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Abstract. We propose a discrete approach for solving an inverse problem
for Schrödinger’s equation in two dimensions, where the unknown potential is

to be determined from boundary measurements of the Dirichlet to Neumann

map. For absorptive potentials, and in the continuum, it is known that by
using the Liouville identity we obtain an inverse conductivity problem. Its

discrete analogue is to find a resistor network that matches the measurements,

and is well understood. Here we show how to use a discrete Liouville iden-
tity to transform its solution to that of Schrödinger’s problem. The discrete

Schrödinger potential given by the discrete Liouville identity can be used to

reconstruct the potential in the continuum in two ways. First, we can obtain
a direct but coarse reconstruction by interpreting the values of the discrete

Schrödinger potential as averages of the continuum Schrödinger potential on
a special sensitivity grid. Second, the discrete Schrödinger potential may be

used to reformulate the conventional nonlinear output least squares optimiza-

tion formulation of the inverse Schrödinger problem. Instead of minimizing
the boundary measurement misfit, we minimize the misfit between the discrete

Schrödinger potentials. This results in a better behaved optimization prob-

lem that converges in a single Gauss-Newton iteration, and gives good quality
reconstructions of the potential, as illustrated by the numerical results.

1. Introduction

Consider the boundary value problem

(1)
Lσ,qv ≡ −∇ · [σ∇v] + qv = 0 in Ω,

v = f on ∂Ω,

in a simply connected, bounded domain Ω ⊂ R2 with C2 boundary ∂Ω, and f ∈
H1/2(∂Ω). The positive and bounded coefficient σ(x) is called the conductivity
and q(x) is the Schrödinger potential. They are the unknowns in inversion, to
be determined from the Dirichlet to Neumann (DtN) map Λσ,q : H1/2(∂Ω) →
H−1/2(∂Ω) defined by

(2) Λσ,qf = σn · ∇v|∂Ω,

where n is the unit outer normal at ∂Ω and v solves (1). The case q = 0 is known
as the inverse conductivity or electrical impedance tomography problem. The case
σ = 1 is the inverse Schrödinger problem.

Our goal in this paper is to introduce a novel method, based on parametric model
reduction, for the numerical reconstruction of the solution of the inverse Schrödinger
problem (σ = 1) in the absorptive case q ≥ 0. Parametric model reduction is
mainly used for approximating efficiently the response of dynamical systems for
design, optimal control and uncertainty quantification [3]. We are interested in
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parametric model reduction for improving the inversion process. This is a largely
unexplored direction, but recent progress has been made in [9, 21] for parabolic
equations, in [28] for the wave equation, in [5, 8, 7, 6] for the inverse conductivity
problem and in [4] for a related inverse spectral problem. The construction of the
reduced models varies between problems because it must respect the underlying
physics. For example, the projection-based reduced models in [28] approximate
the wave propagator and use causality, whereas the projection-based models in
[9, 21] for parabolic equations are obtained by rational approximation of the transfer
function, the Laplace transform with respect to time of the measurement map. The
parametric reduced models for the inverse conductivity problem are not projection-
based. They are resistor networks constructed from very accurate approximations
of the DtN map and the resistances in the network play the role of the parameters
in the parametric model reduction. These resistor network reduced models rely on
the graph theory developed in [12, 14, 15, 16, 17, 18, 19, 20, 27].

The advantage of using parametric reduced models for inversion is that they can
lead to iterative algorithms that perform much better than the usual least squares
data fit methods. They converge in one or two iterations and give quantitatively
superior reconstructions. The disadvantage is that it is difficult to construct good
parametric reduced models. These must retain the structure of the governing partial
differential equation so we can extract the unknown parameters from them, and
capture correctly important phenomena such as the decreased sensitivity of the
measurements to changes in the parameters away from the boundary in inverse
elliptic and parabolic problems.

In this paper we show how to use the resistor networks with circular planar
graphs, the reduced models for the inverse conductivity problem in [5, 7, 6, 8], to
solve the inverse Schrödinger problem with absorptive potentials in two dimensions.
The inverse conductivity and Schrödinger problems are connected in the continuum
by a well known Liouville identity [29]. Here we show how to connect them in the
discrete (network) setting. This is difficult because conductivities are defined on
edges of the graph of the network, and the potential is associated with the nodes.
The parametric reduced models (networks) obtained as in [8], which can be inter-
preted as five point stencil difference schemes for Schrödinger’s equation, encode
information about the unknown potential q, but this is not restricted to the diago-
nal of the finite difference operator, as expected. Thus, it is not straightforward to
obtain a reconstruction of q from the network.

Discrete Liouville identities have been proposed before in [26] and in [1, 2] for the
inverse Schrödinger problem on networks. However, these studies are not concerned
with the connection with the continuum problem, and in fact it is not clear if the
discrete Schrödinger problem considered in [1, 2] is consistent with measurements
of the DtN map in the continuum.

Here we derive a discrete generalized Liouville identity for solving the contin-
uum inverse Schrödinger problem with networks. The networks, with graph G, are
parametric reduced models that approximate the DtN map Λ1,q. The Liouville

identity is defined on the line graph G̃ of G, which establishes an isomorphism be-

tween the edges of G where the conductivities lie and the nodes of G̃ that support
the Schrödinger potential. We use the Liouville identity to formulate a precondi-
tioned Gauss-Newton inversion algorithm. The preconditioner is obtained from the
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parametric reduced model and leads to an efficient method, as demonstrated with
numerical simulations.

