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Abstract. We consider the inverse problem of finding matrix valued edge or
node quantities in a graph from measurements made at a few boundary nodes.

This is a generalization of the problem of finding resistors in a resistor network

from voltage and current measurements at a few nodes, but where the voltages
and currents are vector valued. The measurements come from solving a series

of Dirichlet problems, i.e. finding vector valued voltages at some interior nodes

from voltages prescribed at the boundary nodes. We give conditions under
which the Dirichlet problem admits a unique solution and study the degen-

erate case where the edge weights are rank deficient. Under mild conditions,

the map that associates the matrix valued parameters to boundary data is
analytic. This has practical consequences to iterative methods for solving the

inverse problem numerically and to local uniqueness of the inverse problem.
Our results allow for complex valued weights and give also explicit formulas

for the Jacobian of the parameter to data map in terms of certain products

of Dirichlet problem solutions. An application to inverse problems arising in
networks of springs, masses and dampers is presented.

1. Introduction. We study a class of inverse problems where the objective is to
find matrix valued quantities defined on the edges or vertices (nodes) of a graph
from measurements made at a few boundary nodes. The scalar case corresponds to
the problem of finding resistors in a resistor network from electrical measurements
made at a few nodes, see e.g. [14]. As in the scalar case, the vector potential at all
the nodes can be found from its value at a few nodes by solving a Dirichlet problem,
i.e. finding a vector potential satisfying a vector version of conservation of currents
(Kirchhoff’s node law) and having a prescribed value at certain nodes. We study
in detail the Dirichlet problem and give conditions guaranteeing it admits a unique
solution (sections 2 and 3). We also include cases where the matrix valued weights
are rank deficient and uniqueness of the Dirichlet problem holds only up to a known
subspace.
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Then we present different inverse problems, where either the matrix valued
weights on the edges or the vertices or even their eigenvalues are the unknown
parameters that are sought after. All these inverse problems share a common struc-
ture that is given in section 4. Any inverse problem that fits this mold has certain
desirable properties: mainly the parameter to data map (i.e. the forward map) is
analytic and its Jacobian can be computed in terms of products of internal “states”
(e.g. solutions to the Dirichlet problem). Analyticity can be used to guarantee local
uniqueness for such inverse problems, for almost any parameter within a region of
interest provided the Jacobian is injective for one parameter (a generalization of the
results in [6]). Moreover, we show that Newton’s method applied to such problems
is very likely to produce valid steps. Then in sections 5 and 6 we formulate inverse
problems with matrix valued weights and determine conditions under which they
have the structure of section 4. Some of the inverse problems we consider arise in
networks of springs, masses and dampers.

1.1. Related work. The discrete conductivity inverse problem consists of finding
the resistors in a resistor network from voltage and current measurements made
at a few nodes, assuming the underlying graph is known. For this problem, the
uniqueness results in [13, 14, 10, 12, 11] apply to circular planar graphs (i.e. planar
graphs that can be embedded in a disk and where the nodes at which measurements
are made can be laid on the disk boundary) and real conductivities. A different
approach is taken in [9] where a monotonicity property inspired from the continuum
[1] is used to show that if the conductivities satisfy a certain inequality then they
can be uniquely determined from measurements, without specific assumptions on
the underlying graph. The lack of uniqueness is shown for cylindrical graphs in
[21]. For complex conductivities, a condition for “uniqueness almost everywhere”
regardless of the underlying graph is given in [6]. Uniqueness almost everywhere
means that the set of conductivities that have the same boundary data lie in a zero
measure set and that the linearized problem is injective for almost all conductivities
in some region.

Uniqueness for the discrete Schrödinger problem is considered in the real scalar
case on circular planar graphs in [2, 3, 4]. This problem involves a resistor network
with known underlying graph and resistors but where every node is connected to the
ground (zero voltage) via a resistor with unknown resistance. These unknown resis-
tors are a discrete version of the Schrödinger potential in the Schrödinger equation,
and the goal is to find them from measurements made at a few nodes. A discrete
Liouville identity [5] can be used to relate the discrete Schrödinger inverse problem
for certain Schrödinger potentials to the discrete conductivity inverse problem, also
on circular planar graphs. A condition guaranteeing uniqueness almost everywhere
for complex valued potentials without an assumption on the graph is given in [6].

One of the consequences of the present study is a uniqueness almost everywhere
result for matrix valued inverse problems on graphs. To the best of our knowledge
there are no results for uniqueness of the inverse problem with matrix valued edge
or node quantities other than the characterization and synthesis results for net-
works of springs masses and dampers (discussed in more detail in section 6) that
are derived in [7, 18, 17]. These results solve an inverse problem for networks of
springs, masses and dampers that assumes we are free to choose the graph topology.
Indeed the constructions in [7, 18, 17] start from data generated by these networks
(displacement to forces map) and give a network that reproduces this data. We
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emphasize that in the present study, the underlying graph is always assumed to be
known.

2. The matrix valued conductivity and Schrödinger problems.

2.1. Notation. We use the set theory notation Y X for the set of functions from
X to Y . For example u ∈ (Cd)X is a function u : X → Cd that to some x ∈ X
associates u(x) ∈ Cd. For some matrix a ∈ Cd×d we write a � 0 (resp. a � 0) to
say that a is positive definite (resp. positive semidefinite). When the same notation
is used for a ∈ (Cd×d)X , the generalized inequality is understood componentwise,
e.g. for a ∈ (Cd×d)X , a � 0 means a(x) � 0 for all x ∈ X. When we write a � b (or
a � b) we mean a−b � 0 (or a−b � 0). We use the notation a = Re a+Im a, for the
real Re a and imaginary Im a parts of a. The complex conjugate is a = Re a−Im a.

By ordering a finite set X, it can be identified with {1, . . . , |X|}, where |X| is
the cardinality of X. Thus (Cd)X can be identified with vectors in Cd|X|. Similarly,
upon fixing an ordering for another finite set Y , we can identify linear operators
(Cd)X → (Cd)Y with matrices in Cd|X|×d|Y |.

For A ∈ Cm×n, we denote by vec(A) ∈ Cmn the vector representation of the
matrix A, i.e. the vector obtained by stacking the columns of A in their natural

ordering. Similarly for a ∈ (Cd×d)X , we denote by vec(a) ∈ Cd2|X|, the vector
representation of a, is the vector obtained by stacking the vector representations
vec(a(x)) of the matrices a(x), for x ∈ X in the predetermined ordering of X.

