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SUMMARY

We consider additive two-level preconditioners, with a local and a global component, for the Schur
complement system arising in non-overlapping domain decomposition methods. We propose two new
parallelizable local preconditioners. The �rst one is a computationally cheap but numerically relevant
alternative to the classical block Jacobi preconditioner. The second one exploits all the information
from the local Schur complement matrices and demonstrates an attractive numerical behaviour on het-
erogeneous and anisotropic problems. We also propose two implementations based on approximate
Schur complement matrices that are cheaper alternatives to construct the given preconditioners but that
preserve their good numerical behaviour. Through extensive computational experiments we study the
numerical scalability and the robustness of the proposed preconditioners and compare their numerical
performance with well-known robust preconditioners such as BPS and the balancing Neumann–Neumann
method. Finally, we describe a parallel implementation on distributed memory computers of some of
the proposed techniques and report parallel performances. Copyright ? 2001 John Wiley & Sons, Ltd.

KEY WORDS: domain decomposition; two-level preconditioning; Schur complement; parallel distributed
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1. INTRODUCTION

In recent years, there has been an important development of domain decomposition algo-
rithms for numerically solving partial di�erential equations. Nowadays some preconditioners
for Krylov methods possess optimal convergence rates for given classes of elliptic problems.
These optimality or quasi-optimality properties are often achieved thanks to the use of two-
level preconditioners that are composed of local and global terms acting either in an additive
or in a multiplicative way. In the framework of non-overlapping domain decomposition tech-
niques, we refer for instance to BPS (Bramble, Pasciak and Schatz) [1] and Vertex Space
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[2, 3] for additive two-level preconditioners, and to balancing Neumann–Neumann [4, 5], as
well as FETI [6] for examples of multiplicative ones. We refer to References [7–9] for a
more exhaustive overview of domain decomposition techniques.
In this paper we consider additive two-level preconditioners similar to BPS that can be

written as the sum of a local and a global component. In Section 2, we describe a set of
parallelizable local preconditioners that are the main focus of this paper and discuss the con-
nections with well-known preconditioners like vertex space [3] and Neumann–Neumann [10].
We also brie
y describe the global=coarse space component we have used for the numerical
experiments reported in Section 3. These numerical experiments are conducted for two types
of partial di�erential equations on two-dimensional domains. For elliptic equations, we show
experiments for heterogeneous and=or anisotropic problems. We also solve systems arising
from the time-implicit discretization of linear parabolic equations. To assess the relevance of
the new preconditioners, we compare their numerical behaviours with well-known robust pre-
conditioners such as the balancing Neumann–Neumann method [4]. In order to alleviate the
computational cost for constructing these new local preconditioners, that require the explicit
computation of the local Schur complement, we propose cheaper alternatives and show ex-
perimental results that demonstrate their e�ciency. Finally, for the solution of heterogeneous
anisotropic problems we report some parallel performance observed on a distributed memory
platform for the most promising approaches.

2. PRECONDITIONER DESCRIPTION

We consider the following second-order self-adjoint elliptic problem on an open polygonal
domain 
⊂R 2 :



− @
@x

(
a(x; y)

@v
@x

)
− @
@y

(
b(x; y)

@v
@y

)
= F(x; y) in 
;

v=0 on @
Dirichlet 6= ∅;
@v
@n
=0 on @
Neumann;

(1)

where @
Dirichlet ∩ @
Neumann = ∅ and a(x; y); b(x; y) ∈ R 2 are strictly positive and bounded
functions on 
. We assume that the domain 
 is partitioned into N non-overlapping subdo-
mains 
1; : : : ;
N with boundaries @
1; : : : ; @
N ; this de�nes a coarse mesh, �H , with mesh
size H being the largest diameter of the subdomains. We assume that a mesh is given which
is a re�nement of the subdomain partitioning. We discretize (1) by linear �nite elements
resulting in a symmetric and positive de�nite linear system

Au=f:

Let � be the set of all the indices of the mesh points which belong to the interfaces between
the subdomains. Grouping the unknowns for the mesh points corresponding to � in the vector
u� and the ones corresponding to the unknowns in the interior I of the subdomains in uI , we
get the reordered problem (

AII AI�
ATI� A��

)(
uI
u�

)
=
(
fI
f�

)
: (2)
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Figure 1. An internal subdomain.

Eliminating uI from the second block row of (2) leads to the following reduced equation for
u�:

Su� =f� − ATI�A−1
II fI ; (3)

where

S=A�� − ATI�A−1
II AI� (4)

is the Schur complement of the matrix AII in A. The matrix S inherits from A the symmetric
positive de�niteness property. Therefore we use preconditioned conjugate gradient iterations
for solving (3).
In Figure 1, we depict an internal subdomain 
i with its edge interfaces Em, Eg, Ek , E‘

and vertex points as vl that de�ne �i= @
i\@
. Let R�i : �→�i be the canonical pointwise
restriction which maps full vectors de�ned on � into vectors de�ned on �i, and let RT�i : �i→�
be its transpose. For a sti�ness matrix A arising from a �nite element discretization, the Schur
complement matrix (4) can also be written as

S=
N∑
i=1
RT�i S

(i)R�i ;

where

S(i) =A(i)�i − ATi�iA−1
ii Ai�i (5)

is referred to as the local Schur complement associated with the subdomain 
i. S(i) involves
submatrices from the local sti�ness matrix A(i), de�ned by

A(i) =
(
Aii Ai�i
AT�i i A(i)�i

)
: (6)