1.1. Contents. We start in §2 by recalling how the Liouville transform relates the
inverse problem for the absorptive Schrödinger equation to the inverse conductivity
problem. The inverse problem for resistor networks stated in §3 is the discrete
analogue of the inverse conductivity problem. We can transform it to a discrete
analogue of the inverse Schrödinger problem using the generalized Liouville identity
derived in §3.4. The connection between the continuum and discrete inverse prob-
lems is in §4. We show in section §4.1 how to relate measurements of the DtN map
of the Schrödinger equation to the discrete DtN map of a unique resistor network.
In §4.2 we use the generalized Liouville identity to obtain a discrete Schrödinger
potential from this resistor network. The discrete potential is used in §5 to obtain
a reconstruction of the continuum Schrödinger potential. The performance of the
inversion method is assessed with numerical simulations in §6. We conclude with a
summary in §7.

2. Continuum inverse conductivity and Schrödinger problems

A well-known relation between the Schrödinger L1,q and conductivity Lσ,0 dif-
ferential operators is through the Liouville identity (see e.g. [29])

(3) σ−1/2 ◦ Lσ,0 ◦ σ−1/2 = L1,q,

where σ > 0, σ ∈ C2(Ω) and

(4) q =
∆(σ1/2)

σ1/2
.

In the left hand side of (3) we have the composition of three linear operators. Two
of them are the operator v → σ−1/2v denoted, in an abuse of notation, by σ−1/2.

In linear algebra two matrices A and B are congruent if there is an invertible
matrix S such that A = SBST (see e.g. [25]). Borrowing the terminology, we say
that two linear differential operators A and B are Liouville congruent if there is a
positive function s for which A = s ◦ B ◦ s. This allows us to restate the Liouville
identity as follows: The operators Lσ,0 and L1,q are Liouville congruent when q is
given by (4).

Note that the Dirichlet to Neumann maps of the conductivity and Schrödinger
problems satisfy [29]

(5) Λ1,q = σ−1/2 ◦ Λσ,0 ◦ σ−1/2 − 1

2
n · ∇(σ1/2).

Thus, when σ equals a constant near ∂Ω, the DtN maps are also Liouville congruent.
When σ has a nonzero normal derivative at ∂Ω, the DtN maps are congruent up
to a diagonal (or multiplication by a function) operator.

We assume henceforth that σ|∂Ω = 1. Equations (3)–(5) show that in the con-
tinuum setting any inverse conductivity problem for sufficiently smooth σ can be
formulated as a Schrödinger problem. The converse is true only for potentials q that
give a positive solution σ of (4). This is the case for absorptive potentials q ≥ 0.
Indeed, the strong maximum principle (see e.g. [22, §6.4, Theorem 4]) guarantees
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that when q ≥ 0, the solution of

(6)
−∆s+ q s = 0, in Ω,

s = 1, on ∂Ω,

satisfies 0 < s ≤ 1. Hence, σ = s2 satisfies (4) and the operators Lσ,0 and L1,q are
Liouville congruent.

We can take the notion of Liouville congruence further than the classical relations
(3)–(4). Instead of relating operators Lσ,0 and L1,q, we can also consider operators
Lσ1,0 and Lσ0,q, for two positive conductivities σ0 and σ1 and a potential q. It
follows by straightforward calculations that

(7) (σ1/σ0)−1/2 ◦ Lσ1,0 ◦ (σ1/σ0)−1/2 = Lσ0,q,

with q given by

(8) q =
∇ · [σ0∇(σ1/σ0)1/2]

(σ1/σ0)1/2
.

The importance of this generalized Liouville identity becomes clear in the next
section, where we derive a discrete analogue of (7)–(8).

3. Discrete inverse conductivity and Schrödinger problems

As stated in the introduction, it is useful to view our study in the context of
parametric model reduction for inversion. We need reduced models that keep the
underlying structure of the differential operators Lσ,q so that we can obtain re-
constructions of σ and q from them and, in addition, give better conditioned opti-
mization algorithms than the usual output least squares. Such parametric reduced
models are known for the inverse conductivity problem in two dimensions. They are
based on the circular planar resistor networks studied in [20, 27] and are described
briefly below. We refer to [5, 7, 6] and the review [8] for details on how to use the
parametric reduced models to determine a discrete Laplacian which is consistent
with the measurements of the DtN map in the continuum setting, and to recover
the unknown conductivity.

In this section we describe the basic tools for extending the inversion approach
to the Schrödinger problem. We begin in §3.1 with the formulation of the discrete
analogues of the inverse conductivity and Schrödinger problems. Then we review
briefly in §3.2 the relevant facts about the resistor networks. The line graph intro-
duced in §3.3 and the discrete Liouville identity defined in §3.4 allow us to use the
networks for solving the inverse Schrödinger problem.

3.1. The discrete conductivity and Schrödinger operators. The discrete
structure of a resistor network is an undirected graph G = (V,E), where V is a finite
set of vertices (nodes) and the edge set E is a subset of {{i, j} | i, j ∈ V, i 6= j}.
We denote the set of functions from a finite set X to R by RX , and write f(x) for
f ∈ RX and x ∈ X. All functions and operators related to finite sets are written
henceforth in bold to distinguish them from their continuum counterparts.

