of
variable, the residual in (4-10) can be minimized with the standard Gauss–Newton
iteration, which we write in terms of the sensitivity functions (4-5) evaluated at
� .j/

D exp �.j/:

�.jC1/
D �.j/

�

�
diag.1=� .0//D�� diag.exp �.j//

�|

�

�
�n.vec.Mn.ƒexp �.j ////� �n.vec.Mn.ƒ��///

�
: (4-11)

The superscript | denotes the Moore–Penrose pseudoinverse and the division is
understood componentwise. We take as initial guess the log-conductivity �.0/

D

ln � .0/, where � .0/ is given by the linear interpolation of �n.vec.Mn.ƒ��// on
the optimal grid (i.e., the reconstruction from Section 4.2.1). Having such a
good initial guess helps with the convergence of the Gauss–Newton iteration.
Our numerical experiments indicate that the residual in (4-10) is mostly reduced
in the first iteration [Borcea et al. 2008]. Subsequent iterations do not change
significantly the reconstructions and result in negligible reductions of the residual
in (4-10). Thus, for all practical purposes, the preconditioned problem is linear.
We have also observed in [Borcea et al. 2008; 2011] that the conditioning of the
linearized problem is significantly reduced by the preconditioner �n.

Remark 6. The conductivity obtained after one step of the Gauss–Newton
iteration is in the span of the sensitivity functions (4-5). The use of the sensitivity
functions as an optimal parametrization of the unknown conductivity was studied
in [Borcea et al. 2011]. Moreover, the same preconditioned Gauss–Newton
idea was used in [Guevara Vasquez 2006] for the inverse spectral problem of
Section 3.2.

We illustrate the improvement of the reconstructions with one Gauss–Newton
step in Figure 7 (c). If prior information about the conductivity is available, it
can be added in the form of a regularization term in (4-10). An example using
total variation regularization is given in [Borcea et al. 2008].
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5. Two-dimensional media and partial boundary measurements

In this section we consider the two-dimensional EIT problem with partial bound-
ary measurements. As mentioned in Section 1, the boundary � is the union of the
accessible subset �A and the inaccessible subset �I . The accessible boundary
�A may consist of one or multiple connected components. We assume that the
inaccessible boundary is grounded, so the partial boundary measurements are a
set of Cauchy data

˚
uj�A

; .�n � ru/j�A

�
, where u satisfies (1-1) and uj�I

D 0.
The inverse problem is to determine � from these Cauchy data.

Our inversion method described in the previous sections extends to the partial
boundary measurement setup. But there is a significant difference concerning
the definition of the optimal grids. The tensor product grids considered so far
are essentially one-dimensional, and they rely on the rotational invariance of the
problem for � .o/

� 1. This invariance does not hold for the partial boundary
measurements, so new ideas are needed to define the optimal grids. We present
two approaches in Sections 5.1 and 5.2. The first one uses circular planar
networks with the same topology as before, and mappings that take uniformly
distributed points on � to points on the accessible boundary �A. The second
one uses networks with topologies designed specifically for the partial boundary
measurement setups. The underlying two-dimensional optimal grids are defined
with sensitivity functions.

5.1. Coordinate transformations for the partial data problem. The idea of the
approach described in this section is to map the partial data problem to one
with full measurements at equidistant points, where we know from Section 4
how to define the optimal grids. Since � is a unit disk, we can do this with
diffeomorphisms of the unit disk to itself.

Let us denote such a diffeomorphism by F and its inverse F�1 by G. If the
potential u satisfies (1-1), then the transformed potential Qu.x/D u.F.x// solves
the same equation with conductivity z� defined by

z�.x/D

G0.y/�.y/ .G0.y//T

jdet G0.y/j

ˇ̌
ˇ̌
ˇ
yDF.x/

; (5-1)

where G0 denotes the Jacobian of G. The conductivity z� is the push forward
of � by G, and it is denoted by G

�
� . Note that if G0.y/ .G0.y//T ¤ I and

det G0.y/¤ 0, then z� is a symmetric positive definite tensor. If its eigenvalues
are distinct, then the push forward of an isotropic conductivity is anisotropic.

The push forward g
�
ƒ� of the DtN map is written in terms of the restrictions

of diffeomorphisms G and F to the boundary. We call these restrictions g D Gj�
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and f D F j� and write

..g
�
ƒ� /u�/.�/D .ƒ� .u� ı g//.�/j�Df .�/ ; � 2 Œ0; 2�/; (5-2)

for u� 2 H 1=2.�/. It is shown in [Sylvester 1990] that the DtN map is invariant
under the push forward in the following sense

g
�
ƒ� DƒG�� : (5-3)

Therefore, given (5-3) we can compute the push forward of the DtN map, solve
the inverse problem with data g

�
ƒ� to obtain G

�
� , and then map it back using

the inverse of (5-2). This requires the full knowledge of the DtN map. However,
if we use the discrete analogue of the above procedure, we can transform the
discrete measurements of ƒ� on �A to discrete measurements at equidistant
points on �, from which we can estimate z� as described in Section 4.

There is a major obstacle to this procedure: The EIT problem is uniquely
solvable only for isotropic conductivities. Anisotropic conductivities are de-
termined by the DtN map only up to a boundary-preserving diffeomorphism
[Sylvester 1990]. Two distinct approaches to overcome this obstacle are described
in Sections 5.1.1 and 5.1.2. The first uses conformal mappings F and G that
preserve the isotropy of the conductivity at the expense of rigid placement of
the measurement points. The second approach uses extremal quasiconformal
mappings that minimize the artificial anisotropy of z� introduced by the placement
at our will of the measurement points in �A.

5.1.1. Conformal mappings. The push forward G
�
� of an isotropic � is isotropic

if G and F satisfy G0

�
.G0/T

�
D I and F 0

�
.F 0/T

�
D I . This means that the

diffeomorphism is conformal and the push forward is simply

G
�
� D � ı F: (5-4)

Since all conformal mappings of the unit disk to itself belong to the family of
Möbius transforms [Lavrentiev and Shabat 1987], F must be of the form

F.z/D ei! z � a

1 � az
; z 2 �; jzj � 1; ! 2 Œ0; 2�/; a 2 �; jaj< 1; (5-5)

where we associate �2 with the complex plane �. Note that the group of
transformations (5-5) is extremely rigid, its only degrees of freedom being the
numerical parameters a and !.