In addition to the usual matrix vector product, we also use a block-wise outer
product (�), the Hadamard product (~) and the Kronecker (⊗) product. For
u, v ∈ (Cd)X , the (block-wise) outer product u� v ∈ (Cd×d)X is

(u� v)(x) = u(x)[v(x)]T , x ∈ X. (1)

The Hadamard or componentwise product of two vectors a, b ∈ Cn is denoted by
a~ b and it is given by (a~ b)(i) = a(i)b(i), i = 1, . . . n. The Kronecker product of
two matrices A ∈ Cn×m and B ∈ Cp×q is the np×mq complex matrix A⊗B given
by (see e.g. [20])

A⊗B =

A11B . . . A1mB
...

...
An1B . . . AnmB

 . (2)

When we write uT v for u, v ∈ (Cd)X , we mean

uT v =
∑
x∈X

[u(x)]T v(x) ∈ C, (3)

and similarly for u∗v = uT v, where the bar denotes the complex conjugate (under-
stood componentwise). With this in mind we can define a norm for u ∈ (Cd)X by
‖u‖2 = u∗u.

2.2. Discrete gradient, Laplacian and Schrödinger operators. We work with
graphs G = (V,E), where V is the set of vertices or nodes (assumed finite) and E is
the set of edges E ⊂ {{i, j}|i, j ∈ V, i 6= j}. All graphs we consider are undirected
and with no self-edges. We partition the nodes V = B ∪ I into a (nonempty) set B
of “boundary” nodes and a set I of “interior” nodes. The boundary nodes are where
we can make measurements and the interior nodes are considered not accessible.

By (discrete) conductivity σ we mean a symmetric matrix valued function defined
on the edges, i.e. σ ∈ (Cd×d)E . Here symmetric means [σ(e)]T = σ(e), for all e ∈ E.
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By (discrete) Schrödinger potential q we mean a symmetric matrix valued function
defined on the vertices i.e. q ∈ (Cd×d)V .

The d−dimensional discrete gradient is the linear operator ∇ : (Cd)V → (Cd)E
defined for some u ∈ (Cd)V by

(∇u)({i, j}) = u(i)− u(j), {i, j} ∈ E.
The discrete gradient assumes an edge orientation that is fixed a priori and that is
irrelevant in the remainder of this paper.

The weighted graph Laplacian is the linear map Lσ : (Cd)V → (Cd)V defined by

Lσ = ∇T diag(σ)∇, (4)

where we used the linear operator diag(σ) : (Cd)E → (Cd)E , which is defined for
some v ∈ (Cd)E by (diag(σ)v)(e) = σ(e)v(e), e ∈ E. Its matrix representation is a
block diagonal matrix with the σ(e) on its diagonal. The operator ∇T : (Cd)E →
(Cd)V is the adjoint of the d-dimensional discrete gradient ∇.

The discrete Schrödinger operator associated with a conductivity σ and a Schrödinger
potential q is a block diagonal perturbation (with blocks of size d×d) of the weighted
graph Laplacian, i.e

Lσ + diag(q). (5)

We now give two concrete examples of problems that can be described using
matrix valued conductivities and Schrödinger potentials.

Example 1. We consider a network of springs, masses and dampers based on the
graph appearing in black in fig. 1. Since this is a planar network we take d = 2. We
associate to each edge a spring with spring constant k0i and a damper in parallel with
a damping constant being c0i, i = 1, . . . , 3. These physical quantities are defined
more precisely in section 6. Each node is associated a mass mi and also a damping
constant νi, i = 1, . . . , 3, corresponding to the mass moving in a viscous fluid. If we

subject the nodes to time harmonic external forces of the form fi(t) = exp[ωt]f̂i
(where t is time and ω the angular frequency) the displacement of the nodes is also
time harmonic and satisfies the 8× 8 complex linear system

(−ω2M + ωC +K)û = f̂ , (6)

where û ≡ [ûT0 , û
T
1 , û

T
2 , û

T
3 ]T and similarly for f̂ . The matrices in (6) are given as

follows.

• The matrix M is the mass matrix and is given by M = diag(m), where
m : V → R2×2 associates to each vertex a 2×2 matrix, namely m(i) = miI, for
i = 0, . . . , 3 and where I denotes the identity matrix of appropriate dimension.
• The matrix K is the stiffness matrix, and can be written as K = ∇T diag(σ)∇

where ∇ is the discrete gradient written under the edge ordering of fig. 1

∇ =

I −I
I −I
I −I

 , (7)

and the “conductivity” σ : E → R2×2 given by

σ({0, i}) = k0iP0i, i = 1, . . . , 3 (8)

where P0i is the orthogonal projector onto direction xi−x0 of edge {0, i}, i.e.

P0i =
(xi − x0)(xi − x0)T

(xi − x0)T (xi − x0)
. (9)
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Figure 1. A simple spring, mass and damper network that we use
in example 1. Here V = {0, 1, 2, 3} and E = {{0, 1}, {0, 2}, {0, 3}}.
The node positions at equilibrium are given in black and correspond
to x0 = (0, 0)T , and xi = (cos(2πi/3), sin(2πi/3))T , i = 1, . . . , 3.
A displaced configuration is given in blue, where the new node
positions are xi + ui, with displacements ui for i = 0, . . . , 3.

• The matrix C is the damping matrix and can be written as C = CE + CV ,
where CE accounts for the edge dampers and CV for the viscous damping at
the nodes. These matrices are given by

CE = ∇T diag(µE)∇ and CV = diag(ν) (10)

where µE : E → R2×2 and ν : V → R2×2 are given by

µE({0, i}) = c0iP0i, i = 1, . . . , 3 and d(i) = νiI, i = 0, . . . , 3. (11)

The detailed derivation of these relations for general networks of springs, masses
and dampers appears later in section 6. Nevertheless we can already see that

K + ωCE = ∇T diag(σ + ωµE)∇, (12)

is a discrete Laplacian with complex symmetric matrix valued edge weights σ+ωµE .
We emphasize that these weights are in general not Hermitian. Moreover

− ω2M + ωCV = diag(−ω2m+ ων), (13)

corresponds to complex symmetric matrix valued node weights given by −ω2m+ωd.
Again we emphasize that the Schrödinger potential we obtain is in general not
Hermitian. Thus we can write the matrix in the system (6) as a discrete Schrödinger
operator (5) since

− ω2M + ωC +K = Lσ+ωµE
+ diag(−ω2m+ ων). (14)

Example 2. We show how to use the matrix valued conductivities and Schrödinger
potentials to view the Laplacian of a cylindrical graph C = Pk × G with scalar
weights as a matrix valued Schrödinger operator on the graph Pk, a path with k
nodes with vertices V (Pk) = {1, . . . , k} and edges E(Pk) = {{1, 2}, . . . , {k− 1, k}}.
Here × denotes the Cartesian product between graphs. Such cylindrical graphs arise
e.g. in a finite difference discretization of the conductivity equation on a rectangle
with a Cartesian grid, as illustrated in fig. 2.