The discrete gradient on a network is the linear operator D : RV → RE that
maps f ∈ RV to

(9) (Df)({i, j}) = f(i)− f(j), for {i, j} ∈ E.
A sign needs to be specified for each edge, but as long as this sign convention is
fixed, it does not change the subsequent definitions.
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A resistor network is defined by its graph G = (V,E) and a positive discrete
conductivity function γ ∈ (0,∞)E . We may also define a discrete Schrödinger po-
tential q ∈ RV on the vertices of the graph, and introduce the discrete Schrödinger
operator Lγ,q : RV → RV , which maps potentials u ∈ RV to

(10) Lγ,qu = D∗[γ � (Du)] + q � u ∈ RV .

Here D∗ : RE → RV is the adjoint of the discrete gradient D and the product f�g
for functions f , g ∈ RX (where X is either V or E) is understood componentwise
i.e., for x ∈ X, (f � g)(x) = f(x)g(x). Explicitly, for each i ∈ V , (10) gives

(11) (Lγ,qu)(i) =
∑

j s.t.{i,j}∈E

γ({i, j})(u(i)− u(j)) + q(i)u(i).

The special case Lγ,0 is the weighted graph Laplacian with weight γ (see e.g.
[11, 18]). This is a resistor network. The edge e of the graph is a resistor with
conductance γ(e) and the nodes represent electrical connections. The absorptive
case Lγ,q with q > 0 is also a resistor network, with each node i connected to the
ground (zero potential) by a resistor with conductance q(i).

To define the DtN map of a resistor network, we collect the nodes V in two
disjoint sets: the boundary nodes in the set B ⊂ V , and the interior nodes I = V \B.
The Dirichlet boundary value problem for the network is to find the potential
u ∈ RV such that

(12)
(Lγ,qu)I = (Lγ,q)IIuI + (Lγ,q)IBuB = 0, and

uB = f ,

with given f ∈ RB . Here uI is the restriction of u to I, and the linear operator
(Lγ,q)BI : RI → RB is defined by (Lγ,q)BIv = (Lγ,qu)B where uI = v and
uB = 0. The other operators are defined similarly.

Lemma 3.1. When the subgraph of G induced by I is connected, the Dirichlet
problem for q ≥ 0 has a unique solution for any f ∈ RB.

Proof. The case q = 0 is proven in [19, 13] using a discrete analogue to the maxi-
mum principle. Here we proceed by first showing that (Lγ,0)II is positive definite.
If the subgraph of G induced by I is connected, we have that the weighted graph
Laplacian on this subgraph, which is denoted by LγI ,0, is a symmetric positive semi-
definite matrix with a one dimensional nullspace spanned by the constant vector
1 ∈ RI . The sub-matrix (Lγ,0)II can be written

(Lγ,0)II = LγI ,0 +E,

where E is a diagonal matrix, whose only non-zero entries are positive and corre-
spond to the interior nodes that have an edge in common with a boundary node.
If we decompose v ∈ RI as v = v⊥ + α1, with 1 ∈ RI and vT⊥1 = 0, it is clear
that vT (Lγ,0)IIv = vT⊥LγI ,0v⊥ + vTEv, and therefore (Lγ,0)II must be positive
definite. When q ≥ 0, notice that (Lγ,q)II = (Lγ,0)II + diag(qI) is the sum of
a positive definite and a positive semidefinite matrix, and must then be positive
definite. This proves the solvability result for q ≥ 0. �

The Dirichlet to Neumann (DtN) map Λγ,q : RB → RB associates to the bound-
ary potentials f ∈ RB the boundary currents

(13) (Lγ,qu)B = (Lγ,q)BBuB + (Lγ,q)BIuI ,
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C(3, 11) C(4, 13)

Figure 1. Graphs of class C(m,n), where n the number of bound-
ary nodes and m is the number of radial and angular layers. The
boundary nodes are shown as circles and the interior nodes as filled
(black) circles.

where u solves (12). The linear map Λγ,q is symmetric, and in the case q = 0,
it has a one dimensional null space spanned by the vector of all ones 1 ∈ RB . To
write it more explicitly, let us simplify notation as LBB := (Lγ,q)BB , and similar
for the BI, IB and II blocks of Lγ,q. By solving for uI in (12) and substituting
in (13), we can write Λγ,q as a Schur complement of Lγ,q,

(14) Λγ,q = LBB −LBIL−1
II LIB .

3.2. The inverse problem for resistor networks. The discrete analogue of the
inverse conductivity problem is: Find the conductivity γ ∈ (0,∞)E from the DtN
map Λγ,0, given the underlying graph G = (V,E). In what follows we refer to the
solution as γ(Λγ,0).

The discrete inverse problem has been solved for circular planar graphs [20, 16,
12] i.e., when G can be embedded in the plane with no edge crossings so that
the boundary nodes are on a circle and the interior nodes inside the circle. The
recoverability result in [20, 16, 12] can be summarized as follows.

Theorem 3.1. The DtN map for a critical circular planar resistor network with
positive conductivity determines uniquely the conductivity.

A circular planar graph is said to be critical if the two following conditions hold:

(i) any two sets of boundary nodes with the same number p of elements and
lying on disjoint segments of the boundary circle can be linked with p
disjoint paths.

(ii) the deletion of any edge in the graph breaks condition (i).

For example, among the family of graphs C(m,n) illustrated in Figure 1, with n
odd, the graphs are critical when m = (n− 1)/2 i.e., when the number |E| of edges
is equal to the number n(n − 1)/2 of entries in the strictly upper triangular part1

of Λγ,0.