The matrix A(i) corresponds to the discretization of Equation (1) on the subdomain 
i with
Neumann boundary condition on �i and Aii corresponds to the discretization of Equation (1)
on the subdomain 
i with homogeneous Dirichlet boundary conditions on �i. In a parallel
distributed memory environment, where each subdomain is assigned to one processor, all the
local Schur complement matrices can be computed simultaneously by all the processors and
the complete Schur matrix S de�ned by (4) is never fully assembled.
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The local Schur complement matrix, associated with the subdomain 
i depicted in Figure 1,
is dense and has the following block structure:

S(i) =




S(i)mm Smg Smk Sm‘ S(i)mV
Sgm S(i)gg Sgk Sg‘ S(i)gV
Skm Skg S(i)kk Sk‘ S(i)kV
S‘m S‘g S‘k S(i)‘ ‘ S(i)‘V
S(i)Vm S(i)Vg S(i)Vk S(i)V‘ S(i)VV



;

where V is the set of vertices vl of 
i. The �rst four diagonal blocks represent the local
coupling between nodes on an edge interface introduced by the subdomain 
i and are only
contributions to the diagonal blocks of the complete Schur complement matrix S. For instance,
the diagonal block of the complete matrix S associated with the edge interface Ek , depicted in
Figure 1, is Skk = S

(i)
kk + S

(j)
kk . Assembling each diagonal block of the local Schur complement

matrices and the blocks associated with the vertices, we obtain the local assembled Schur
complement, that is

�S
(i)
=




Smm Smg Smk Sm‘ SmV
Sgm Sgg Sgk Sg‘ SgV
Skm Skg Skk Sk‘ SkV
S‘m S‘g S‘k S‘‘ S‘V
SVm SVg SVk SV‘ SVV


 ;

which corresponds to the restriction of S to the unknowns associated with the interface �i
of 
i.
In a parallel distributed memory framework, few neighbour-to-neighbour communications

enable each processor to get its �S
(i)
once S(i) has been computed locally.

2.1. Local preconditioners

The new local preconditioners can be described using a set of canonical restriction operators.
Let U be the space on which S operates and (Ui)i=1;p a set of subspaces of U such that:

U =U1 + · · ·+Up:
Let Ri be the canonical pointwise restriction of nodal values de�ned on Ui. Its transpose
extends grid functions in Ui by zero to the rest of U . Using the above notation, we can
de�ne a wide class of block preconditioners by

Mloc =
p∑
i=1
RTi M

−1
i Ri; (7)

where

Mi=RiSRTi : (8)

The properties of the operators (7) and (8) are given by the following lemma:

Lemma 1. If the operator RTi is of full rank and if S is symmetric and positive de�nite;
then the matrix Mi; de�ned in Equation (8), and the matrix Mloc de�ned in Equation (7)
are symmetric and positive de�nite.

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:207–227
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Proof
The proof can be done in two steps. We �rst show that M−1

i is symmetric positive de�nite
(SPD) and then that Mloc is SPD.
Let 〈:; :〉 denote the scalar product associated with the 2-norm.

• If M−1
i is SPD it is equivalent to showing that Mi is SPD.

• By de�nition, Mi is symmetric.

∀x 6= 0 〈x;Mix〉= 〈x; RiSRTi x〉
= 〈RTi x; SRTi x〉

In addition

Ri is full rank ⇒ RTi x 6=0
S is SPD

}
⇒ 〈RTi x; SRTi x〉 is strictly positive:

• Mloc is SPD.
Let x∈U .

〈x;Mlocx〉=
〈
x;

p∑
i=1
RTi M

−1
i Rix

〉
=

p∑
i=1

〈Rix;M−1
i Rix〉; (9)

where ∀i; 〈Rix;M−1
i Rix〉¿0 since M−1

i is SPD. So the expression (9) can be zero, if and
only if, ∀i 〈Rix;M−1

i Rix〉=0 which implies that x=0 since Ri are canonical restrictions
such that Ui=Im(Ri) and U =U1 + · · ·+Up.

Remark 1
If U =U1 ⊕ · · · ⊕ Un, then Mloc is a block Jacobi preconditioner. Otherwise, Mloc is a block
diagonal preconditioner with an overlap between the blocks as Ui ∩Uj 6= ∅. In this case, the
preconditioner can be viewed as an algebraic additive Schwarz preconditioner for the Schur
complement.

The preconditioners are required to be e�cient on parallel distributed memory platforms.
Therefore, we only consider subspaces Ui that involve information mainly stored in the local
memory of the processors; that is information associated with only one subdomain and its
closest neighbours. This approach introduces only cheap neighbour-to-neighbour communica-
tions between processors. In this respect, we present three di�erent decompositions of U by
associating each subspace, respectively, with:

1. each edge Ek and each vertex vl of the decomposition giving rise to the edge precondi-
tioner described in Section 2:1:1,

2. each edge Ek enlarged with neighbours of its end points vl resulting in the vertex-edge
preconditioner presented in Section 2:1:2,

3. each interface �i of the subdomains giving the subdomain preconditioner presented in
Section 2:1:3.

2.1.1. Edge preconditioners. For each edge Ei we de�ne Ri≡REi as the standard pointwise
restriction of nodal values on Ei. Its transpose extends grid functions in Ei by zero to the rest
of the interface. Thus, Sii=REiSR

T
Ei =Mi. Similarly, we consider Rvl the restriction operator
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212 L. M. CARVALHO, L. GIRAUD AND G. MEURANT

Figure 2. Uk associated to the vertex-edge preconditioner.

for each vertex of the coarse mesh �H de�ned by the decomposition. Using the above notation
we de�ne the edge-based local preconditioner by

Mloc =ME =
∑
Ei
RTEiS

−1
ii REi +

∑
vl
RTvlS

−1
vlvlRvl : (10)

This preconditioner aims at capturing the interaction between neighbouring nodes within the
same edge interface. Notice that Svlvl in (10) is just a scalar which is the diagonal coe�cient
of the equation associated with the vertex vl; this only corresponds to a diagonal scaling at the
vertices of �H . This preconditioner is the straightforward block Jacobi that is well-known to be
e�ciently parallelizable. The main criticism against ME is that it does not manage consistently
neighbour nodes that are close to a vertex but belong to di�erent edges, see Figure 1. We
describe in the next section a preconditioner that intends to address this de�ciency.