To use the full data discrete inversion procedure from Section 4 we require
that G maps the accessible boundary segment �A D

˚
ei�

j � 2 Œ�ˇ; ˇ�
�

to the
whole boundary with the exception of one segment between the equidistant
measurement points �k , k D .n C 1/=2; .n C 3/=2 as shown in Figure 9. This
determines completely the values of the parameters a and ! in (5-5) which in
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α = θn+1
2

−α = θn+3
2

β = τ n+1
2

−β = τ n+3
2

Figure 9. The optimal grid in the unit disk (left) and its image
under the conformal mapping F (right). Primary grid lines are
solid black, dual grid lines are dotted black. Boundary grid
nodes: primary �, dual ı. The accessible boundary segment �A

is indicated by the outermost arc (thick solid line).

turn determine the mapping f on the boundary. Thus, we have no further control
over the positioning of the measurement points �k D f .�k/, k D 1; : : : ; n.

As shown in Figure 9 the lack of control over �k leads to a grid that is highly
nonuniform in angle. In fact it is demonstrated in [Borcea et al. 2010a] that
as n increases there is no asymptotic refinement of the grid away from the
center of �A, where the points accumulate. However, since the limit n ! 1 is
unattainable in practice due to the severe ill-conditioning of the problem, the
grids obtained by conformal mapping can still be useful in practical inversion.
We show reconstructions with these grids in Section 5.3.

5.1.2. Extremal quasiconformal mappings. To overcome the issues with confor-
mal mappings that arise due to the inherent rigidity of the group of conformal
automorphisms of the unit disk, we use here quasiconformal mappings. A
quasiconformal mapping F obeys a Beltrami equation in �

@F

@z
D �.z/

@F

@z
; k�k

1
< 1; (5-6)

with a Beltrami coefficient �.z/ that measures how much F differs from a
conformal mapping. If � � 0, then (5-6) reduces to the Cauchy–Riemann
equation and F is conformal. The magnitude of � also provides a measure of
the anisotropy � of the push forward of � by F . The anisotropy is defined by

�.F
�
�; z/D

p
�1.z/=�2.z/� 1

p
�1.z/=�2.z/C 1

; (5-7)
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where �1.z/ and �2.z/ are the largest and smallest eigenvalues of F
�
� respec-

tively. The connection between � and � is given by

� .F
�
�; z/D j�.z/j; (5-8)

and the maximum anisotropy is

�.F
�
�/D sup

z

�.F
�
�; z/D k�k

1
: (5-9)

Since the unknown conductivity is isotropic, we would like to minimize the
amount of artificial anisotropy that we introduce into the reconstruction by using
F . This can be done with extremal quasiconformal mappings, which minimize
k�k

1
under constraints that fix f D F j�, thus allowing us to control the

positioning of the measurement points �k D f .�k/, for k D 1; : : : ; n.
For sufficiently regular boundary values f there exists a unique extremal

quasiconformal mapping that is known to be of a Teichmüller type [Strebel
1976]. Its Beltrami coefficient satisfies

�.z/D k�k
1

�.z/

j�.z/j
; (5-10)

for some holomorphic function �.z/ in �. Similarly, we can define the Beltrami
coefficient for G, using a holomorphic function  . It is established in [Reich
1976] that F admits a decomposition

F D‰�1
ı AK ıˆ; (5-11)

where
ˆ.z/D

Z p
�.z/dz; ‰.�/D

Z p
 .�/d�; (5-12)

are conformal away from the zeros of � and  , and

AK .x C iy/D Kx C iy (5-13)

is an affine stretch, the only source of anisotropy in (5-11):

� .F
�
�/D k�k

1
D

ˇ̌
ˇ̌K � 1

K C 1

ˇ̌
ˇ̌ : (5-14)

Since only the behavior of f at the measurement points �k is of interest to us,
it is possible to construct explicitly the mappings ˆ and ‰ [Borcea et al. 2010a].
They are Schwartz–Christoffel conformal mappings of the unit disk to polygons
of special form, as shown in Figure 10. See [Borcea et al. 2010a, Section 3.4]
for more details.

We demonstrate the behavior of the optimal grids under the extremal quasi-
conformal mappings in Figure 11. We present the results for two different values
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Φ AK Ψ−1

Figure 10. Teichmüller mapping decomposed into conformal
mappings ˆ and ‰, and an affine transform AK . The poles of
� and  and their images under ˆ and ‰ areF, the zeros of �
and  and their images under ˆ and ‰ are �.

Figure 11. The optimal grid under the quasiconformal Teich-
müller mappings F with different K. Left: K D 0:8 (smaller
anisotropy); right: K D 0:66 (higher anisotropy). Primary grid
lines are solid black, dual grid lines are dotted black. Boundary
grid nodes: primary �, dual ı. The accessible boundary segment
�A is indicated by the outermost arc (thick solid line).

of the affine stretching constant K. As we increase the amount of anisotropy
from K D 0:8 to K D 0:66, the distribution of the grid nodes becomes more
uniform. The price to pay for this more uniform grid is an increased amount of
artificial anisotropy, which may detriment the quality of the reconstruction, as
shown in the numerical examples in Section 5.3.

5.2. Special network topologies for the partial data problem. The limitations
of the construction of the optimal grids with coordinate transformations can
be attributed to the fact that there is no nonsingular mapping between the full
boundary � and its proper subset �A. Here we describe an alternative approach,
that avoids these limitations by considering networks with different topologies,
constructed specifically for the partial measurement setups. The one-sided case,
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with the accessible boundary �A consisting of one connected segment, is in
Section 5.2.1. The two sided case, with �A the union of two disjoint segments, is
in Section 5.2.2. The optimal grids are constructed using the sensitivity analysis
of the discrete and continuum problems, as explained in Sections 4.2.2 and 5.2.3.