1Since Λγ,0 is symmetric with rows summing to zero, its independent entries lie in its strictly

upper triangular part.
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Remark 3.1. There are other families of critical circular planar graphs that allow
the number of boundary nodes to be even, such as the pyramidal networks in [7, 20].
In this paper we use graphs C

(
n(n− 1)/2, n

)
with n odd.

There exist direct (optimization-free) reconstruction methods for networks with
graphs C((n − 1)/2, n). They solve the discrete inverse conductivity problem in
a finite number of algebraic operations by peeling off sequentially the layers of
the network [16]. Layer peeling and any other methods of reconstructing γ(Λγ,0)
become unstable as the number of edges in the network grows. This is similar to
the instability of the continuum inverse conductivity problem. Thus, in practice it
is impossible to approximate the solution of the continuum problem by the discrete
conductivity of larger and larger networks. However, we can relate the continuum
and discrete problems by using networks of modest size, as explained in §4.

In §2 we discussed a well-known connection between the inverse conductivity and
Schrödinger problems in the continuum via the Liouville transform and its gener-
alization (7)–(8). To use the existing results on the discrete inverse conductivity
problem, we seek to relate the discrete conductivity γ to a discrete Schrödinger
potential q. This is not straightforward because the discrete conductivity γ ∈ RE
is defined on the edges of the graph, while q ∈ RV is defined at the nodes. To re-
solve this difficulty, and to derive the discrete analogue of the generalized Liouville
transform, we introduce below the line graph and a discrete Schrödinger operator
associated with it.

3.3. The line graph. To a resistor network with graph G = (V,E) we associate a

line graph G̃ = (Ṽ , Ẽ). All quantities and operators associated with the line graph

appear henceforth with tilde. The vertices (nodes) Ṽ and edges Ẽ of the line graph
are defined in terms of V and E of the original graph so that:

(i) there is one vertex of G̃ per edge of G, and so Ṽ is isomorphic to E.

(ii) there is an edge between two vertices of G̃ if and only if the corresponding
edges of G share a node.

An example of a graph and its line graph is given in Figure 2.
If γ ∈ (0,∞)E is a conductivity on the graph G, we define the conductivity

γ̃ ∈ (0,∞)Ẽ on the associated line graph by geometric averages of γ. To be more

precise, if e, e′ ∈ E are distinct edges in G that share a vertex, then {e, e′} ∈ Ẽ is

an edge of the line graph G̃ and

(15) γ̃({e, e′}) =
√
γ(e)γ(e′).

The line graph together with the conductivity γ̃ is itself a resistor network. As in

section 3 we can define a discrete gradient D̃ : RṼ → RẼ , and for some q̃ ∈ RṼ , we

can define a discrete Schrödinger operator L̃γ̃,q̃ : RṼ → RṼ that maps ũ ∈ RṼ to

(16) L̃γ̃,q̃ũ = D̃∗[γ̃ � (D̃ũ)] + q̃ � ũ.

Since Ṽ is isomorphic to E and RṼ is isomorphic to RE , we can think of L̃γ̃,q̃
as a discrete Schrödinger operator acting on the edges E of G, with a Schrödinger
potential q̃ defined on E as well (i.e., a function in [0,∞)E).
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Figure 2. A graph G in black and its line graph G̃ in red.

3.4. The discrete generalized Liouville identity. With the line graph defined
above, we derive here a discrete analogue to the generalized Liouville identity (7)–
(8). The need for this identity can be explained as follows. Unlike the continuum
case, where σ ≡ 1 corresponds to L1,0 = ∆, the case of constant discrete conductiv-

ity γ̃ = 1̃ has no special significance in the discrete setting. However, the reduced
model (resistor network) for the reference conductivity σo ≡ 1 (i.e., q ≡ 0) is a
good approximation of the Laplacian on the graph G, as shown in [5, 7, 8]. The
geometric averages of its edge conductivities γ0 define the line graph Laplacian.
We explain in the next section how to obtain the reduced model (resistor network)
for the unknown parameter σ, related to the unknown q. The discrete Liouville
identity stated in the next theorem allows us to estimate q from this reduced model
and the line graph Laplacian.

Theorem 3.2 (Discrete Generalized Liouville Identity). Let γ0 and γ1 be two
conductivities in (0,∞)E. Then their associated weighted graph Laplacians on the
line graph satisfy

(17) L̃γ̃1,0 = diag(γ1/γ0)1/2L̃γ̃0,q̃ diag(γ1/γ0)1/2,

where division and power of vectors is understood componentwise and

(18) q̃ = −(L̃γ̃0,0[(γ1/γ0)1/2])� [(γ1/γ0)−1/2].

We say that L̃γ̃1,0 and L̃γ̃0,q̃ are Liouville congruent, when q̃ is given by (18).

Proof. We obtain from (16) and the definition of the discrete gradient D̃ that for
any γ ∈ (0,∞)E and e, f ∈ E, e 6= f ,

L̃γ̃,0(e, f) =

{
γ̃({e, f}) = −

√
γ(e)γ(f), if {e, f} ∈ Ẽ,

0, otherwise.

Hence for any γ ∈ (0,∞)E , and distinct e, f ∈ E, we have

(19) [diag(γ−1/2)L̃γ̃,0 diag(γ−1/2)](e, f) =

{
−1, if {e, f} ∈ Ẽ,

0, otherwise.

Then the off-diagonal entries of (17) follow from writing (19) for γ equal to γ0 and
γ1, and equating.