Let s ∈ (0,∞)E(C) be a scalar conductivity on the cylindrical graph C. We
view s as a vector and split it into the sub-vectors sj ∈ (0,∞)E(G), j = 1, . . . , k
and sj,j+1 ∈ (0,∞)V (G), j = 1, . . . , k − 1. The sub-vector sj represents the scalar
conductivity of the j-th copy of the graph G. The sub-vector sj,j+1 corresponds to
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Figure 2. The Laplacian for a scalar conductivity on the cylindri-
cal graph C ≡ P5×P3 can be seen as a matrix valued Schrödinger
operator on the graph P5, as explained in example 2. To fix ideas,
s4 ∈ R2 represents the conductivities of C within the 4−th group in
red and defines the matrix valued Schrödinger potential q(4). The
conductivity s2,3 ∈ R3 represents the conductivities of the 3 edges
between the 2nd and 3rd group and is used to define the matrix
valued conductivity σ({2, 3}).

the conductivity linking layer j to layer j+1. Define the matrix valued conductivity
σ ∈ (R|V (G)|×|V (G)|)E(Pk) by σ({j, j+ 1}) = diag sj,j+1, j = 1, . . . , k− 1 and matrix
valued Schrödinger potential q ∈ (R|V (G)|×|V (G)|)V (Pk) by q(j) = Lsj , i.e. the
Laplacian of the graph induced by the vertices in the j−th copy of G, j = 1, . . . , k.
Then with an appropriate ordering of the vertices we have

Lσ + diag(q) = Ls.

Example 3. To further motivate the symmetry assumptions we make on the matrix
valued conductivities and Schrödinger potentials, notice that the Laplacian on the
cylindrical graph C = Pk×G of example 2 can be used to express Kirchhoff’s node
law in a circuit made of resistors whose conductances are given by s ∈ (0,∞)E(C). In
other words, the equation (Lσu)i = 0 imposes that the sum of currents at the i−th
node of C must be equal to zero. If we allow the conductances to be complex, i.e.
s ∈ {z ∈ C | Re z > 0}E(C), then s is now the admittance of the circuit elements, at
a particular operating frequency. Proceeding as in example 2, the complex matrix
valued conductivity σ, defined on the edges of Pk by σ({j, j + 1}) = diag sj,j+1

must be complex symmetric (and not Hermitian). The complex matrix valued
Schrödinger potential q defined on the nodes of Pk by q(j) = Lsj must also complex
symmetric (and not Hermitian).

2.3. The Dirichlet problem. For a conductivity σ ∈ (Cd×d)E and a Schrödinger
potential q ∈ (Cd×d)V , the σ, q Dirichlet problem consists in finding u ∈ (Cd)V
satisfying {

((Lσ + diag(q))u)I = 0, and

uB = g,
(15)
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where g ∈ (Cd)B is the Dirichlet boundary condition and the subscript I (resp. B)
is used to denote restriction of a quantity in (Cd)V to one in (Cd)I . The Dirichlet to
Neumann map, when it exists, is the linear mapping Λσ,q : (Cd)B → (Cd)B defined
by

Λσ,qg = ((Lσ + diag(q))u)B , (16)

where u solves the Dirichlet problem (15) with boundary condition uB = g ∈ (Cd)B .
We call Λσ,q a Dirichlet to Neumann map since this terminology is used when q = 0
in the scalar case (d = 1), see e.g. [10, 13, 14]. In the scalar case with q = 0,
the conditions on the interior nodes (15) correspond to conservation of currents
(Kirchhoff’s node law) in an resistor network. Similarly (16) represents the net
currents flowing out of the boundary nodes B, when the voltage is set to g on
the boundary. These currents can be interpreted as the Neumann boundary data
corresponding to the Dirichlet boundary data g, hence the name for Λσ,0.

The Dirichlet to Neumann map is well defined e.g. when the solution to the
Dirichlet problem is uniquely determined by the boundary condition.1 Conditions
guaranteeing Dirichlet problem uniqueness are given in the next theorem, together
with a formula for the Dirichlet to Neumann map.

Theorem 2.1. The σ, q Dirichlet problem on a connected graph with connected
interior admits a unique solution when σ ∈ (Cd×d)E and q ∈ (Cd×d)V are symmetric
and one of the two following conditions is satisfied.

(i) Reσ � 0 and Re qI � −λmin ((LReσ)II).
(ii) Re qI � 0 and (LReσ)II � −λmin(diag(Re qI)).

When any of the two conditions above hold, the Dirichlet to Neumann map can be
written as

Λσ,q = LBB + diag(qB)− LBI(LII + diag(qI))
−1LIB , (17)

where we dropped the subscript σ in the blocks (Lσ)BB, . . . for clarity. This is the
Schur complement of block (Lσ + diag(q))II in the matrix Lσ + diag(q).

Proof. The proof appears in section 3.2.

In the previous theorem, λmin(A) denotes the smallest eigenvalue of a real sym-
metric matrix A. Recall that we identify operators A ∈ (Cd)V → (Cd)V to
Cd|V |×d|V | matrices. We use AXY , X,Y ∈ {I,B}, to denote the submatrix of
A with rows (resp. columns) associated with the vertices in X (resp. Y ).

Unfortunately theorem 2.1 and the expression (17) of the Dirichlet to Neumann
map do not apply to one of the main applications of our results: static spring
networks. As we see in more detail in section 6.1, the linearization of Hooke’s law
we use allows for non-physical floppy modes, i.e. non-zero displacements that can
be made with zero forces. A generalization of the static spring network problem is
to consider symmetric conductivities with Reσ � 0. In this situation, floppy modes
may also arise if there are edges e for which Reσ(e) has a non-trivial nullspace.
They can be defined as follows.

Definition 2.2. A non-zero z ∈ (Cd)V , is said to be a floppy mode for a symmetric
conductivity σ ∈ (Cd×d)E if z solves the equation{

(Lσz)I = 0,

zB = 0.
(18)

1In section 3.3 we consider Dirichlet problems that do not admit a unique solution and yet the
Dirichlet to Neumann map is well defined.
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If z is a floppy mode, then the solution to the σ, 0 Dirichlet problem cannot be
unique. Indeed if u is a solution to the σ, 0 Dirichlet problem, then so is u + αz
for any scalar α. The following theorem shows that even in the degenerate case
Reσ � 0, q = 0, there are situations where the Dirichlet problem admits a solution
that is unique up to floppy modes.