2.1.2. Vertex-edge preconditioners. The vertex-edge preconditioner is similar to the Vertex-
Space preconditioner introduced in Reference [3], for which we merge into a single subspace
the edge and vertex subspaces that appear in an additive way in References [2, 3].
In Figure 2, we depict Uk , the image of the restriction operator Rk ≡ RVEk associated with

the vertex-edge Ek enabling to de�ne SVE i =RVE i SR
T
VE i . With this notation the vertex-edge

preconditioner is de�ned by

Mloc =MVE =
∑
Ei
RTVE i S

−1
VE iRVE i :

In that case, two neighbour vertex-edges (for instance, Ek and Eg in Figure 2) intercept
each other, then the associated space splitting (Ui)i does not de�ne a direct sum of the space
U and the number of nodes in the neighbourhood of the vertex vl de�nes the amount of
overlap between the blocks Mi of the preconditioner.

2.1.3. Subdomain preconditioner. In this alternative, we try to exploit all the information
available on each subdomain and we associate each subspace Ui with the entire boundary
�i of subdomain 
i. Here, we have Ri≡R�i . Consequently, Mi= �S(i) is the assembled local
Schur complement. This splitting (Ui)i is not a direct sum of the space U and we have
introduced some overlap between the blocks de�ning the subdomain preconditioner MS.
We should notice the similitude between MS and the Neumann–Neumann preconditioner,

MNN, originally proposed in References [10, 11].
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MS can be written as

MS =
N∑
i=1
RT�i( �S

(i))−1R�i ;

while the Neumann–Neumann preconditioner is

MNN =
N∑
i=1
RT�i(Di(S

(i))+Di)R�i : (11)

In equation (11) the matrices Di are weighted matrices such that
∑N

i=1 R
T
�iDiR�i = I . I denotes

the identity matrix and (S(i))+ is the Moore–Penrose pseudo-inverse since the local Schur
complement matrices S(i) are singular for internal subdomains. Notice that assembling the
local Schur complement �S i removes these singularities.

2.2. Computing alternatives

The construction of the proposed local preconditioners can be computationally expensive be-
cause the exact local Schur complement S(i) needs to be formed explicitly and then dense
matrices Mi should be factorized. To alleviate these costs we propose two alternatives that
can be combined. The �rst intends to reduce the construction cost of S(i) by using approxi-
mated solution of the local Dirichlet problems Aii; the second intends to reduce the storage
and the computational cost to apply the preconditioner by using sparse approximation of the
Mi obtained by dropping the smallest entries.

2.2.1. Local Schur with inexact local solvers. Using the up-to-date sparse direct technol-
ogy of e�cient sparse direct solver, Aii is factorized and S(i) can be computed via many
forward=backward substitutions. Nonetheless, this procedure remains computationally expen-
sive. To alleviate this cost, the exact solution of the local Dirichlet problems A−1

ii (see equation
(5)) can be replaced by some cheap approximations. For symmetric positive de�nite problems,
approximations can be e�ciently computed either by approximate inverses like AINV [12] or
by an Incomplete Cholesky factorization, ILLT resulting in an approximate Schur complement S̃.

Lemma 2. If the matrix

A=
(
AI I AI �
ATI � A��

)

is a Stieltjes matrix and (LLT) is an incomplete Cholesky factorization of AI I then S̃=A��−
ATI �(LL

T)−1AI � is also a Stieltjes matrix.

Proof
It is enough to show that

06 (LLT)−16A−1
I I ;

since Theorem 7:1 in Reference [13] will then ensure that the resulting approximate Schur is
an M-matrix. By construction S̃ is symmetric then a Stieltjes matrix is consequently SPD.
AI I is a symmetric M-Matrix, so by Theorem 2:4 in Reference [14], AI I =(LLT)− R is a

regular splitting (i.e. (LLT)−1¿ 0 and R¿ 0).

AI I =(LLT)− R ⇒ (LLT)−1AI I = I − (LLT)−1R6 I:

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:207–227
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Since AI I is an M-matrix, A−1
I I ¿0 then

06 (LLT)−16A−1
I I :

We note that the same property holds for the approximate Schur complement computed
with AINV. In Reference [15] it is shown that the approximate inverse G of an M-matrix A
computed by AINV also satis�es the inequality 06G6A−1.
Notice that Lemmas 1 and 2 ensure that for M-matrices the local preconditioners built using

either ILLT or AINV are SPD.

2.2.2. Sparse approximation of the local Schur complement. Another possible alternative
to get a cheaper preconditioner is to consider a sparse approximation for S in (8) which
may result in a saving of memory to store the preconditioner and saving of computation to
factorize and apply the preconditioner. This approximation Ŝ can be constructed by dropping
the elements of S that are smaller than a given threshold. More precisely, the following
dropping strategy can be applied:

ŝij=
{
0 if sij6 �(|sii|+ |sjj|)
sij else (12)

Lemma 3. If the matrix

A=
(
AI I AI �
ATI � A��

)

is a Stieltjes matrix then the sparse approximation Ŝ computed by (12) applied to S=
A�� − ATI �A−1

I I AI � is also a Stieltjes matrix.

Proof
It is well known that S is a Stieltjes matrix (see Reference [13] for instance); then it is easy
to see that removing o�-diagonal entries while preserving symmetry preserves this property.