5.2.1. Pyramidal networks for the one-sided problem. We consider here the case
of �A consisting of one connected segment of the boundary. The goal is to
choose a topology of the resistor network based on the flow properties of the
continuum partial data problem. Explicitly, we observe that since the potential
excitation is supported on �A, the resulting currents should not penetrate deep
into �, away from �A. The currents are so small sufficiently far away from �A

that in the discrete (network) setting we can ask that there is no flow escaping
the associated nodes. Therefore, these nodes are interior ones. A suitable choice
of networks that satisfy such conditions was proposed in [Borcea et al. 2010b].
We call them pyramidal and denote their graphs by �n, with n the number of
boundary nodes.

We illustrate two pyramidal graphs in Figure 12, for n D 6 and 7. Note that it
is not necessary that n be odd for the pyramidal graphs �n to be critical, as was
the case in the previous sections. In what follows we refer to the edges of �n

as vertical or horizontal according to their orientation in Figure 12. Unlike the
circular networks in which all the boundary nodes are in a sense adjacent, there
is a gap between the boundary nodes v1 and vn of a pyramidal network. This
gap is formed by the bottommost n � 2 interior nodes that enforce the condition
of zero normal flux, the approximation of the lack of penetration of currents
away from �A.

It is known from [Curtis et al. 1998; Borcea et al. 2010b] that the pyramidal
networks are critical and thus uniquely recoverable from the DtN map. Similar
to the circular network case, pyramidal networks can be recovered using a layer

v1

v2

v3 v4

v5

v6 v1

v2

v3

v4

v5

v6

v7

Figure 12. Pyramidal networks �n for n D 6, 7. The boundary
nodes vj , j D 1; : : : ; n are indicated with � and the interior
nodes with ı.



98 L. BORCEA, V. DRUSKIN, F. GUEVARA VASQUEZ AND A. V. MAMONOV

peeling algorithm in a finite number of algebraic operations. We recall such an
algorithm below, from [Borcea et al. 2010b], in the case of even n D 2m. A
similar procedure can also be used for odd n.

Algorithm 1. To determine the conductance � of the pyramidal network .�n; � /

from the DtN map ƒ.n/, perform the following steps:

(1) To compute the conductances of horizontal and vertical edges emanating
from the boundary node vp, for each p D 1; : : : ; 2m, define the following
sets:
Z D fv1; : : : ; vp�1; vpC1; : : : ; vmg, C D fvmC2; : : : ; v2mg,
H D fv1; : : : ; vpg and V D fvp; : : : ; vmC1g, in the case p � m.
Z D fvmC1; : : : ; vp�1; vpC1; : : : ; v2mg, C D fv1; : : : ; vm�1g,
H D fvp; : : : ; v2mg and V D fvm; : : : ; vpg, for m C 1 � p � 2m.

(2) Compute the conductance � .Ep;h/ of the horizontal edge emanating from
vp using

� .Ep;h/D

�
ƒ

.n/
p;H � ƒ

.n/
p;C

�
ƒ

.n/
Z;C

�
�1

ƒ
.n/
Z;H

�
1H I (5-15)

compute the conductance � .Ep;v/ of the vertical edge emanating from vp
using

� .Ep;v/D

�
ƒ

.n/
p;V � ƒ

.n/
p;C

�
ƒ

.n/
Z;C

�
�1

ƒ
.n/
Z;V

�
1V ; (5-16)

where 1V and 1H are column vectors of all ones.

(3) Once � .Ep;h/, � .Ep;v/ are known, peel the outer layer from �n to obtain
the subgraph �n�2 with the set � D fw1; : : : ; w2m�2g of boundary nodes.
Assemble the blocks K��, K��, K��, K�� of the Kirchhoff matrix of
.�n; � /, and compute the updated DtN map ƒ.n�2/ of the smaller network
.�n�2; � /, as follows

ƒ.n�2/
D �K

0

�� � K�� P
T
�
P .ƒ.n/

� K��/P
T
�
�1

P K��: (5-17)

Here P 2 �.n�2/�n is a projection operator: PP
T

D In�2, and K
0

�� is a
part of K�� that only includes the contributions from the edges connecting
� to �.

(4) If m D 1 terminate. Otherwise, decrease m by 1, update n D 2m and go
back to step 1.

Similar to the layer peeling method in [Curtis et al. 1994], Algorithm 1 is
based on the construction of special solutions. In steps 1 and 2 the special
solutions are constructed implicitly, to enforce a unit potential drop on edges
Ep;h and Ep;v emanating from the boundary node vp. Since the DtN map is
known, so is the current at vp, which equals to the conductance of an edge due
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to a unit potential drop on that edge. Once the conductances are determined for
all the edges adjacent to the boundary, the layer of edges is peeled off and the
DtN map of a smaller network �n�2 is computed in step 3. After m layers have
been peeled off, the network is completely recovered. The algorithm is studied
in detail in [Borcea et al. 2010b], where it is also shown that all matrices that are
inverted in (5-15), (5-16) and (5-17) are nonsingular.

Remark 7. The DtN update formula (5-17) provides an interesting connection
to the layered case. It can be viewed as a matrix generalization of the continued
fraction representation (3-36). The difference between the two formulas is that
(3-36) expresses the eigenvalues of the DtN map, while (5-17) gives an expression
for the DtN map itself.

5.2.2. The two-sided problem. We call the problem two-sided when the acces-
sible boundary �A consists of two disjoint segments of �. A suitable network
topology for this setting is that of a two-sided graph Tn shown in Figure 13. The
number of boundary nodes n is assumed even n D 2m. Half of the nodes are on
one segment of the boundary and the other half on the other, as illustrated in the
figure. Similar to the one-sided case, the two groups of m boundary nodes are
separated by the outermost interior nodes, which model the lack of penetration
of currents away from the accessible boundary segments. One can verify that
the two-sided network is critical, and thus it can be uniquely recovered from the
DtN map by the Algorithm 2 given below.