It remains to calculate q̃, so that the diagonal entries of (17) are equal. Because
the off-diagonal entries are equal, this is the same as equating the sum of the rows

L̃γ̃1,01 = L̃γ̃0,q̃1, 1 ∈ RE .
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Since D̃1 = 0, we must also have L̃γ̃,01 = 0, so

0 = L̃γ̃0,q̃1 = [(γ1/γ0)1/2]�
(
L̃γ̃0,0[(γ1/γ0)1/2] + q̃ � [(γ1/γ0)1/2]

)
.

Solving for q̃ in this equation gives (18). �

Remark 3.2. Theorem 3.2 shows that two weighted graph Laplacians on the line

graph, L̃γ̃1,0 and L̃γ̃0,0, are congruent up to a diagonal term which involves the
potential q̃. Moreover, the matrix that carries the congruence relation is diagonal,
given by diag(γ1/γ0)1/2. This is the discrete analogue of the congruence relation
(7), and the definition of q̃ is the analogue of (8).

4. Connection between the continuum and discrete inverse problems

To solve the continuum inverse problem, we obtain in §4.1 the networks as para-
metric reduced models for lumped measurements of the DtN map Λ1,q. These
measurements define the DtN map Λγ,0 of the network with discrete conductivity
γ, related to the unknown potential q via the discrete generalized Liouville identity,
as described in §4.2.

4.1. Resistor networks as parametric reduced models. The exponential in-
stability of the inverse Schrödinger and conductivity problems limits the resolution
of the reconstructions. In our context this means that the size of the reduced mod-
els (the networks) cannot be too large, specially for noisy data. For the networks
with graphs C

(
n(n − 1)/2, n

)
considered here, the number n of boundary nodes

can be chosen based on the noise level, as explained in Appendix A. We show here
how to define from the measurements of Λ1,q a discrete DtN map of the network
with graph C

(
n(n− 1)/2, n

)
, our reduced model for the unknown potential q and

therefore conductivity.
In principle, we could just take point measurements of Λ1,q at the n bound-

ary nodes. However, studies such as [23] tell us that smooth boundary currents
(i.e., with Fourier transform supported at small frequency) are better for sensing
inhomogeneities inside the domain. Thus, we smooth the measurements of Λ1,q by
lumping them at the n boundary points of the network. The lumping is achieved
with n compactly supported smooth functions φ1, . . . , φn, whose disjoint supports
are numbered consecutively in ∂Ω, in counter-clockwise order. We normalize them
by
∫
∂Ω
φj = 1.

From Λ1,q we obtain the n×n data matrix 〈φi,Λ1,qφj〉 for i, j = 1, . . . , n, where

〈·, ·〉 denotes the H1/2(∂Ω), H−1/2(∂Ω) duality pair. It follows from the relation
(5) between the DtN maps that for absorptive potentials q ≥ 0 there is a unique
conductivity σ satisfying (4) and σ|∂Ω = 1, so that

(20) 〈φi,Λ1,qφj〉 = 〈φi, σ−1/2 ◦ Λσ,0 ◦ σ−1/2φj〉 −
1

2
〈φi, [n · ∇(σ1/2)]φj〉,

for i, j = 1, . . . , n. Since σ|∂Ω = 1, we can simplify the first term in (20), and the
second term vanishes for i 6= j because the φi have disjoint supports. We then get

(21) 〈φi,Λ1,qφj〉 = 〈φi,Λσ,0φj〉, for i, j = 1, . . . , n, i 6= j,

so the off-diagonal entries of the data matrix are lumped measurements of the DtN
map for the associated conductivity problem. We denote this map by M(q), and
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Figure 3. Conductivities σ(i), corresponding to different
Schrödinger potentials q(i), i = 1, 2.

define its entries Mij as

(22) Mi,j =


〈φi,Λ1,qφj〉, i 6= j,

−
∑

r=1...n,r 6=i

〈φi,Λ1,qφr〉, i = j.

This definition satisfies the conservation of currents relation M1 = 0, for 1 ∈
RB , the vector of all ones at the boundary nodes. Since the measurement matrix
M corresponds to taking measurements for a conductivity problem, we can use
Theorem 1 in [5] to get the following result.

Theorem 4.1. Let q ≥ 0 and M(q) be the n × n measurement matrix of Λ1,q

obtained as in (22). There is a unique reduced model, which is the resistor network
with DtN map equal to M(q), graph C

(
n(n − 1)/2, n

)
, and discrete conductivity

γ
(
M(q)

)
.

4.2. From resistor networks to Schrödinger potentials. We have now shown
that there is a unique parametric reduced model (resistor network) with DtN map
M(q) and graph C(n(n− 1)/2, n). It remains to determine the Schrödinger poten-
tial from its discrete conductivity γ

(
M(q)

)
.

A naive approach to reconstructing the potential would be to first obtain a
continuum conductivity σ from γ(M(q)) e.g., using the method based on resistor
networks from [5], and then use the continuum Liouville identity (4) to get q from σ.
This does not work because σ is never exact and errors are amplified when taking
the Laplacian in (4). To illustrate this, we show in figure 3 that the conductivities
corresponding to two very different Schrödinger potentials are hard to tell apart.

Our inversion algorithm takes a different route. Its outline is given below, and
all the steps are described in detail in the next section.