Theorem 2.3. The σ, 0 Dirichlet problem on a connected graph with connected
interior and σ(e) 6= 0 for all e ∈ E, admits a unique solution up to floppy modes
when Reσ � 0, and for each e ∈ E the inclusion N (Reσ(e)) ⊂ N (Imσ(e)) holds.
In this case, the Dirichlet to Neumann map can be written as

Λσ,0 = LBB − LBIQ(QTLIIQ)−1QTLIB , (19)

where for clarity we dropped the subscript σ in the blocks (Lσ)BB etc. The matrix Q
is real with orthonormal columns (QTQ = I) and satisfies R(Q) = R(LII), i.e. its
columns form an orthonormal basis of R(LII) and Q is of size d|I| ×dim(R(LII)).
Moreover Q depends only on the ranges of Reσ(e) for e ∈ E.

Here we denote the nullspace or kernel of a matrix A ∈ Cn×m by N (A) and the
range or column space of A is denoted by R(A).

Proof. The proof appears in section 3.3.1.

We note that theorem 2.3 applies in particular to the case of real positive semi-
definite conductivities.

Remark 1 (Discrete Dirichlet principle). For real σ � 0 and real q � 0, it is easy to
show that the Dirichlet problem (15) is equivalent to finding u ∈ (Rd)V minimizing
the energy

E(u) = uT (Lσ + diag(q))u =
∑
{i,j}∈E

(u(i)− u(j))Tσ({i, j})(u(i)− u(j))

+
∑
k∈V

u(k)T q(k)u(k),
(20)

subject to uB = g. The function E(u) is the energy needed to maintain a potential
u in the network and is the sum of energies associated to each edge and node. The
edge terms are akin to the current-voltage product to calculate the power dissipated
by a two terminal electrical component. The node terms represent the energy leaked
by an electrical component linking the node to the ground (zero potential). The
conditions σ � 0, q � 0 guarantee E(u) is a convex quadratic function in u. The
first equality in the Dirichlet problem (15) is identical to ∇uI

E(u) = 0.

2.4. Relating boundary and interior quantities. The following lemma is a
straightforward generalization to complex matrix valued conductivities and Schrödinger
potentials of the interior identities [6, Lemmas 5.1 and 6.1], which are in turn in-
spired by the continuum interior identities used by Sylvester and Uhlmann [25] to
prove uniqueness for the continuum conductivity and Schrödinger problems.

Lemma 2.4 (Boundary/Interior Identity). Let σ1, σ2 ∈ (Cd×d)E be conductivities
and q1, q2 ∈ (Cd×d)V be Schrödinger potentials. Let u1, u2 ∈ (Cd)V be solutions to
the σ1, q1 and σ2, q2 Dirichlet problems:{

((Lσ1 + diag(q1))u1)I = 0,

(u1)B = g1,
and

{
((Lσ2 + diag(q2))u2)I = 0,

(u2)B = g2,
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for some boundary conditions g1, g2 ∈ (Cd)B. Then if the Dirichlet to Neumann
maps Λσi,qi , i = 1, 2, are well defined we have the identities

gT2 (Λσ1,q1 − Λσ2,q2)g1 = uT2 (Lσ1
− Lσ2

)u1 + uT2 diag(q1 − q2)u1

=
∑
e∈E

[(∇u2)(e)]T [(σ1 − σ2)(e)][(∇u1)(e)]

+
∑
i∈V

[u2(i)]T [(q1 − q2)(i)][u1(i)]

= vec((∇u2)� (∇u1))T vec(σ1 − σ2)

+ vec(u2 � u1)T vec(q1 − q2),

where the outer product � is as in (1).

Proof. Since u1 solves the σ1, q1 Dirichlet problem we have

uT2 Lσ1
u1 + uT2 diag(q1)u1 = (u2)TB((Lσ1

+ diag(q1))u1)B + (u2)TI ((Lσ1
+ diag(q1))u1)I

= (u2)TB((Lσ1
+ diag(q1))u1)B

= gT2 Λσ1,q1g1.

(21)
Similarly, we have that

uT2 Lσ2u1 + uT2 diag(q2)u1 = gT2 Λσ2,q2g1. (22)

Subtracting (22) from (21) gives the first equality. To obtain the second equality,
use the definition of the weighted graph Laplacian to see that

uT2 Lσi
u1 =

∑
e∈E

[(∇u2)(e)]Tσi(e)(∇u1)(e), i = 1, 2.

By applying for each e ∈ E the identity xTAy = vec(xyT )T vec(A), which holds for
any x, y ∈ Cd and A ∈ Cd×d, we get

uT2 (Lσ1
− Lσ2

)u1 =
∑
e∈E

vec([(∇u2)(e)][(∇u1)(e)]T )T vec((σ1 − σ2)(e)). (23)

By applying the same identity for all nodes i ∈ V we get

uT2 diag(q1 − q2)u1 =
∑
i∈V

vec([u2(i)][u1(i)]T )T vec((q1 − q2)(i)). (24)

The third equality follows from identities (23) and (24).

3. Dirichlet problem uniqueness proofs. We first focus in section 3.1 on prov-
ing theorem 2.1 for the particular case where the conductivity is real positive definite
and the Schrödinger potential is zero (lemma 3.3). We then complete the proof of
theorem 2.1 by considering either Reσ � 0 or Re qI � 0 in section 3.2. In both cases
the objective is to show that the conditions given in theorem 2.1 are sufficient to
guarantee that the matrix (Lσ)II + diag(qI) is invertible. The case where Reσ � 0,
q = 0 is dealt with in section 3.3 which includes the proof of theorem 2.3, and is
more delicate because the matrix (Lσ)II may no longer be invertible. However it is
still possible to show that the σ, 0 Dirichlet solution is unique up to floppy modes
(definition 2.2).
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3.1. Dirichlet problem uniqueness for positive definite conductivities and
zero Schrödinger potentials. The purpose of this section is to establish unique-
ness for the σ, 0 Dirichlet problem for real σ with σ � 0 (lemma 3.3). We need two
intermediary results on the discrete graph Laplacian Lσ with real matrix valued
symmetric conductivity σ � 0. The first one is a discrete version of the first Korn
inequality (lemma 3.1). The second is to show that a vector potential u ∈ N (Lσ)
must be constant on all connected components of the graph G (lemma 3.2). Us-
ing these properties, we can show that when σ is a real conductivity with σ � 0,
we can deduce that (Lσ)II � 0 which is sufficient to ensure uniqueness for the
corresponding σ, 0 Dirichlet problem.