When referring to either the horizontal or vertical edges of a two sided network,
we use their orientation in Figure 13.

Figure 13. Two-sided network Tn for n D 10. Boundary nodes
vj , j D 1; : : : ; n are �, interior nodes are ı.
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Algorithm 2. To determine the conductance � of the two-sided network .Tn; � /

from the DtN map ƒ� , perform the following steps:

(1) Peel the lower layer of horizontal resistors:
For p D m C 2;m C 3; : : : ; 2m define the sets

Z D fp C 1;p C 2; : : : ;p C m � 1g and C D fp � 2;p � 3; : : : ;p � mg:

The conductance of the edge Ep;q;h between vp and vq , where q D p � 1,
is given by

� .Ep;q;h/D �ƒp;q C ƒp;C .ƒZ;C /
�1ƒZ;q: (5-18)

Assemble a symmetric tridiagonal matrix A with off-diagonal entries

�� .Ep;p�1;h/

and rows summing to zero. Update the lower right m-by-m block of the
DtN map by subtracting A from it.

(2) Let s D m � 1.

(3) Peel the top and bottom layers of vertical resistors:
For p D 1; 2; : : : ; 2m define the sets L D fp � 1;p � 2; : : : ;p � sg and
R D fp C1;p C2; : : : ;p C sg. If p <m=2 for the top layer, or p > 3m=2

for the bottom layer, set Z D L, C D R. Otherwise let Z D R, C D L.
The conductance of the vertical edge emanating from vp is given by

� .Ep;v/D ƒp;p � ƒp;C .ƒZ;C /
�1ƒZ;p: (5-19)

Let D D diag
�
� .Ep;v/

�
and update the DtN map

ƒ� D �D � D
�
ƒ� C D

�
�1

D: (5-20)

(4) If s D 1 go to step (7). Otherwise decrease s by 2.

(5) Peel the top and bottom layers of horizontal resistors:
For p D 1; 2; : : : ; 2m define the sets L D fp � 1;p � 2; : : : ;p � sg and
R D fp C 2;p C 3; : : : ;p C s C 1g. If p < m=2 for the top layer, or
p < 3m=2 for the bottom layer, set Z D L, C D R, q D p C 1. Otherwise
let Z D R, C D L, q D p � 1. The conductance of the edge connecting vp
and vq is given by (5-18). Update the upper left and lower right blocks of
the DtN map as in step (1).

(6) If s D 0 go to step (7), otherwise go to (3).

(7) Determine the last layer of resistors. If m is odd the remaining vertical
resistors are the diagonal entries of the DtN map. If m is even, the remaining
resistors are horizontal. The leftmost of the remaining horizontal resistors



RESISTOR NETWORKS FOR ELECTRICAL IMPEDANCE TOMOGRAPHY 101

� .E1;2;h/ is determined from (5-18) with p D 1, q D m C 1, C D f1; 2g,
Z D fm C 1;m C 2g and a change of sign. The rest are determined by

� .Ep;pC1;h/D

�
ƒp;H � ƒp;C .ƒZ;C /

�1ƒZ;H

�
1; (5-21)

where p D 2; 3; : : : ;m � 1,

C D fp � 1;p;p C 1g; Z D fp C m � 1;p C m;p C m C 1g;

H D fp C m � 1;p C mg; 1 D .1; 1/T :

Similar to Algorithm 1, Algorithm 2 is based on the construction of special
solutions examined in [Curtis et al. 1994; Curtis and Morrow 2000]. These
solutions are designed to localize the flow on the outermost edges, whose conduc-
tance we determine first. In particular, formulas (5-18) and (5-19) are known as
the “boundary edge” and “boundary spike” formulas [Curtis and Morrow 2000,
Corollaries 3.15 and 3.16].

5.2.3. Sensitivity grids for pyramidal and two-sided networks. The underlying
grids of the pyramidal and two-sided networks are truly two-dimensional, and
they cannot be constructed explicitly as in Section 3 by reducing the problem to a
one-dimensional one. We define the grids with the sensitivity function approach
described in Section 4.2.2. The computed sensitivity grid points are presented
in Figure 14, and we observe a few important properties. First, the neighboring
points corresponding to the same type of resistors (vertical or horizontal) form

Figure 14. Sensitivity optimal grids in the unit disk for the
pyramidal network �n (left) and the two-sided network Tn (right)
with nD16. The accessible boundary segments �A are solid red.
The symbol � corresponds to vertical edges,F corresponds to
horizontal edges, and measurement points are marked with �.
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rather regular virtual quadrilaterals. Second, the points corresponding to different
types of resistors interlace in the sense of lying inside the virtual quadrilaterals
formed by the neighboring points of the other type. Finally, while there is some
refinement near the accessible boundary (more pronounced in the two-sided case),
the grids remain quite uniform throughout the covered portion of the domain.

Note from Figure 13 that the graph Tn lacks upside-down symmetry. Thus,
it is possible to come up with two sets of optimal grid nodes, by fitting the
measured DtN map Mn.ƒ� / once with a two-sided network and the second
time with the network turned upside-down. This way the number of nodes in the
grid is essentially doubled, thus doubling the resolution of the reconstruction.
However, this approach can only improve resolution in the direction transversal
to the depth.

5.3. Numerical results. We present in this section numerical reconstructions
with partial boundary measurements. The reconstructions with the four methods
from Sections 5.1.1, 5.1.2, 5.2.1 and 5.2.2 are compared row by row in Figure 15.
We use the same two test conductivities as in Figure 7(a). Each row in Figure 15
corresponds to one method. For each test conductivity, we show first the piecewise
linear interpolation of the entries returned by the reconstruction mapping �n, on
the optimal grids (first and third column in Figure 15). Since these grids do not
cover the entire�, we display the results only in the subset of� populated by the
grid points. We also show the reconstructions after one-step of the Gauss–Newton
iteration (4-11) (second and fourth columns in Figure 15).