The two alternatives can be combined, that is dropping the smallest entries of approximate
Mi, to produce a preconditioner that is cheap to compute and to store. We note that, for
M-matrices, this combination gives rise to preconditioners that are still SPD.
In Section 3.2, we report some experiments using ILLT as well as experiments with Ŝ and

combining the two strategies.

2.3. Coarse space preconditioner

It can be shown (see for instance Reference [7]) that the local preconditioners alone are not
numerically scalable for elliptic problems in the sense that

�(MlocS)=O(H−2); (13)

where H denotes the diameter of the subdomains and �(A) is the condition number of the
matrix A. This means that when the number of subdomains increases the number of conju-
gate gradient iterations increases as well. To ensure a quasi-optimality property, that is, the
condition number of the associated preconditioned systems is independent of the number of

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:207–227
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subdomains and only logarithmically dependent on the size of the subdomains, a coarse prob-
lem de�ned on the whole physical domain should be incorporated into the preconditioner. This
global coupling is critical for scalability. In particular, it has been shown in Reference [1] that,
when applying the original BPS technique to a uniformly elliptic operator, the preconditioned
system has a condition number

�(MBPSS)=O(1 + log2(H=h)); (14)

where h is the mesh size. This implies that the condition number depends only weakly on
the number of points per subdomain but no longer depends on the number of subdomains.
Therefore, such a preconditioner is numerically appropriate for large systems of equations on
large processor systems.
Similar to BPS, we consider a class of additive two-level preconditioners that can be written

in a generic way as

MBPS-∗=Mloc +Mglob;

where Mglob is computed using a Galerkin formula involving S and not the original matrix A,
as it is done in the regular BPS.
Let U0 be a q-dimensional subspace of U . This subspace will be called the coarse space.

Let R0 :U→U0 be a restriction operator which maps full vectors of U into vectors in U0,
and let RT0 :U0→U be the transpose of R0, an interpolation operator which extends vectors
from the coarse space U0 to full vectors in the �ne space U .
The Galerkin coarse space operator A0 =R0SRT0 , in some way, represents the Schur com-

plement on the coarse space U0. The global coupling mechanism is introduced by the coarse
component of the preconditioner which can thus be de�ned as

Mglob =RT0A
−1
0 R0:

For the experiments reported in this paper, we consider the space U0 obtained by associating
one degree of freedom with each vertex vl of �H (corner points) resulting from the partition
(
i)i=1; N and a restriction operator R0 specially designed to deal with the possible disconti-
nuities in the PDE coe�cients. We refer to Reference [16] and the references therein for a
more detailed description of this coarse component and its numerical and parallel scalability.
Combining this coarse-space preconditioner with the three local preconditioners gives rise

to variants of the BPS preconditioner that will be denoted:

— MBPS-E for Mloc =ME . Notice that this local preconditioner is the one used in the genuine
BPS; in this respect MBPS-E is the closest variant to regular BPS. It is a slight improvement
of regular BPS as the coarse component does not rely on the spectral equivalence property
between A and S for uniformly elliptic operators.

— MBPS-VE for Mloc =MVE.
— MBPS-S for Mloc =MS .

3. NUMERICAL EXPERIMENTS

In this section, we report through a set of model problems the numerical behaviour of
the preconditioners introduced in Section 2. We consider not only the new BPS variants

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:207–227
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Figure 3. Example 1 — Flag.

but, additionally, the well-established balanced Neumann–Neumann preconditioner [4].
Before reporting the comparison results, we brie
y recall the balanced Neumann–Neumann
pre-conditioner.
The balanced Neumann–Neumann preconditioner has proven to be an e�cient domain de-

composition preconditioner for some fairly di�cult problems [17], such as linear systems
arising from structural analysis. At each iteration, two linear systems per subdomain must
be solved, one corresponding to the PDE with Dirichlet boundary conditions (i.e. Aii in (6))
and the other with Neumann boundary conditions (i.e. A(i) in (6)). It is through the solution
of this latter Neumann problem that the action of (S(i))+ on a vector, de�ning the Neumann
boundary conditions, is e�ectively computed. A global=coarse space problem is solved at each
iteration to remove the possible singularity associated with the Neumann problem. We omit
the details and refer to Reference [4] for a complete description. It is important to note that
the balanced Neumann–Neumann preconditioner is scalable and in fact has the same condi-
tion number bound as BPS (see equation (14)). Henceforth, the balanced Neumann–Neumann
preconditioner will be denoted by MBNN.

3.1. Model problems

We consider the solution of two classes of elliptic problems. First, we compute the solution
of equation (1) discretized by linear �nite elements on a uniform mesh. A second set of
experiments is related to a series of elliptic problems that arises in the solution of parabolic
equations when using a time implicit scheme and a �nite-element scheme in space.

3.1.1. Anisotropic and discontinuous elliptic model problems. For the solution of
equation (1), the background of our study is the numerical solution of the 2D drift-di�usion
equations for the simulation of semi-conductor devices [18, 19]. In this respect, we intend to
evaluate the sensitivity of the preconditioners to anisotropy and to discontinuity. With this in
mind, we consider the following 2D model problems.
In Figure 3, we represent the unit square divided into �ve regions where piecewise con-

stant functions are used to de�ne a �rst set of test problems. In addition, we have per-
formed experiments with the problem de�ned by piecewise constant functions as depicted in
Figure 4. Let a() and b() be the di�usion coe�cients of the elliptic problem as described
in equation (1).

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:207–227
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Figure 4. Example 2 — Region.

Using this notation and Figure 3, we de�ne the �rst set of model problems with di�erent
degrees of di�culty:

• Poisson problem: a()=1 and b()=1,
• anisotropic and discontinuous problems with a()=1 and b() which depends on x and y.