The following is a discrete version of the first Korn inequality which bounds the
elastic energy stored in a body from below by the gradient of the strain, see e.g.
[22, §1.12].

Lemma 3.1 (Discrete Korn inequality). Let σ ∈ (Rd×d)E be a conductivity with
σ � 0. Then there is a constant C > 0 such that for any u ∈ (Rd)V ,

‖∇u‖2 ≤ CuTLσu. (25)

Proof. By using Rayleigh quotients,

vTσ(e)v ≥ λmin(σ(e))‖v‖2 for all v ∈ Rd and e ∈ E.
Define λ∗ = mine∈E λmin(σ(e)) = λmin(diag(σ)). Clearly σ � 0 implies λ∗ > 0.
The inequality we seek follows with C = λ−1

∗ from

uTLσu =
∑
e∈E

[(∇u)(e)]T [σ(e)][(∇u)(e)] ≥ λ∗
∑
e∈E
‖(∇u)(e)‖2 = λ∗‖∇u‖2.

The next lemma extends to matrix valued conductivities a well known charac-
terization of the nullspace of (scalar) weighted graph Laplacians (see e.g. [8]).

Lemma 3.2 (Nullspace of graph Laplacian). For real σ � 0, u ∈ N (Lσ) implies
that ∇u = 0. In particular if the graph is connected then u is constant, meaning
there is a constant c ∈ Rd such that u(i) = c for all i ∈ V .

Proof. If u ∈ N (Lσ) then uTLσu = 0. Using the discrete Korn inequality (lemma 3.1),
we get ∇u = 0. This means that for any edge {i, j} ∈ E, we must have u(i) = u(j).
Therefore u must be constant on connected components of the graph.

We can now prove the first uniqueness result for the Dirichlet problem.

Lemma 3.3 (Uniqueness for real positive definite conductivities). Assume both
the graph G and its subgraph induced by the interior nodes are connected. For real
conductivities σ with σ � 0, the matrix (Lσ)II is invertible and the σ, 0 Dirichlet
problem admits a unique solution.

Proof. Our goal here is to show that (Lσ)II � 0 which implies invertibility and
therefore uniqueness for the σ, 0 Dirichlet problem. By definition of the weighted
graph Laplacian (4), the matrix Lσ must be real and symmetric. Moreover using
the discrete Korn inequality (lemma 3.1), there is a constant C > 0 such that for
all u ∈ (Rd)V :

uTLσu ≥ C‖∇u‖2.
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This implies Lσ � 0 and hence (Lσ)II � 0. Now we can write

(Lσ)II = LσI
+ diag(f),

where LσI
is the weighted graph Laplacian on the subgraph of G induced by the

interior nodes I and f ∈ (Rd×d)I is given for i ∈ I by

f(i) =
∑

{i,j}∈E,i∈I,j∈B

σ({i, j}). (26)

Since the sum of positive definite matrices is positive definite, σ � 0 implies f(i) � 0
for all nodes i ∈ I that are connected via an edge to some boundary node and
f(i) = 0 otherwise. This guarantees that diag(f) � 0.

Now take v ∈ (Rd)I with vT (Lσ)IIv = 0. Since both LσI
and diag(f) are positive

semidefinite, we must have that

(a) vTLσI
v = 0 and

(b) vT diag(f)v = 0.

By using (a) and lemma 3.2 on the subgraph induced by the interior nodes (which
is connected by assumption), we get that v is constant, i.e. v(i) = v(j) for any
i, j ∈ V . By using (b), we get that v(i)Tσ({i, j})v(i) = 0 for all {i, j} ∈ E where
i ∈ I and j ∈ B. Hence there must be at least one i ∈ I such that v(i) = 0 (since G
is connected). Since the subgraph of G induced by the interior nodes is connected,
we conclude that v = 0. This gives the desired result (Lσ)II � 0.

3.2. Proof of theorem 2.1. We start with the following lemma that allows us
to extend the uniqueness result from lemma 3.3 to complex conductivities and
Schrödinger potentials.

Lemma 3.4. Let A,B ∈ Rn×n be symmetric with A � 0. Then the matrix M =
A+ B is invertible.

Proof. The field of values (or numerical range, see e.g. [20]) of M ∈ Cn×n is the
complex plane region given by

F (M) = {v∗Mv | v ∈ Cn, ‖v‖ = 1} .
Since A � 0 we have v∗Av > 0 for v 6= 0. Since B is real symmetric, v∗Bv must be
real. Therefore Re (v∗Mv) = v∗Av > 0 for v 6= 0 and the field of values F (M) lies
on the right hand complex plane, excluding the imaginary axis. Since the spectrum
of M is contained in F (M) this means that 0 is not an eigenvalue of M and that
M is invertible.

We are now ready to prove theorem 2.1.

Proof. First assume condition (i) of theorem 2.1 holds. We want to show that
(Lσ)II + diag(qI) is invertible when Reσ � 0 and Re qI � −ζ, for some ζ > 0 to
be determined and depending on Reσ. By lemma 3.3 and because Reσ � 0, we
have that (LReσ)II � 0. Since we assume Re qI � −λmin ((LReσ)II), we must have
(LReσ)II + diag(Re qI) � 0. We can now use lemma 3.4 with A ≡ (LReσ)II +
diag(Re qI) and B ≡ (LImσ)II + diag(Im qI) to conclude that (Lσ)II + diag(qI) is
invertible. Uniqueness follows from the definition of the σ, q Dirichlet problem.

Then assume condition (ii) of theorem 2.1 holds. By the hypothesis, we have
that (LReσ)II +diag(Re qI) � 0. Hence we can use lemma 3.4 with A ≡ (LReσ)II +
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diag(Re qI) and B ≡ (LImσ)II + diag(Im qI) to conclude that (Lσ)II + diag(qI) is
invertible and the desired uniqueness of the σ, q Dirichlet problem follows.

It now remains to prove (17). The proof is very similar to the scalar case (see
e.g. [13]), but we include it here for completeness. The first equation of (15) can
be rewritten as

(Lσ)IBuB + [(Lσ)II + diag(qI)]uI = 0. (27)

Since under the hypothesis of theorem 2.1 the matrix (Lσ)II +diag(qI) is invertible,
we have

uI = −[(Lσ)II + diag(qI)]
−1(Lσ)IBuB . (28)

The expression (17) of the Dirichlet to Neumann map can be identified from

Λσ,quB = (Lσu)B

= [(Lσ)BB + diag(qB)]uB + (Lσ)BIuI

= [(Lσ)BB + diag(qB)− (Lσ)BI [(Lσ)II + diag(qI)]
−1(Lσ)IB ]uB .