As expected, reconstructions with the conformal mapping grids are the worst.
The highly nonuniform conformal mapping grids cannot capture the details of
the conductivities away from the middle of the accessible boundary. The recon-
structions with quasiconformal grids perform much better, capturing the details
of the conductivities much more uniformly throughout the domain. Although the
piecewise linear reconstructions �n have slight distortions in the geometry, these
distortions are later removed by the first step of the Gauss–Newton iteration.
The piecewise linear reconstructions with pyramidal and two-sided networks
avoid the geometrical distortions of the quasiconformal case, but they are also
improved after one step of the Gauss–Newton iteration.

Note that while the Gauss–Newton step improves the geometry of the recon-
structions, it also introduces some spurious oscillations. This is more pronounced
for the piecewise constant conductivity phantom (fourth column in Figure 15). To
overcome this problem one may consider regularizing the Gauss–Newton iteration
(4-11) by adding a penalty term of some sort. For example, for the piecewise
constant phantom, we could penalize the total variation of the reconstruction, as
was done in [Borcea et al. 2008].
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Figure 15. Reconstructions with partial data. Same conduc-
tivities are used as in Figure 7. Two leftmost columns: smooth
conductivity. Two rightmost columns: piecewise constant chest
phantom. Columns 1 and 3: piecewise linear reconstructions.
Columns 2 and 4: reconstructions after one step of Gauss–
Newton iteration (4-11). Rows from top to bottom: conformal
mapping, quasiconformal mapping, pyramidal network, two-
sided network. The accessible boundary �A is indicated by
solid arcs exterior to each disk. The centers of supports of
measurement (electrode) functions �q are marked with �.
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6. Summary

We presented a discrete approach to the numerical solution of the inverse prob-
lem of electrical impedance tomography (EIT) in two dimensions. Due to the
severe ill-posedness of the problem, it is desirable to parametrize the unknown
conductivity �.x/ with as few parameters as possible, while still capturing the
best attainable resolution of the reconstruction. To obtain such a parametrization,
we used a discrete, model reduction formulation of the problem. The discrete
models are resistor networks with special graphs.

We described in detail the solvability of the model reduction problem. First,
we showed that boundary measurements of the continuum Dirichlet to Neumann
(DtN) map ƒ� for the unknown �.x/ define matrices that belong to the set of
discrete DtN maps for resistor networks. Second, we described the types of
network graphs appropriate for different measurement setups. By appropriate
we mean those graphs that ensure unique recoverability of the network from its
DtN map. Third, we showed how to determine the networks.

We established that the key ingredient in the connection between the discrete
model reduction problem (inverse problem for the network) and the continuum
EIT problem is the optimal grid. “Optimal” refers to the fact that finite-volumes
discretization on these grids give spectrally accurate approximations of the DtN
map, the data in EIT. We defined reconstructions of the conductivity using the
optimal grids, and studied them in detail in three cases: (1) layered media and full
boundary measurements, where the problem can be reduced to one dimension
via Fourier transforms; (2) two-dimensional media with measurement access to
the full boundary; and (3) two-dimensional media with access to a subset of the
boundary.

Finally, we illustrated the approach’s performance with numerical simulations.

Appendix A. The quadrature formulas

To understand definitions (3-8), recall Figure 1. Take for example the dual edge

†
i�

1
2 ;j D .P

i�
1
2 ;j�

1
2
;P

i�
1
2 ;j�

1
2
/;

where P
i�

1
2 ;j�

1
2

D Ori.cos O�j ; sin O�j /. We have from (2-5) and the change of
variables to z.r/ that

Z

†
i� 1

2
;j

�.x/n.x/ � ru.x/ ds.x/D

Z
O�j C1

O�j

Ori�1�. Ori�1/
@u. Ori�1; �/

@r
d�

� �h�
@u. Ori�1; �j /

@z
�

h�

�
Ui�1;j � Ui;j

�

z.ri/� z.ri�1/
;
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which gives the first equation in (3-8). Similarly, the flux across

†
i;jC

1
2

D .P
i�

1
2 ;jC

1
2
;P

iC
1
2 ;jC

1
2
/

is given by
Z

†
i;j C 1

2

�.x/n.x/ � ru.x/ ds.x/D

Z
Ori�1

Ori

�.r/

r

@u.r; O�jC1/

@�
dr

�

@u.ri ; O�jC1/

@�

Z
Ori�1

Ori

�.r/

r
dr

� .Oz. Ori/� Oz. Ori�1//
Ui;jC1 � U.i; j /

h�
;

which gives the second equation in (3-8).

Appendix B. Continued fraction representation

Let us begin with the system of equations satisfied by the potential Vj , which
we rewrite as

bj D bjC1 C ǪjC1�VjC1 .0; 1; : : : ; `/; b0 Dˆ�; V`C1 D 0; (B-1)

where we let
Vj D VjC1 C j̨ bj : (B-2)

Combining the first equation in (B-1) with (B-2), we obtain the recursive relation

bj

Vj

D

1

j̨ C

1

ǪjC1�C

bjC1

VjC1

; j D 1; 2; : : : ; `; (B-3)

which we iterate for j decreasing from j D `� 1 to 1, and starting with

b`

V`
D

1

˛`
: (B-4)

The latter follows from the first equation in (B-1) evaluated at j D`, and boundary
condition V`C1 D 0. We obtain that

F|.�/D V1=ˆ� D

V1

b0

D

V1

b1C Ǫ1�V1

D

1

Ǫ1�C

b1

V1

(B-5)

has the continued fraction representation (3-36).
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Appendix C. Derivation of (3-47) and (3-48)

To derive (3-47) let us begin with the Fourier series of the electrode functions

�q.�/D

X

k2�

Cq.k/e
ik�

D

X

k2�

Cq.k/e
�ik� ; (C-1)

where the bar denotes complex conjugate and the coefficients are

Cq.�/D

1

2�

Z
2�

0

�q.�/e
ik�d� D

eik�q

2�
sinc

�
kh�

2

�
: (C-2)