(1) Choose the number n of boundary nodes of the graph C(n(n− 1)/2, n).
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(2) Obtain M(q) from the given Λ1,q and also M(0) from the calculated Λ1,0.
(3) Find discrete conductivities γ1 ≡ γ(M(q)) and γ0 ≡ γ(M(0)).
(4) Estimate the average qavg of the unknown potential q from M(q).
(5) On the line graph associated to C(n(n − 1)/2, n) compute the geometric

averages γ̃0 from γ(M(0)) and form the discrete Laplacian L̃γ̃0,0.
(6) Use the discrete generalized Liouville identity identity (17)–(18) with γ1,

γ0 from step (3) and L̃γ̃0,0 from step (5) to obtain the discrete potential q̃.
(7) Use the discrete potential q̃ and the estimated average qavg to reconstruct

the unknown Schrödinger potential q.

The use of γ0 at step (3) and of qavg at step (7) is a calibration so that the
reconstruction is exact for q ≡ 0 and q ≡ qavg. In the context of parametric model
reduction, we work with three reduced models: one for the unknown q which we wish
to determine, one for the zero potential and one for the constant qavg potential, the
average of the unknown q. We ask that the reduced models share the same discrete
Laplacian, calculated for q = 0. This discrete Laplacian is a finite difference scheme
with steps defined by γ̃0. The average potential at step (7) is used as a scaling.
We motivate this scaling by noticing that when Ω is the unit disk and q is radially
symmetric (i.e. q ≡ q(r)), the problem of finding q from M(q) is related to the
inverse spectral problem of finding q from the spectrum of the operator −∆ + q
with Dirichlet boundary conditions [8]. To solve the inverse spectral Schrödinger
problem it is essential to estimate qavg accurately as it corresponds to a shift in the
spectrum (see e.g. [10, 4]). In our case it is difficult to relate M(q) to the spectrum
of −∆ + q, so we use step (7) to ensure that the reconstruction is correct for the
constant qavg. If the parametric reduced models share the discrete Laplacian i.e.,
they give accurate approximations of M(q) for a set of functions q on the grid
defined by γ0, we expect that they account for the asymptotes of the spectrum.

5. From discrete Schrödinger potentials to continuum ones

A numerical estimate of the solution of the inverse Schrödinger problem is con-
ventionally obtained with the optimization (output least-squares) formulation

(23) min
q≥0

1

2
‖K(q)−K(qtrue)‖2F ,

where ‖ · ‖F is the Frobenius norm and K(q) denote measurements of Λ1,q. This
formulation requires regularization, based on prior information about q that may
not be available. The method is widely used but has a high computational cost,
tends to get stuck in local minima and gives solutions that are biased by the priors.

Instead of minimizing the misfit in the data, we apply a non-linear mapping
Q : Rn×n → Rn(n−1)/2 that acts as an approximate inverse of M(q), our lumped
measurements of Λ1,q. Thus, we solve instead the optimization problem

(24) min
q≥0

1

2
‖Q(M(q))−Q(M(qtrue))‖2F ,

with the Gauss-Newton iteration

(25)
for k = 0, 1, . . .

qk+1 = qk −DM [qk]†DQ[M(qk)]†(Q(M(qk))−Q(M(qtrue))).

Here † denotes the Moore-Penrose pseudoinverse [24] and DM [q] : L2(Ω)→ Rn×n
and DQ[M ] : Rn×n → Rn(n−1)/2 are the Jacobians of the mappings M(q) and
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Q(M). Following the approach in [5] for the inverse conductivity problem, we de-
fine the nonlinear preconditioner Q(M) by solving a discrete Schrödinger inverse
problem with data M (§5.1). The initial guess q0 is obtained by a linear interpo-
lation of the entries of Q(M(qtrue)) on a carefully chosen grid §5.3. This ensures
that the Gauss-Newton method converges quickly, usually in one step.

5.1. The nonlinear preconditioner. The mapping Q(M) is defined by solving
a discrete inverse Schrödinger problem with data M , and ensuring that

Q(M(0)) = 0 and Q(M(qavg)) = qavg1,

with qavg estimated as in §6.1. The computation of Q involves the following steps:

(1) Find the parametric reduced models for the zero potential, the constant
potential qavg and the unknown q. That is, determine the discrete conduc-
tivities γ0 ≡ γ(M(0)), γavg ≡ γ(M(qavg)), and γ(M).

(2) Use the discrete Liouville identity (18) with reference conductivity γ0 to
find the discrete potentials q̃(γ(M)) and q̃(γavg) from γ(M) and γavg.

(3) The map Q is defined by

(26) Q(M) ≡ qavg
q̃(γ(M))

q̃(γavg)
,

where the division is understood componentwise.

The scaling at step (3) ensures that the map Q(M) gives exact reconstruction of
the constant potential q = qavg, under the following assumption:

Assumption 5.1. All entries of q̃(γavg) are nonzero.

It is not clear how to prove that this holds, but the assumption has been verified
numerically for many graphs and values of qavg on the unit disk.

5.2. The sensitivity functions. A good preconditioning mapQmeans thatQ(M)
is some approximation of the identity. We illustrate this numerically in figure 4
where we show the sensitivity or Fréchet derivative of some of the entries of the
vector Q(M(q)) to changes in q. These are the “rows” of the Jacobian of the
preconditioned mapping, DQ[M(q)]DM [q].

The sensitivity functions are evidently well localized, so to first order approxi-
mation the entries Q(M(q)) are local averages of q. However DQ[M(q)] is not a
preconditioner in the usual sense because it has a non-trivial nullspace, as stated
in the next proposition. This is handled by taking its pseudoinverse in the Gauss-
Newton iteration (25).