Problem AD-F1:

b() =



1 in 
3;
102 in 
2 ∪
4;
10−2 in 
1 ∪
5:

Problem AD-F2:

b() =



1 in 
3;
103 in 
2 ∪
4;
10−3 in 
1 ∪
5:

• discontinuous problems with
Problem D-F1 :

a() = b()=



1 in 
3;
102 in 
2 ∪
4;
10−2 in 
1 ∪
5:

Problem D-F2:a() = b()=



1 in 
3;
103 in 
2 ∪
4;
10−3 in 
1 ∪
5:

Using piecewise constant functions on the regions depicted in Figure 4, we de�ne a second
set of test problems:

• anisotropic and discontinuous problems: a()=1 and
Problem AD-R:

b()=



10−1 in 
1;
10−2 in 
2;
101 in 
3 ∪
4 ∪
5 ∪
6:

• discontinuous problems:
Problem D-R:

a()= b()=



10−1 in 
1;
10−2 in 
2;
101 in 
3 ∪
4 ∪
5 ∪
6:

We have also considered a last set of problems associated with (1). We have introduced
anisotropy not necessarily aligned with the axis but making an angle � with the x-direction
corresponding to the following PDE:

(�c2 + s2)
@2u
@x2

+ 2cs(1− �) @
2u

@x@y
+ (c2 + �s2)

@2u
@x2

=f (15)
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where �.1, c= cos � and s= sin �. For �=0 equation (15) reduces to the classical model
anisotropic equation:

�
@2u
@x2

+
@2u
@y2

=f: (16)

3.1.2. Elliptic problems involved in the solution of parabolic linear equations. As in other
model problems, let us consider the solution of the linear systems arising from the implicit
discretization of parabolic linear partial di�erential equations like



@v
@t

− @
@x

(
a(x; y)

@v
@x

)
− @
@y

(
b(x; y)

@v
@y

)
= F(x; y) in 
;

v=0 on @
;
v(x; 0) = v0(x):

In an abstract form, this problem can be written as

@v
@t
+ Lu=f;

where L is a second-order self-adjoint linear elliptic problem. This problem is discretized in
time using an implicit Crank–Nicholson centred scheme with time step �t and in space by
linear �nite elements with mesh size h giving rise to the sti�ness matrix h−2A. The solution
of the parabolic equation reduces to a sequence of elliptic problems. With um= v(x; tm) at
each time step we have

um+1 − um
�t

+
1
2h2
(Aum+1 + Aum)= 1

2(f
m+1 + fm);

so we have to solve(
2
h2

�t
I + A

)
um+1 =2

h2

�t
um − Aum + h2(fm+1 + fm):

Letting �=2h2=�t, and At =(�I + A), we have to solve the linear systems

At�= h2(fm+1 + fm)− 2Aum; (17)

then advance the solution in time

um+1 = um + �:

The linear system (17) can be solved using a Schur complement approach, preconditioned
with the techniques described in Section 2.

3.2. Experimental results

For the experimental results related to MVE, we have considered two extra edge points in
the neighbourhood of the vertices vl in each direction. For a more detailed study about the
in
uence of the size of the overlap in the neighbourhood of the vertices vl on the convergence
rate, we refer to Reference [18]. We just state here that a very small overlap is usually enough
to improve the behaviour of MVE with respect to ME . Both preconditioners have comparable
computational complexities and consequently, similar parallel performances [18].
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Table I. Number of iterations on the Poisson problem.

No. of subdomains 4× 4 8× 8 16× 16
ME 13 28 51
MVE 12 22 40
MS 11 19 32

MBPS-E 9 11 11
MBPS-VE 10 12 12
MBPS-S 10 10 11
MBNN 11 12 12

For all the experimental results reported in the next section, the convergence of the pre-
conditioned conjugate gradient method is attained when the 2-norm of the residual of the
current iteration normalized by the 2-norm of the right-hand side is less than 10−6. For all
the experiments reported in the following tables, the number of subdomains varies from 16
(4×4 decomposition) up to 256 (16×16 decomposition) keeping constant the number of grid
points per subdomain (i.e. 16 × 16 mesh for each subdomain, that is H=h=16); the initial
guess x0 for the conjugate gradient iterations was the null vector. Notice that for the �rst set
of test examples the discontinuities in the coe�cients a(x; y) and b(x; y) are not aligned with
the interface of the square subdomains. The same observation is true for the pure anisotropic
problem (15) with � 6= 0; the anisotropic behaviour is not aligned with the interface of the
decomposition. All the numerical experiments, except the ones reported in Section 4 have
been performed on a single-processor workstation using Matlab.

3.2.1. Anisotropic and discontinuous elliptic problems. In Table I, we report results observed
on the Poisson equation using the preconditioners with and without the coarse-space compo-
nent Mglob. When only local preconditioners are implemented, it can be seen that when the
local information is more represented in the preconditioner, the convergence is better. These
results also show that without a coarse space component the number of iterations required by
the preconditioned conjugate gradient grows with the number of subdomains as predicted by
the estimated condition number given by equation (13). Using the two-level preconditioners,
these observations are no longer true. The coarse space component somehow smoothes the
e�ect of the local component. According to the theoretical bound given by equation (14), the
number of preconditioned conjugate gradient iterations becomes independent of the number of
domains. Finally, we note that for the two-level preconditioners MBPS-E and MBNN, the results
are similar to those of other authors [4, 20].
In Table II, we depict the numerical behaviour of the preconditioners on the model

problem (15) that only exhibit anisotropy not aligned with the axes. When no coarse-space
component is implemented MVE still outperforms ME , MS is the most e�cient and the num-
ber of iterations of all the preconditioners grows with the number of subdomains. For the
two-level preconditioners, we �rst observe that the anisotropy prevents them from having an
optimal convergence behaviour independent of the number of subdomains, even though the
number of iterations is considerably decreased by the coarse-space component. Furthermore,
for some problems MBPS-VE becomes less e�cient than the simpler MBPS-E while MBPS-S always

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:207–227



220 L. M. CARVALHO, L. GIRAUD AND G. MEURANT

Table II. Number of iterations for solving (15) with several values of � – �=10−3.