Then, we have

.ƒ� /p;q D

Z
2�

0

�p.�/ƒ��q.�/ d� D

X

k;k0
2�

Cp.k/Cq.k 0/

Z
2�

0

eik�ƒ�e�ik
0�d�

D

1

2�

X

k2�

eik.�p��q/f .k2/sinc2

�kh�

2

�
; p ¤ q: (C-3)

The diagonal entries are

.ƒ� /p;p D �

X

q¤p

.ƒ� /p;q

D �

1

2�

X

k2�

eik�pf .k2/sinc2

�kh�

2

�X

q¤p

e�ik�q : (C-4)

But

X

q¤p

e�ik�q
D

nX

qD1

e�i
2�k

n .q�1/
� e�ik�p

D ei�k.1�1=n/ sin.�k/

sin.�k=n/
� e�ik�p

D nık;0 � eik�p : (C-5)

Since f .0/D 0, we obtain from (C-4) and (C-5) that (C-3) holds for p D q as
well. This is the result (3-47). Moreover, (3-48) follows from

�
ƒ� Œe

ik� �
�
p

D

nX

qD1

.ƒ� /p;qeik�q

D

1

2�

X

k12�

eik1�pf .k2

1
/sinc2

�k1h�

2

� nX

qD1

ei.k�k1/�q ; (C-6)
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and the identity
nX

qD1

ei.k�k1/�q
D

nX

qD1

ei
2�.k�k1/

n .q�1/
D nık;k1

: (C-7)

Appendix D. Rational interpolation and Euclidean division

Consider the case m1=2 D 1, where F.�/D 1=F|.�/ follows from (3-36). We
rename the coefficients as

�2j�1 D Ǫj ; �2j D j̨ ; j D 1; : : : ; `; (D-1)

and let �D x2 to obtain

F.x2/

x
D �1x C

1

�2xC

: : : 1

�2`�1xC

1
�2`x

: (D-2)

To determine �j , for j D 1; : : : ; 2`, we write first (D-2) as the ratio of two
polynomials of x, P2`.x/ and Q2`�1.x/ of degrees 2` and 2`� 1 respectively,
and seek their coefficients cj ,

F.x2/

x
D

P2`.x/

Q2`�1.x/
D

c2`x2`
C c2.`�1/x

2.`�1/
C � � � C c2x2

C c0

c2`�1x2`�1
C c2`�3x2`�3

C : : :C c1x
: (D-3)

We normalize the ratio by setting c0 D �1.
Now suppose that we have measurements of F at �k D x2

k
, for k D 1; : : : ; 2`,

and introduce the notation
F.x2

k
/

xk

D Dk : (D-4)

We obtain from (D-3) the following linear system of equations for the coefficients

P2`.xk/� DkQ2`�1.xk/D 0; k D 1; : : : ; 2`; (D-5)

or in matrix form
0

BBB@

�D1x1 x2

1
�D1x3

1
: : : �D1x2`�1

1
x2`

1

�D2x2 x2

2
�D2x3

2
: : : �D2x2`�1

2
x2`

2

:::

�D2`x2` x2

2`
�D2`x3

2`
: : : �D2`x2`�1

2`
x2`

2`

1

CCCA

0

BBB@

c1

c2

:::

c2`

1

CCCA
D 1; (D-6)

with right-hand side a vector of all ones. The coefficients are obtained by
inverting the Vandermonde-like matrix in (D-6). In the special case of the
rational interpolation (3-43), it is precisely a Vandermonde matrix. Since the
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condition number of such matrices grows exponentially with their size [Gautschi
and Inglese 1988], the determination of fcj gjD1;:::;2` is an ill-posed problem, as
stated in Remark 1.

Once we have determined the polynomials P2`.x/ and Q2`�1.x/, we can
obtain f�j gjD1;:::2` by Euclidean polynomial division. Explicitly, let us introduce
a new polynomial P2`�2.x/D Qc2`�2x2`�2

C � � � C Qc0; such that

�2x C

1
�3x C : : : 1

�2`�1xC

1
�2`x

D

Q2`�1.x/

P2`�2.x/
;

�1x C

P2`�2.x/

Q2`�1.x/
D

P2`.x/

Q2`�1.x/
:

(D-7)

Equating powers of x we get

�1 D

c2`

c2`�1

; (D-8)

and the coefficients of the polynomial P2`�2.x/ are determined by

Qc2j D c2j � �1c2j�1; j D 1; : : : ; `� 1; (D-9)

Qc0 D c0: (D-10)

Then, we proceed similarly to get �2, and introduce a new polynomial Q2`�3.x/

such that

�3xC

1
�4x C ::: 1

�2`�1xC

1
�2`x

D

P2`�2.x/

Q2`�3.x/
; �2xC

Q2`�3.x/

P2`�2.x/
D

Q2`�1.x/

P2`�2.x/
:

Equating powers of x we get �2 D c2`�1= Qc2`�2 and the polynomial Q2`�3.x/

and so on.

Appendix E. The Lanczos iteration

Let us write the Jacobi matrix (3-31) as

zA D

0

BBB@

�a1 b1 0 : : : : : : 0 0

b1 �a2 b2 0 : : : 0 0
: : :

: : :
: : :

: : :
: : :

: : :
: : :

0 0 : : : : : : 0 b`�1 �a`

1

CCCA
; (E-1)
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where �aj are the negative diagonal entries and bj the positive off-diagonal ones.
Let also

��D diag.�ı2

1
; : : : ;�ı2

` / (E-2)

be the diagonal matrix of the eigenvalues and

zYj D diag.
p

Ǫ1; : : : ;
p

Ǫ`/Yj (E-3)

the eigenvectors. They are orthonormal and the matrix zY D . zY1; : : : ; zY`/ is
orthogonal

zY zY
T

D

zY
T

zY D I : (E-4)

The spectral theorem gives that zA D �

zY� zY
T or, equivalently,

zA zY D �

zY�: (E-5)

The Lanczos iteration [Trefethen and Bau 1997; Chu and Golub 2002] determines
the entries aj and bj in zA by taking equations (E-5) row by row.