3.3. Conductivities with positive semidefinite real part and zero Schrödinger
potential. The purpose of this section is to prove theorem 2.3, which deals with
the situation Reσ � 0 and q = 0. We start with several intermediary results. The
first is a characterization of floppy modes (lemma 3.5) that shows that floppy modes
for such σ are entirely determined by the subspace N (diag(σ)). Them we establish
some relations between the ranges and nullspaces of certain blocks of Lσ and of
LReσ. One key observation is that floppy modes do not affect the boundary data
(lemma 3.7).

First notice that for any u ∈ (Cd)V and real σ � 0, we have

u∗Lσu = u∗∇T diag(σ)∇u = ‖ diag(σ1/2)∇u‖2, (29)

where σ1/2(e) = (σ(e))1/2, and the square root of a positive semidefinite matrix is
defined by taking the square root of the eigenvalues in its eigendecomposition, see
e.g. [20]. We use this identity to give a characterization of the floppy modes for
complex conductivities with Reσ � 0 and N (Reσ(e)) ⊂ N (Imσ(e)), e ∈ E. From
this characterization, we can see that floppy modes depend only on the subspaces
R(Reσ(e)) (or equivalently N (Reσ(e))), for e ∈ E.

Lemma 3.5. For conductivities with Reσ � 0 and N (Reσ(e)) ⊂ N (Imσ(e)),
e ∈ E, the following are equivalent.

(i) z is a floppy mode (i.e. it satisfies (18))
(ii) z is a non-zero solution to{

diag(Reσ)∇z = 0,

zB = 0.
(30)

(iii) z is such that zB = 0 and zI ∈ N ((LReσ)II).

Proof. (ii) =⇒ (i). Assume that z 6= 0 satisfies (30). Because of the inclusion

N (Reσ(e)) ⊂ N (Imσ(e)), e ∈ E, we also have diag(Imσ)∇z = 0 and diag(σ)∇z =
0. Hence Lσz = ∇T diag(σ)∇z = 0,

(i) =⇒ (ii). Now we assume that z is a floppy mode, i.e. (18) holds. Clearly
this means that 0 = z∗Lσz = z∗LReσz+ z∗LImσz. Since both LReσ and LImσ are
real symmetric, the scalars z∗LReσz and z∗LImσz must be real. We can conclude
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that z∗LReσz = 0. Now we use (29) to realize that ‖ diag((Reσ)1/2)z‖2 = 0. Since
Reσ and (Reσ)1/2 have identical nullspaces, we see that (30) holds as well.

(i) =⇒ (iii). We assume z 6= 0 satisfies (18). Since zB = 0 we have z∗Lσz =

z∗I (Lσ)IIzI = 0. But then

0 = z∗I (LReσ)IIzI + z∗I (LImσ)IIzI

implies that z∗I (LReσ)IIzI = 0. Because of (29) we have LReσ � 0 and also
(LReσ)II � 0. Therefore zI ∈ N ((LReσ)II).

(iii) =⇒ (ii). Now let z be such that zB = 0 and zI ∈ N ((LReσ)II). Again since

zB = 0, we have 0 = z∗I (LReσ)IIzI = z∗LReσz. By (29) we get

‖ diag((Reσ)1/2)∇z‖2 = 0

which readily implies (30).

Next we continue with a technical result, which is a slight generalization of the
elastic network result [18, Lemma 1].

Lemma 3.6. Let σ be a conductivity with Reσ � 0 and satisfying the inclusion
N (Reσ(e)) ⊂ N (Imσ(e)) for e ∈ E. Assume the subgraph induced by the interior
nodes is connected. Then we have the following inclusions

(i) N ((Lσ)II) = N ((LReσ)II)
(ii) N ((Lσ)II) ⊂ N ((Lσ)BI)

(iii) R((Lσ)II) ⊃ R((Lσ)IB)

Proof. Proof of (i). Let zI ∈ N (Lσ)II . Because zI ∈ N (Lσ)II we also have

0 = z∗I (Lσ)IIzI = z∗I (LReσ)IIzI + z∗I (LImσ)IIzI .

But the real matrices LReσ and LImσ are symmetric so we can conclude that
z∗I (LReσ)IIzI = 0. Again by using (29) we see that LReσ � 0 and thus zI ∈
N ((LReσ)II). Now assume zI ∈ N (LReσ)II . By lemma 3.5, the extension z of zI
by zeros on B is a floppy mode, i.e. it satisfies (18). In particular, because zB = 0,
we have 0 = (Lσz)I = (Lσ)IIzI = 0. Thus we get zI ∈ N ((Lσ)II) and (i) holds.

Proof of (ii). We now proceed as in the proof of lemma 3.3, and write

(LReσ)II = LReσI
+ diag(Re f), (31)

where LReσI
is the weighted graph Laplacian on the subgraph GI induced by the

interior nodes and f ∈ (Cd×d)I is given as in (26). Take a z ∈ N (Lσ)II and
multiply (31) on the left by z∗ and on the right by z to obtain

0 = z∗(LReσ)IIz = z∗LReσI
z + z∗ diag(Re f)z. (32)

By (29) applied to the subgraph GI , we have LReσI
� 0. By the assumption

Reσ � 0, we also have diag(Re f) � 0. Thus the two last terms in (32) are non-
negative and must be zero by the first equality in (32). We have established that
z∗ diag(Re f)z = 0. But Re f(i) is a sum of positive semidefinite matrices (since
Reσ � 0). Thus we must have that

z(i)∗Reσ({i, j})z(i) = 0 for all {i, j} ∈ E, with i ∈ I, j ∈ B.
Since conductivities are assumed to have symmetric positive semidefinite real parts,
this means that for all {i, j} ∈ E, with i ∈ I and j ∈ B we have Reσ({i, j})z(i) = 0.
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By the inclusion in the hypothesis of the lemma we get Imσ({i, j})z(i) = 0 and
also σ({i, j})z(i) = 0. Now from the definition of the Laplacian we have

((Lσ)BIz)(j) =
∑

{i,j}∈E,i∈I

σ({i, j})z(i) = 0, for j ∈ B.

This shows the inclusion (ii).
Proof of (iii). Apply statement (ii) to the conductivity σ = Reσ− Imσ and the

fundamental theorem of linear algebra to get R((Lσ)∗II) ⊃ R((Lσ)∗IB). Since Reσ
and Imσ are symmetric we get the desired result R((Lσ)II) ⊃ R((Lσ)IB).

The following lemma shows that even if there are floppy modes, these do not
influence Neumann (or net current) measurements at the boundary. In other words,
floppy modes cannot be observed from boundary measurements.