No. of subdomains 4× 4 8× 8 16× 16
� 0 �=8 �=4 0 �=8 �=4 0 �=8 �=4

ME 21 34 30 47 67 77 88 132 164
MVE 21 22 23 44 42 59 72 81 141
MS 14 20 20 25 40 41 53 75 88

MBPS-E 27 24 20 58 34 28 81 43 35
MBPS-VE 25 21 21 48 33 35 85 43 49
MBPS-S 20 19 17 33 26 21 47 33 26

Table III. Number of iterations for problems with discontinuity.

No. of subdomains 4× 4 8× 8 16× 16
Model problem D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R

MBPS-E 12 11 10 11 11 11 14 15 11
MBPS-VE 13 12 11 13 12 12 16 16 12
MBPS-S 12 10 10 11 11 11 14 14 11
MBNN 25 27 21 29 28 38 48 65 52

Table IV. Number of iterations for problems with discontinuity and anisotropy.

No. of subdomains 4× 4 8× 8 16× 16
Model problem AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R

MBPS-E 18 24 25 29 65 35 42 103 39
MBPS-VE 18 23 24 33 80 40 56 141 55
MBPS-S 16 20 18 22 43 22 33 79 26
MBNN 37 52 147 60 158 644 97 311 ∗

∗Means no convergence after 1000 iterations.

ensures the fastest convergence. So the conjecture, ‘the richer the local preconditioner, the
more e�cient the preconditioner’, is only true when the local preconditioners run alone.
In Tables III and IV, we study the numerical behaviour of the two-level preconditioners on

model problems arising from the discretization of (1) that exhibit either discontinuity (Table
III) or both discontinuity and anisotropy (Table IV). For the problems with only discontinuity,
all the variants MBPS-∗ have comparable convergence behaviours.
As it can be seen in Table IV, problems with anisotropy and discontinuity are more di�cult

to solve. Again, MBPS-VE does not outperform the basic MBPS-E . For those examples, similar
to the pure anisotropic situation reported in Table II, MBPS-S exhibits once again the best
convergence behaviour.
The relatively poor performance of MBNN, reported in Tables III and IV, could be im-

proved. An alternative way, as suggested in Reference [10], should be a better choice of the
weight matrices Di, involved in equation (11), when the diagonal entries of S are available.
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Table V. Number of iterations varying the anisotropy
with an 8× 8 subdomain decomposition.

� 1.0 10−1 10−2 10−3

MBNN 12 20 40 98
MBPS-S 12 15 22 33

Table VI. Number of iterations using inexact local solvers ILLT(0) to build
the preconditioners.

No. of subdomains 4× 4 8× 8 16× 16
Model problem D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R

M̃BPS-E 14 13 14 13 13 14 17 17 14
M̃BPS-VE 20 18 20 19 19 19 24 26 20
M̃BPS-S 14 13 15 13 13 12 17 18 13

Model problem AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R
M̃BPS-E 24 30 28 36 67 37 50 112 45
M̃BPS-VE 27 34 31 40 84 48 64 143 64
M̃BPS-S 24 26 23 30 53 31 47 80 41

With this appropriate choice of the weights, one can expect a reduction of the gap between
MBNN and MBPS-∗ for discontinuous problems, as suggested by the results reported in Ref-
erence [5]. However, the key trick in the Neumann–Neumann preconditioner is to get the
action of (S(i))−1 on a vector without explicitly forming S(i) and, thus, in the classical im-
plementation of MBNN those entries are usually not computed. Furthermore, in Table V we
report the numerical behaviour of MBPS-S and MBNN for the anisotropic problems de�ned by
equation (16) for di�erent values of the anisotropic coe�cient �. For those problems, the
choice of the weighted matrices used in Reference [5] for MBNN would reduce to the simple
ones we have considered; that is, 1=2 for the nodes on the edges and 1=4 for the vertex points
vl. For anisotropic problems, we cannot expect MBNN to become competitive with MBPS-S
for � lower than 10−1.
Local Schur with inexact local solvers: To alleviate the cost of the preconditioners con-

struction, the factorization of the local Dirichlet problem can be replaced by an incomplete
Cholesky factorization without �ll-in, i.e. ILLT(0), or with some �ll-in controlled through a
threshold, i.e. ILLT(t). In this later situation the amount of �ll-in can be de�ned by the �ll-in
ratio that is the number of non-zeros in the incomplete factors divided by the number of
non-zeros in the lower part of the original matrices; by de�nition this �ll-in ratio is equal to
one for ILLT(0).
In Tables VI and VII, we denote by M̃BPS-E , M̃BPS-VE and M̃BPS-S the preconditioners

computed using those inexact local solves. More precisely, we report in Table VI the number
of iterations when ILLT(0) is used and in Table VII those observed when some �ll-in is
enabled with a �ll-in ratio lower than 3.5.
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Table VII. Number of iterations using inexact local solvers ILLT(t) to build the preconditioners.

No. of subdomains 4× 4 8× 8 16× 16
Model problem D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R

M̃BPS-E 13 12 12 13 14 12 16 19 11
M̃BPS-VE 15 17 12 17 19 13 22 27 12
M̃BPS-S 12 12 10 11 12 11 16 18 11

Model problem AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R
M̃BPS-E 23 31 28 35 70 37 48 114 40
M̃BPS-VE 21 33 26 36 85 44 59 147 56
M̃BPS-S 19 27 20 27 54 24 39 81 29

Table VIII. Number of iterations using sparse Schur to build the preconditioners.