Proposition 5.1. The Jacobian DQ[M ] : Rn×n → Rn(n−1)/2 of Q[M ] has rank
n(n− 1)/2− 1. Its left null space is spanned by the vector

z = q̃avg �
γ(M)

γ0
i.e., DQ[M ]Tz = 0.

Its right null space is spanned by M i.e., DQ[M ]M = 0.

Proof. We first characterize the left and right null space of the linearization of the
mapping q̃(γ) defined by the discrete Liouville identity (18) with discrete reference
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Figure 4. Sensitivity functions for n = 17, q = 1, i.e. the “rows”
of DQ[M(q)]DM [q]. The other sensitivity functions can be ob-
tained by rotations of integer multiples of 2π/17.

conductivity γ0 ≡ γ(M(0)) and γ1 ≡ γ. Straightforward but lengthy calculations
give that for some δγ ∈ Rn(n−1)/2,

Dq̃[γ]δγ = −
(
γ0

γ

)1/2

�
[
L̃γ0

[
δγ

(γ � γ0)1/2

]]
− δγ

γ
� q̃(γ).

In particular, if we let δγ = γ we obtain from (18) that

Dq̃[γ]γ = 0,

so γ is a right null vector of the Jacobian. This may be seen directly from (18), by
realizing that the function γ → q̃(γ) is homogeneous of degree zero 2.

A similar calculation gives that γ/γ0 is a left null-vector for Dq̃[γ],

Dq̃[γ]T
(
γ

γ0

)
= 0.

Going back to the definition of Q(M), we recall that for critical circular planar
graphs, the Jacobian Dγ[M ] is invertible [20, §12]. Thus, step (1) in the definition
of Q gives an invertible linearization map. Step (3) is also invertible because it
involves the multiplication with a diagonal matrix with nonzero entries, so the left
and right null-vectors of DQ[M ] can be found from those of Dq̃[γ(M)].

The left null vector follows from z/q̃avg = γ(M)/γ0 being in the left nullspace
of Dq̃[γ(M)], as shown above, where the division is understood componentwise.
For the right null vector, consider a scalar h > −1. Then by the homogeneity of
order 1 between the DtN map and the conductors in the network, we must have

q̃(γ((1 + h)M)) = q̃((1 + h)γ(M)) = q̃(γ(M)).

This and definition (26) imply that DQ[M ]M = 0. �

2 The multiplication of γ1 ≡ γ in (18) by any constant α > 0 gives q̃(αγ) = q̃(γ), because the
constants cancel out.
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n = 17 n = 19

Figure 5. Sensitivity grids. The “x” are for q = 1 and the “◦”
for q = 3.

5.3. The initial guess. The localization of the sensitivity functions displayed in
Figure 4 allows us to view Q(M(qtrue)) as an approximation of qtrue at the maxima
of the sensitivity functions. These maxima define the nodes of the sensitivity grids
used in [7] for the inverse conductivity problem. The sensitivity grids depend weakly
on the Schrödinger potential, as illustrated numerically in figure 5 for two constant
Schrödinger potentials. Thus, we can compute them ahead of time.

To obtain a good initial guess q0 of the iteration (25), we linearly interpolate the
values of Q(M(qtrue)) on a Delaunay triangulation of the sensitivity grid nodes.
Some of these initial guesses are illustrated in figures 6 and 7, with the same color
scales as the corresponding qtrue. We note that q0 is already close to the actual
Schrödinger potential, capturing not only its geometrical features but also its mag-
nitudes. Moreover the computation of q0 is inexpensive, because all the operations
involved in the calculation of Q(M), with given M , are carried on a relatively
small network.

6. Numerical results

We show here numerical reconstructions obtained from data M(qtrue) approxi-
mated by solving (1) numerically with a finite volume method on a fine grid, and
then using the lumped measurement formulas (22). With the same finite volume
method, fine grid and measurement formulas, we also compute M(0) so that we
can obtain γ0 ≡ γ(M(0)) needed for the computation of Q[M ]. This is to avoid
discretization discrepancies in the calculation of the preconditioner mapping. In
practice, one may use any fine grid that gives a good approximation of M(0).

6.1. Estimating the average Schrödinger potential. To compute Q[M ] we
need to estimate the average qavg of the Schrödinger potential from the data
M(qtrue). We do this with a direct search. Explicitly, given some trial values
q1, . . . , qm for the average, we estimate it as

qavg = argmin
q∈{q1,...,qm}

‖M(q)−M(qtrue)‖F ,
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where ‖·‖F is the Frobenius norm. To avoid the inverse crime, in this estimation we
compute {M(qj)}1≤j≤m on a different fine grid than the one used for computing
the synthetic data M(qtrue).

6.2. Calculating the non-linear preconditioner mapping. The computation
of Q[M ] involves γavg, the discrete conductivity corresponding to the constant
Schrödinger potential q ≡ qavg. We obtain it from M(qavg), computed as described
above for M(qtrue) and M(0). The fine grid in the computation of M(qavg) is the
same as that in the calculation of M(0), to avoid discretization discrepancies.