Lemma 3.7. Assume the hypothesis of lemma 3.6 hold. Then floppy modes corre-
spond to zero boundary measurements.

Proof. We need to show that if z ∈ (Cd)V is a floppy mode, then we have zero
Neumann boundary data, i.e. (Lσz)B = 0. Since z is a floppy mode, we see
from lemma 3.5 that zB = 0 and zI ∈ N (LReσ)II . By inclusions (i) and (ii) of
lemma 3.6 we deduce that zI ∈ N (Lσ)II ⊂ N (Lσ)BI . We conclude by noticing
that (Lσz)B = (Lσ)BBzB + (Lσ)BIzI = 0.

3.3.1. Proof of theorem 2.3.

Proof. If u is a solution to the σ, 0 Dirichlet problem with boundary condition
g ∈ (Cd)B , then uB = g and

(Lσ)IBg + (Lσ)IIuI = 0. (33)

The inclusion (iii) of lemma 3.6 guarantees that equation (33) admits a solution
for all g ∈ (Cd)B . The general solution to (33) may be written as

uI = −((Lσ)II)
†(Lσ)IBg + z, (34)

where z ∈ N ((Lσ)II) and the symbol † is the Moore-Penrose pseudoinverse. The
Neumann boundary data corresponding to such solution is:

(Lσu)B = (Lσ)BBg − (Lσ)BI((Lσ)II)
†(Lσ)IBg + (Lσ)BIz.

However the inclusion (ii) in lemma 3.6 (or lemma 3.7) guarantees that (Lσ)BIz = 0.
Hence the Dirichlet to Neumann map is uniquely defined and can be written as

Λσ,0 = (Lσ)BB − (Lσ)BI((Lσ)II)
†(Lσ)IB . (35)

Now let Q be such that QTQ = I and R(Q) = R((Lσ)II). We can always find
a real Q because of lemma 3.6 (i), and it can be found from (LReσ)II e.g. via a
QR factorization or an eigendecomposition. By the fundamental theorem of linear
algebra, the space R(Q) is the orthogonal to the interior components of floppy
modes, and thus depends only on the subspaces R(Reσ(e)), e ∈ E (see lemma 3.5,
(ii)). We can use Q to write the pseudoinverse of (Lσ)II as follows

(Lσ)†II = Q(QT (Lσ)IIQ)−1QT ,

and we get the alternate expression (19) for the Dirichlet to Neumann map.
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4. Common structure. The discrete inverse problems we consider share a com-
mon structure that we describe in section 4.1 and that is motivated in section 4.2
by the classic uniqueness proof for the continuum Schrödinger inverse problem [25].
Under the assumptions we make here, the linearization of the problem is readily
available (section 4.3) and analyticity of the forward map is ensured. This has
practical implications that are described in section 4.4.

4.1. An abstract inverse problem. We denote by p ∈ Cm the unknown pa-
rameter. As we see later in sections 5 and 6, the parameter p may represent a
matrix valued quantity (or its eigenvalues) defined on the edges or nodes of a graph.
The forward or parameter to data map associates to the parameter p the matrix
Λp ∈ Cn×n (the data), provided the parameter p belongs to an admissible set
R ⊂ Cm of parameters. The inverse problem is to find p from Λp. Furthermore,
we assume that the discrete inverse problems we consider satisfy the following as-
sumptions.

• Assumption 1. The parameter p belongs to an open convex set R ⊂ Cm
of admissible parameters. The forward map that to a parameter p ∈ R
associates the data Λp is well defined for p ∈ R.

• Assumption 2. For all f, g ∈ Cn and p1, p2 ∈ R the following bound-
ary/interior identity holds:

fT (Λp1 − Λp2)g = b(Sp2g, Sp1f)T (p1 − p2), (36)

where b : C` × C` → Cm is a bilinear mapping and Sp ∈ C`×n is a matrix
defined for p ∈ R that associates to a boundary condition f ∈ Cn, an internal
“state” Spf ∈ C`. This identity is motivated in section 4.2 by looking at the
continuum Schrödinger problem.

• Assumption 3: Analyticity. The entries of Sp are analytic functions of p
for p ∈ R.

Here by “analytic” we mean in the sense of analyticity of several complex variables,
see e.g. [19]. For completeness, we recall in appendix A all the results we use from
the theory of functions of several complex variables.

4.2. Motivation of boundary/interior identity. The identity (36) in Assump-
tion 2 is a discrete version of a similar identity that plays a key role in the Sylvester
and Uhlmann [25] proof of uniqueness for the continuum Schrödinger inverse prob-
lem. To motivate (36) we make a short excursion to the continuum (fully contained
within this section) and consider an open connected and bounded domain Ω ⊂ Rd
with smooth surface ∂Ω. We say u solves the Schrödinger problem if

−∆u+ qu = 0 in Ω, and

u = f on ∂Ω,
(37)

where ∆ = ∂2
1 + . . . ∂2

d is the Laplacian and q is a Schrödinger potential and f the
Dirichlet boundary data. The Dirichlet to Neumann map is the linear mapping Λq
that maps Dirichlet boundary data u|∂Ω to Neumann boundary data n · ∇u|∂Ω,
where n is the outward pointing unit normal to ∂Ω and ∇u = [∂1u, . . . , ∂du]T is the
gradient of u. Now if u1 (resp. u2) solves the Schrödinger problem with u1|∂Ω = f
(resp. u2|∂Ω = g) and Schrödinger potential q1 (resp. q2), then by using Green’s
identities one gets the following identity that can be found in [25]:∫

∂Ω

f([Λq1 − Λq2 ]g) dS =

∫
Ω

(q1 − q2)u1u2 dx. (38)
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This is called a boundary/interior identity because it relates the boundary data
(difference of Dirichlet to Neumann maps for q1 and q2) to a linear functional of
q1−q2 in the interior of Ω. The linear functional itself is the product of the solutions
u1 and u2.

Analogously in the boundary/interior identity (36) we require that the difference
in the parameter to data map for two parameters p1 and p2 is given by a linear
functional of p1−p2, where the linear functional itself is a “product” of the “internal
states” corresponding to p1 and p2. What we mean by “product” and “internal
state” is left abstract for now, but many concrete examples are given in section 5.

4.3. The product of solutions matrix and the Jacobian. For a discrete in-
verse problem satisfying assumptions 1–3, we define the following product of solu-

tions matrix, which is the matrix valued function W : R×R→ Cm×n2

with columns
given by 2

[W (p1, p2)](:, i+ (j − 1)n) = b(Sp1(:, i), Sp2(:, j)), i, j = 1, . . . , n. (39)

The next lemma shows that the parameter to data map Λp must be Fréchet differ-
entiable (specialized versions of this lemma appear in [6, lemma 5.4 and 6.3]).