No. of subdomains 4× 4 8× 8 16× 16
Model problem D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R

M̂BPS-E 13 12 12 11 11 13 14 15 12
M̂BPS-VE 16 16 18 16 16 18 20 20 18
M̂BPS-S 12 11 12 12 12 11 15 16 11

Model problem AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R
M̂BPS-E 18 25 27 29 65 35 43 111 40
M̂BPS-VE 24 30 26 36 81 42 57 142 57
M̂BPS-S 18 21 18 23 44 23 36 79 27

The comparison of the results depicted in Tables VI and VII and those in Tables III and IV
shows that the approximation of the local Schur complement used to build the preconditioners
generally deteriorates the numerical behaviours of the preconditioner. This approximation does
not a�ect signi�cantly the numerical behaviour of M̃BPS-E and M̃BPS-S but deteriorates notice-
ably the one of M̃BPS-VE. In addition, enabling some �ll-in in the incomplete factorizations
generally improves the convergence rate; the most signi�cant improvements are observed on
anisotropic and discontinuous problems with M̃BPS-VE and M̃BPS-S .
Sparse approximation of the Schur complement: In Table VIII we report the number of

iterations using an approximate Schur complement Ŝ with � in (12) such that we only retain
around 5 per cent of the entries in S. The resulting preconditioners are denoted, respectively,
by M̂BPS-E , M̂BPS-VE and M̂BPS-S .
The comparison of these results with those displayed in Tables III and IV indicates that,

except for M̂BPS-VE on discontinuous problems, only retaining very few entries in the Schur
complement is enough to ensure the numerical quality of these preconditioners since the
number of iterations is roughly the same in both cases (except for M̂BPS−VE on discontinuous
problems).
In addition, as mentioned in Section 2.2.2, the inexact local solvers and the dropping

strategy can be combined to build variants of the preconditioners. The resulting preconditioners
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Table IX. Number of iterations using preconditioner based on sparse Schur built
using inexact local solvers ILLT(t).

No. of subdomains 4× 4 8× 8 16× 16
Model problem D-F1 D-F2 D-R D-F1 D-F2 D-R D-F1 D-F2 D-R

MBPS-E 14 13 12 13 13 13 16 18 13
MBPS-VE 19 18 18 20 22 18 26 29 18
MBPS-S 12 12 12 12 13 11 17 19 11

Model problem AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R AD-F1 AD-F2 AD-R
MBPS-E 22 32 29 35 70 36 47 113 41
MBPS-VE 26 38 27 39 86 45 61 150 58
MBPS-S 19 29 21 28 55 28 42 81 31

Table X. Number of iterations to solve the elliptic problems involved in the solution of a parabolic equation
for one time step – �=10−3.

No. of subdomains 4× 4 8× 8 16× 16
� 0 �=8 �=4 0 �=8 �=4 0 �=8 �=4

ME 10 15 16 16 16 17 19 16 17
M̃E 10 15 17 17 16 17 19 15 17
MVE 11 9 12 13 10 13 14 10 14
M̃VE 11 11 13 13 11 14 14 12 15
MS 8 10 11 13 10 12 13 10 12
M̃ S 8 11 12 13 11 12 13 10 12

are, respectively, denoted by MBPS-E , MBPS-VE and MBPS-S . Numerical experiments where we
dropped the smallest elements of the local preconditioners built using ILLT(t) are reported
in Table IX. Comparing these results with those of Tables VIII and VII indicates that the
numerical quality of the resulting preconditioners is mainly governed by the use of ILLT.

3.2.2. Elliptic problems in the solution of parabolic equations. In Table X, we report exper-
imental results for the solution of elliptic problems involved in the solution of a parabolic
equation for one time step. Here the operator L corresponds to the anisotropic equation (15)
where � is varied. The time step and the mesh size are such that �=0:02, which gives rise
to a well-conditioned linear system (17) (independent of h for the classic heat equation) and
consequently, a well-conditioned associated Schur complement. With this choice we note that
the local preconditioners are numerically scalable with respect to the number of subdomains
as it was already observed in an overlapping domain decomposition approach [21]. In Table
X, M∗ denotes the preconditioner built using the exact Schur complement and M̃ ∗ the ones
computed using S̃. In those examples MVE is generally from 20 up to 40 per cent faster than
ME , while both, as already noticed, have a similar computational complexity [18]. MS is still
the most e�cient but for those problems, the gap between this preconditioner and the other
two decreases. In that case, MVE may be the most e�cient alternative as the factorizations
of its Mi require about 16 times less 
oating point operations than the factorization for MS .
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Table XI. Number of iterations for AD-F2.

No. of subdomains 4× 4 8× 8
MBPS-E 35 82
MBPS-S 25 51
M̃BPS-E 46 85
M̃BPS-S 39 61

Indeed the complexity of the Cholesky factorization is O(n3) for a matrix of size n, the con-
tributions computed on internal subdomains for MBPS-E requires four factorizations of matrices
of size m while a factorization of one matrix of size 4m is required for MBPS-S . As before,
those results show that approximate local Schur complements based on ILLT(t) factorization
can be used to compute the preconditioners without signi�cantly deteriorating their numerical
performances.