6.3. The Gauss-Newton iterations. The reconstructions obtained with Gauss-
Newton iteration (25) for a smooth and a piecewise constant potential are shown in
figures 6 and 7, respectively. We include only the initial guess q0 (which is obtained
as explained in 5.3) and the first iterate q1. Subsequent iterates qk, k ≥ 2 are not
shown because they are indistinguishable from q1. Thus, for all practical purposes
the Gauss-Newton iteration converges in one iteration. We believe this is because
the initial guess q0 is already close to qtrue, and the Jacobian of Q ◦M is in some
sense close to the identity, as explained in §5.2. We observe that q1 seems to be a
better reconstruction than q0. For example in figure 7, q0 has artifacts close to the
center due to the Delaunay triangulation used for the linear interpolation. These
artifacts are diminished in q1.

We include a typical convergence history in figure 8. Since the Gauss-Newton
iterations are designed to minimize the residual (24), we expect that the norm of
the preconditioned residual ‖Q(M(qk))−Q(M(qtrue))‖22 decreases with k. This is
true for the first iteration, but then the residual stagnates. To explain this, consider
a vector zk 6= 0 spanning the null space of the Jacobian of Q(M(q)) evaluated at
q = qk. An explicit formula for such a vector is given in proposition 5.1. Clearly the
Gauss-Newton update qk+1− qk defined in (25) is independent of the component of
the preconditioned residual Q(M(qk))−Q(M(qtrue)) in the direction zk. In other
words, the update

qk+1 − qk = −DM [qk]†DQ[M(qk)]†(Q(M(qk))−Q(M(qtrue)) + αzk),

is independent of α. We believe the stagnation of the preconditioned residual is
because the component of the preconditioned residual along zk is not zero, and
the component orthogonal to zk is still reduced by the iterations. To test this
hypothesis, we include in figure 8 the norm of the projected preconditioned residual
‖Pk(Q(M(qk)) −Q(M(qtrue)))‖22, where Pk = I − zkzTk /(zTk zk) is the projector
on the subspace orthogonal to zk. We observe that this quantity does decrease
with k, at least until reaching machine precision (at k = 2). For reference we also
include the norm of the unpreconditioned residual, i.e. ‖M(qk)−M(qtrue)‖2F . This
quantity remains basically unchanged with the iterations.

7. Summary

We introduced and analyzed a novel inversion algorithm for determining absorp-
tive Schrödinger potentials from measurements of the Dirichlet to Neumann map.
The method can be viewed in the context of parametric model reduction, with
reduced models having the physical meaning of resistor networks. Networks have
been used successfully for the inverse conductivity problem. Here we show how to
use them for Schrödinger’s equation. The connection is made by a new discrete
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qtrue q0 q1
n
=

17

6.0

6.35

6.7
n
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19

6.0

6.35

6.7

Figure 6. Gauss-Newton iterates for smooth q (sensitivity grid)

qtrue q0 q1

n
=

17

5.0

6.15

7.3

n
=

19

5.1

6.25

7.4

Figure 7. Gauss-Newton iterates for piecewise constant q (sensi-
tivity grid)

generalized Liouville identity, defined on the line graph of the network. The set of
nodes of the line graph, where the potential is discretized, is isomorphic to the set
of edges of the network, where the conductivities are defined.
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Iteration

Figure 8. A typical convergence history for the preconditioned
Gauss-Newton method. We show convergence in terms of the un-
preconditioned residual (green), the preconditioned residual (red)
and the projected preconditioned residual (blue).

We use the discrete Liouville identity to obtain an approximate inverse of the for-
ward map, and formulate a preconditioned Gauss-Newton iteration for reconstruct-
ing the continuum Schrödinger potential. The method is superior to traditional
output least squares because it converges quickly, in one step, it is computationally
inexpensive and gives good quantitative results.
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Appendix A. Choosing the size of the network

If the measurements of Λ1,q are tainted with noise, we regularize the inversion
by reducing the size of the network i.e., the number n of its boundary nodes, at the
expense of resolution. Suppose that we start with a large number N of such points.
Due to the instability of the inverse problem and the noise, we may get negative
resistors at step (1) in the calculation of the mapping Q. Thus, we reduce the
number of boundary nodes until we obtain positive resistors. We call the largest
such number n and note that it depends on the noise level.

The reduction of the data during this process is done by lumping nearby mea-
surements. Instead of working with the N lumping functions φ1, . . . , φN , we use
the fewer ψ1, . . . , ψn defined by

ψi =
∑
j∈Si

αi,jφj , for i = 1, . . . , n.

Here the Si 6= ∅ are n disjoint subsets of {1, . . . , N} corresponding to consecutive
φj in ∂Ω and αi,j are positive weights with

∑
j∈Si

αi,j = 1 so that we also have∫
∂Ω
ψi = 1. With the lumping we get the off-diagonal elements of a smaller n × n

data matrix M ′ from M . The diagonal elements of M ′ are obtained from the



18 L. BORCEA, F. GUEVARA VASQUEZ, AND A.V. MAMONOV

off-diagonal ones by enforcing conservation of currents, so we can guarantee [5]
(at least in the noiseless case) that there is a unique resistor network with graph
C
(
n(n− 1)/2, n

)
and DtN map M ′.

The lumping has two regularizing effects. The first is that by summing more
measurements of Λ1,q we get noise cancellation. The second is that the estimation
of the resistors in a network from its DtN map is more stable if the network is
smaller.
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[1] C. Araúz, A. Carmona, and A. Encinas. Dirichlet-to-Robin matrix on net-
works. Electronic Notes in Discrete Mathematics, 46(0):65 – 72, 2014. ISSN
1571-0653. doi: 10.1016/j.endm.2014.08.010. Jornadas de Matemática Discreta
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