Let us denote the rows of zY by

Wj D e
T

j
zY ; j D 1; : : : ; `; (E-6)

and observe from (E-5) that they are orthonormal

Wj Wq D ıj ;q (E-7)

We get for j D 1 that

kW1k

2
D

X̀

jD1

Ǫ1Y 2

1;j D Ǫ1

X̀

jD1

�j D 1; (E-8)

which determines Ǫ1, and we can set

W1 D

p
Ǫ1

�p
�1; : : : ;

p
�`
�
: (E-9)

The first row in (E-5) gives

�a1W1 C b1W2 D �W1�; (E-10)

and using the orthogonality in (E-7), we obtain

a1 D W1�W
T

1
D

X̀

jD1

ı2

j
�j ; b1 D ka1W1 � W1�k; (E-11)

and

W2 D b�1

1
.a1W1 � W1�/ : (E-12)
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The second row in (E-5) gives

b1W1 � a2W2 C b2W3 D �W2�; (E-13)

and we can compute a2 and b2 as follows,

a2 D W2�W
T

2
; b2 D ka2W2 � W2�� b1W1k: (E-14)

Moreover,

W3 D b�1

2
.a2W2 � W2�� b1W1/ ; (E-15)

and the equation continues to the next row.
Once we have determined faj gjD1;:::;` and fbj g1;:::;`�1 with the Lanczos

iteration described above, we can compute f j̨ ; Ǫj gjD1;:::;`. We already have
from (E-8) that

Ǫ1 D 1=
X̀

jD1

�j : (E-16)

The remaining parameters are determined from the identities

aj D

1

Ǫ1˛1

ıj ;1 C .1 � ıj ;1/
1

Ǫj

�
1

j̨

C

1

j̨�1

�
; bj D

1

j̨

p
Ǫj ǪjC1

: (E-17)

Appendix F. Proofs of Lemma 3 and Corollary 1

To prove Lemma 3, let A
.q/ be the tridiagonal matrix with entries defined by

f˛
.q/
j
; Ǫ

.q/
j

gjD1;:::;`, like in (3-29). It is the discretization of the operator in (3-58)
with � � .q/. Similarly, let A

.o/ be the matrix defined by f˛
.o/
j
; Ǫ

.o/
j

gjD1;:::;`,
the discretization of the second derivative operator for conductivity � .o/. By the
uniqueness of solution of the inverse spectral problem and (3-82)–(3-83), the
matrices A

.q/ and A
.o/ are related by

diag

 s
Ǫ

.q/
1

Ǫ

.o/
1

; : : : ;

s
Ǫ

.q/
`

Ǫ

.o/
`

!
A

.q/diag

 s
Ǫ

.o/
1

Ǫ

.q/
1

; : : : ;

s
Ǫ

.o/
`

Ǫ

.q/
`

!
D A

.o/
� q I :

(F-1)
They have eigenvectors Y

.q/
j

and Y
.o/

j
respectively, related by

diag
�q

Ǫ

.q/
1
; : : : ;

q
Ǫ

.q/
`

�
Y

.q/
j

D diag
�q

Ǫ

.o/
1
; : : : ;

q
Ǫ

.o/
`

�
Y

.o/
j
;

j D 1; : : : ; `; (F-2)
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and the matrix zY with columns (F-2) is orthogonal. Thus, we have the identity

. zY zY
T /11 D Ǫ

.q/
1

X̀

jD1

�.q/
D Ǫ

.o/
1

X̀

jD1

�.o/
D 1; (F-3)

which gives Ǫ

.q/
1

D Ǫ

.o/
1

by (3-82) or, equivalently

�
.q/
1

D

Ǫ

.q/
1

Ǫ

.o/
1

D 1 D � .q/.0/: (F-4)

Moreover, straightforward algebraic manipulations of the equations in (F-1) and
definitions (3-84) give the finite difference equations (3-85) and (3-86). �

To prove Corollary 1, recall the definitions (3-84) and (3-87) to write

jX

pD1

Ǫ

.q/
j

D

Z
O�.q/
j C1

0

� .q/.�/ d� D

jX

pD1

Ǫ

.o/
p
� .q/

p
D

jX

pD1

Ǫ

.o/
p
� .q/.�.o/

p
/C o.1/:

(F-5)
Here we used the convergence result in Theorem 2 and denote by o.1/ a negligible
residual in the limit `! 1. We have

Z
O�.q/
j C1

O�.o/
j C1

� .q/.�/ d� D

jX

pD1

Ǫ

.o/
p
� .q/.�.o/

p
/�

Z
O�.o/
j C1

0

� .q/.�/ d�C o.1/; (F-6)

and therefore

ˇ̌
O�
.q/
jC1

�

O�
.o/
jC1

ˇ̌
� C

ˇ̌
ˇ̌
Z

O�.o/
j C1

0

� .q/.�/ d� �

jX

pD1

Ǫ

.o/
p
� .q/.�.o/

p
/

ˇ̌
ˇ̌
C o.1/;

C D 1=min� �
.q/.�/: (F-7)

But the first term in the bound is just the error of the quadrature on the optimal
grid, with nodes at �.o/

j
and weights Ǫ

.o/
j

D

O�
.o/
jC1

�

O�
.o/
j

, and it converges to zero
by the properties of the optimal grid stated in Lemma 2 and the smoothness of
� .q/.�/. Thus, we have shown that

ˇ̌
O�
.q/
jC1

�

O�
.o/
jC1

ˇ̌
! 0 as `! 1; (F-8)

uniformly in j . The proof for the primary nodes �.q/
j

is similar.
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Appendix G. Perturbation analysis

It is shown in [Borcea et al. 2005, Appendix B] that the skew-symmetric matrix
B given in (3-93) has eigenvalues ˙iıj and eigenvectors

Y.˙ıj /D

1
p

2

�
Y1.ıj /;˙i yY1.ıj /; : : : ;Y`.ıj /;˙i yY`.ıj /

�T
; (G-1)

with
�
Y1.ıj /; : : : ;Y`.ıj /

�T
D diag

�
Ǫ

1
2

1
; : : : ; Ǫ

1
2

`

�
Yj ;

�
yY1.ıj /; : : : ; yY`.ıj /

�T
D diag

�
˛

1
2

1
; : : : ; ˛

1
2

`

�
yYj :

(G-2)

Here Yj D .Y1;j ; : : : ;Y`;j /
T are the eigenvectors of matrix A for the eigenvalues

�ı2

j
, and yYj D

�
yY1;j ; : : : ; yY`;j

�T is the vector with entries

yYp;j D

YpC1;j � Yp;j

ıj j̨

: (G-3)

G.1. Discrete Gel’fand–Levitan formulation. It is difficult to carry a precise
perturbation analysis of the recursive Lanczos iteration that gives B from the
spectral data. We use instead the following discrete Gel’fand–Levitan formulation
due to Natterer [1994].