4. PARALLEL PERFORMANCE

The independent solution of local PDE problems expressed by the domain decomposition
techniques is particularly suitable for parallel-distributed computation. In a parallel-distributed
memory environment each subdomain is assigned to a di�erent processor. Using the research
software MUMPS [22] corresponding to the state of the art in sparse direct solvers we have
implemented MBPS-E , MBPS-S , M̃BPS-E and M̃BPS-S on a parallel-distributed memory computer.
This package is particularly suitable for our implementation since it enables to e�ciently
compute the local Schur complement using e�cient sparse factorization techniques. For the
dense computation involved in the factorization of Sii and �S(i) we used the LAPACK [23]
Cholesky factorization routines. The sparse computation involved in the factorization of the
local Dirichlet problems, the construction of the local Schur complement matrices S(i), the
factorizations required to build M̃BPS-E and M̃BPS-S were performed also using MUMPS. The
exchanges between the processors were implemented using MPI. The target platform is a 57-
node COMPAQ computer installed at CEA in Grenoble (France); each node is a 4-processor
SMP.
To evaluate the numerical and parallel performance of the preconditioners we consider the

heterogeneous anisotropic problem AD-F2 using 16 and 64 processors keeping constant the
number of grid points per subdomain (i.e. each subdomain is a 256× 256 mesh).
In Table XI we report the number of iterations for the four considered preconditioners,

the threshold used to construct the preconditioners M̃BPS-E and M̃BPS-S enables to retain around
2.5 percent of the entries of the local Schur complement.
In Table XII we depict the elapsed time required to build the local preconditioner including

the explicit computation of the local Schur complement. This time does not depend on the
number of processors since the major part (i.e. 2:5 s) is spent in MUMPS for the factorization
of the local Dirichlet problem and the computation of the local Schur complement. Notice that
the assembling of the local Schur complement that requires some communication is negligible
(i.e. about 0:2 s) and independent of the number of processors; the rest is spent in the Cholesky
factorization dense or sparse depending on the preconditioner. Finally, it can be noticed that
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Table XII. Elapsed time in seconds to build and
factorize the preconditioners.

No. of subdomains 4× 4 8× 8
MBPS-E 2.55 2.55
MBPS-S 2.88 2.88
M̃BPS-E 2.52 2.52
M̃BPS-S 2.54 2.54

Table XIII. Elapsed time in seconds for a complete solution.

No. of subdomains 4× 4 8× 8
MBPS-E 3.17 5.31
MBPS-S 3.55 5.44
M̃BPS-E 2.99 4.94
M̃BPS-S 3.08 4.56

thanks to the performance of the dense linear algebra kernels LAPACK=BLAS-3, the cost
of factorizing the assembled local Schur complement �S(i) involved in MBPS-S is only about
seven times more expensive than that of factorizing the Sii associated with the subdomains
and required for MBPS-E . We recall that the complexity of the former is 16 times larger than
that of the latter. In our implementation we made the choice of redundantly factorizing on
each processor that shares the edge Ei. The counterpart of this extra computation is to avoid
one neighbour–neighbour communication when the local preconditioner is applied contributing
to make the MBPS-E iteration faster than the MBPS-S , the latter requires a communication to
assemble the contribution computed by the processors that share an interface.
The overall elapsed time corresponding to the construction of the two components of the

preconditioners plus the preconditioned conjugate gradient iterations to solve the Schur com-
plement system are reported in Table XIII. It should be mentioned that since the local Schur
complement is explicitly computed, the matrix vector product within the preconditioned con-
jugate gradient iteration is performed by a simple DGEMV BLAS-2 call involving a relatively
small dense matrix, making the iteration extremely cheaper than in conventional Schur com-
plement implementations where this step requires backward=forward substitution on the large
sparse Cholesky factors associated with the local Dirichlet problem. The gain introduced by
this dense matrix–vector product enables to overcome rapidly the extra cost due to the explicit
computation of the local Schur complement; for our examples as soon as the convergence
requires more than a dozen of iterations. Although it deteriorates the convergence speed of
the iterative scheme, sparsifying the local Schur complement to build sparse preconditioners
enables to noticeably reduce the overall elapsed time. Finally, even though constructing and
applying the preconditioner is computationally more expensive for M̃BPS-S than for M̃BPS-E ,
the reduction in terms of iterations often gives rise to the fastest method. The gain becomes
larger as the problem becomes harder. In this situation, the robustness of M̃BPS-S enables
much faster convergence than M̃BPS-E; this is, in particular, the case in device modeling
simulation [21].
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5. CONCLUDING REMARKS

We have introduced two new local preconditioners. They are based on an explicit computation
of the local Schur complement matrices and can be used in combination with a coarse-space
component in an additive way.
The �rst one, MVE, aims at recovering some information relative to the interface nodes

close to the vertices of the coarse mesh �H de�ned by the decomposition. This preconditioner
shows some advantages over the simple block Jacobi preconditioner ME for the solution of
linear systems arising in the solution of parabolic problems. These advantages vanish for the
solution of elliptic problems when, to ensure the numerical scalability, the coarse space pre-
conditioner component smoothes its e�ect compared to ME . For those problems, the use of
approximate local solvers a�ects signi�cantly the numerical behaviour of the resulting pre-
conditioner M̃BPS-VE. For the solution of the linear system arising in the solution of parabolic
problems, MVE is a cheap alternative to improve the simple block Jacobi preconditioner. Both
have similar computational complexities and parallel performances [18]. In addition, the use of
approximate local Schur complement does not penalize signi�cantly the numerical behaviour
of MVE.
The second one, closely related to the Neumann–Neumann preconditioner, demonstrates a

very attractive numerical behaviour on heterogeneous and anisotropic problems. These prob-
lems appear, for instance, in the solution of the drift-di�usion equations involved in semi-
conductor device modeling. We propose two alternatives based on approximated local Schur
complements built either using incomplete Cholesky factorizations or using sparsi�ed exact
local Schur complement. Based on an extensive benchmarking, we show that the resulting
preconditioner, with a cheap construction, retains the main numerical features of MBPS-S and
is well adapted for an e�cient implementation on parallel-distributed memory computers.
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