Consider the “reference” matrix B
r , for an arbitrary, but fixed r 2 Œ0; 1�, and

define the lower triangular, transmutation matrix G , satisfying

EGB D EB
r
G ; e

T

1
G D e

T

1
; (G-4)

where E D I � e2`e
T

2`
. Clearly, if B D B

r , then G D G
r

D I, the identity. In
general G is lower triangular and it is uniquely defined as shown with a Lanczos
iteration argument in [Borcea et al. 2005, Section 6.2].

Next, consider the initial value problem

EB�.�/D i�E�.�/; e
T

1
�.�/D 1; (G-5)

which has a unique solution �.�/2 �2`, as shown in [Borcea et al. 2005, Section
6.2]. When �D ˙ıj , one of the eigenvalues of B , we have

�.˙ıj /D

p

2

Y1.ıj /
Y.˙ıj /D

s
2

Ǫ1�j
Y.˙ıj /; (G-6)

and (G-5) holds even for E replaced by the identity matrix. The analogue of
(G-5) for B

r is

EB
r �r .�/D i�E�r .�/; e

T

1
�r .�/D 1; (G-7)
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and, using (G-4) and the lower triangular structure of G , we obtain

�r .˙ıj /D G�.˙ıj /; 1 � j � `: (G-8)

Equivalently, in matrix form (G-8) and (G-6) give

ˆr
D Gˆ D G YS ; (G-9)

where ˆ is the matrix with columns (G-6), Y is the orthogonal matrix of eigen-
vectors of B with columns (G-1), and S is the diagonal scaling matrix

S D

s
2

Ǫ1

diag
�
�

�1=2

1
; �

�1=2

1
; : : : ; �

�1=2

`
; �

�1=2

`

�
: (G-10)

Then, letting
F D ˆr

S
�1

D G Y (G-11)

and using the orthogonality of Y we get

F F
T

D GG
T ; (G-12)

where the bar denotes complex conjugate. Moreover, Equation (G-4) gives

EB
r
F D EB

r
G Y D EGBY D iEG YD D iEFD; (G-13)

where iD D idiag .ı1;�ı1; : : : ; ı`;�ı`/ is the matrix of the eigenvalues of B .
The discrete Gel’fand–Levitan inversion method proceeds as follows: Start

with a known reference matrix B
r , for some r 2 Œ0; 1�. The usual choice is

B
0

D B
.o/, the matrix corresponding to the constant coefficient � .o/

� 1.
Determine ˆr from (G-7), with a Lanczos iteration as explained in [Borcea et al.
2005, Section 6.2]. Then, F D ˆr

S
�1 is determined by the spectral data ır

j

and �r

j
, for 1 � j � `. The matrix G is obtained from (G-12) by a Cholesky

factorization, and B follows by solving (G-4), using a Lanczos iteration.

G.2. Perturbation estimate. Consider perturbations dıj D�ıj dr and d�j D

��j dr of the spectral data of reference matrix B
r . We denote the perturbed

quantities with a tilde as in

zD D D
r

CdD; zS D S
r

CdS ; zY D Yr
CdY; zF D Yr

CdF ; (G-14)

with D, S , Y and F defined above. Note that F
r

D Yr , because G
r

D I .
Substituting (G-14) in (G-13) and using (G-7), we get

EB
r dF D iE Yr dD C iE dF D

r : (G-15)
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Now multiply by Yr T on the right and use that D
rYr T

D �iYr T
B

r to obtain
that dW D dF Yr T satisfies

EB
r dW � E dW B

r
D iE Yr dD Yr T ; (G-16)

with initial condition

e
T

1
dW D e

T

1
dF Yr T

D

�
d

r
Ǫ1�1

2
; d

r
Ǫ1�1

2
; : : : ; d

r
Ǫ`�`
2
; d

r
Ǫ`�`
2

�
Yr T : (G-17)

Similarly, we get from (G-4) and G
r

D I that

E dB C E dG B
r

D EB
r dG ; e

T

1
dG D 0: (G-18)

Furthermore, Equation (G-12) and F
r

D Yr give

dF Yr T
C Yr dF D dW C dW

T
D dG C dG

T : (G-19)

Equations (G-16)–(G-19) allow us to estimate d ǰ=ˇ
r

j
. Indeed, consider the

j ; j C 1 component in (G-18) and use (G-19) and the structure of G , dG and
B

r to get

d ǰ

ˇr

j

D dGjC1;jC1 � dGj ;j D dWjC1;jC1 � dWj ;j ;

j D 1; : : : ; 2`� 1: (G-20)

The right-hand side is given by the components of dW satisfying (G-16)–(G-17)
and calculated explicitly in [Borcea et al. 2005, Appendix C] in terms of the
eigenvalues and eigenvectors of B

r . Then, the estimate

2`�1X

jD1

ˇ̌
ˇ̌
ˇ
d ǰ

ˇr

j

ˇ̌
ˇ̌
ˇ� C1dr (G-21)

which is equivalent to (3-98) follows after some calculation given in [Borcea et al.
2005, Section 6.3], using the assumptions (3-74) on the asymptotic behavior of
�ıj and ��j , i.e., of ır

j
� ı

.o/
j

D r�ıj and �r

j
� �

.o/
j

D r��j .
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