Lemma 4.1 (Linearization of discrete inverse problem). Let p ∈ R. For sufficiently
small δp ∈ Cm, we have

fTΛp+δpg = fTΛpg + b(Spf, Spg)T δp+ o(δp). (40)

Proof. Use the boundary/interior identity (36) with p1 = p + εδp and p2 = p, for
some scalar ε. To conclude divide both sides by ε and take the limit as ε → 0.
Notice that assumption 3 guarantees that Sp is analytic in p, therefore we do have
continuity of Sp in p and Sp+εδp → Sp as ε→ 0.

A consequence of lemma 4.1 is that W (p, p)T is a n2 ×m matrix representation
of the Jacobian matrix for the parameter to data map at parameter value p. From
(39), the matrix representation of the Jacobian is associated to identifying the

matrix Λp ∈ Cn×n with the vector vec(Λp) ∈ Cn2

. Clearly the linearized inverse
problem about p is injective when N (W (p, p)T ) = {0}, i.e. when the product of
solutions matrix W (p, p) has full row rank, i.e. R(W (p, p)) = Cm.

Another consequence of lemma 4.1 is that the Jacobian of Λp with respect to p
must be analytic for p ∈ R (by assumption 3). Clearly the forward map Λp must
also be analytic for p ∈ R.

4.4. Analyticity and uniqueness almost everywhere. We look at the impact
of analyticity on the uniqueness question:

If p1, p2 ∈ Cm are parameters with identical data Λp1 = Λp2 , can we
conclude that p1 = p2?

For inverse problems satisfying assumptions 1–3, we can only guarantee uniqueness
in a weak sense that we call uniqueness almost everywhere (as in [6]). By this we
mean that (a) the linearized problem is injective for almost all parameters p ∈ R
and (b) for any p, the sets Mp ≡ {q ∈ R | Λq = Λp} must have zero measure. The
set Mp is the equivalence class of all parameters that give the same data as the
parameter p. If the uniqueness were guaranteed for the inverse problem, we would
have Mp = {p}. In our case we can only guarantee the much weaker statement that

2We use Matlab style notation where the j−th column of a matrix A is A(:, j) and its i−th
row is A(i, :).
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Mp has zero measure. Both (a) and (b) follow from analyticity of the forward map
and assuming that the Jacobian is injective at a single parameter ρ ∈ R.

First assume analyticity of Λp and that we can find ρ1, ρ2 ∈ R2 such that Λρ1 6=
Λρ2 . Define the function g : R × R → C by g(x, y) = [Λx − Λy]ij for some i, j ∈
1, . . . , n. Clearly g is analytic on R2 and we can find i, j such that g(ρ1, ρ2) 6= 0.
By analytic continuation, the set {(p1, p2) ∈ R ×R | g(p1, p2) = 0} must be a zero
measure set. In particular if we fix p ∈ R we have shown that Mp ×Mp has zero
measure and so Mp must have zero measure as well. This is a much simpler way of
reaching a result similar to that in [6] and was suggested by Druskin [15].

Analyticity can also be used to deduce that if the Jacobian of the forward map
is injective at a parameter ρ ∈ R, then it must be injective at almost any other
parameter p ∈ R, i.e. (a). Indeed, lemma 4.1 shows that the Jacobian at p can
be represented by the n2 × m matrix W (p, p)T defined in (39). If W (ρ, ρ)T is
injective for a ρ ∈ R, then there is a m × m submatrix [W (ρ, ρ)]:,α of W (ρ, ρ)
that is invertible, where α = (α1, . . . , αm) ∈ {1, . . . , n2}m is a multi-index used to
represent the particular choice of columns. Thus the function f : R→ C defined by

f(p) = det[W (p, p)]:,α (41)

is analytic for p ∈ R and is such that f(ρ) 6= 0. By analytic continuation, the zero
set of f must be of measure zero. Thus the set of parameters for which the Jacobian
is not injective must be a zero measure set.

Finally we note that if we can find a parameter ρ for which the Jacobian W (ρ, ρ)T

is injective, then we can use the constant rank theorem (see e.g. [24]) to show that
there is a p ∈ R in a neighborhood of ρ such that Λρ 6= Λp.

4.5. Applications of uniqueness almost everywhere. Uniqueness a.e. has
several practical applications that are illustrated for the scalar discrete conductivity
problem in [6]. We give an outline of these applications for completeness. The
first application is a simple test to determine whether uniqueness a.e. holds for a
particular discrete inverse problem and that may also indicate sensitivity to noise
(section 4.5.1). Once we know uniqueness a.e. holds for a particular discrete inverse
problem, we can guarantee that the situations in which Newton’s method with line
search fails can be easily avoided (section 4.5.2). Naturally a statement about zero
measure sets can be translated to a probabilistic setting (section 4.5.3).

4.5.1. A test for uniqueness almost everywhere. Recall from lemma 4.1 that the
Jacobian of the discrete inverse problem at a parameter p can be easily computed
as a products of solutions matrix (39) with p ≡ p1 = p2. As discussed in section 4.4,
if we can find a parameter p ∈ R for which the Jacobian is injective, then uniqueness
a.e. holds for the problem. A numerical test for uniqueness a.e. can be summarized
as follows.

1. Pick a parameter p ∈ R.
2. Calculate the Jacobian W (p, p)T using (39).
3. Find the largest and smallest singular values σmax, σmin of W (p, p).
4. If σmin > εσmax, where ε is a tolerance set a priori, then uniqueness a.e. holds.

We point out that if σmin ≤ εσmax it is not possible to distinguish between the
two following scenarios: (a) uniqueness a.e. holds but W (p, p) is not injective to
tolerance ε; or (b) uniqueness a.e. does not hold for the problem. Thus the test is
inconclusive. However we know that scenario (a) is very unlikely because we would
have had to pick p on the zero measure subset of R that contains all parameters for
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which the Jacobian is not injective. Thus the most likely outcome is (b). Finally we
remark that other methods may be used instead of the Singular Value Decomposi-
tion (SVD) to find the rank of the Jacobian (e.g. the QR factorization). We prefer
the SVD because the ratio σmax/σmin is the conditioning of the linear least squares
problem associated with the linearization of the discrete inverse problem, and thus
measures the sensitivity to noise of the linearization of the inverse problem about
the parameter p.

4.5.2. Newton’s method. The discrete inverse problem of finding the parameter p
from the data Λp is a non-linear system of equations that can be solved numerically
using Newton’s method (see e.g. [23]). Let us denote by DΛp = W (p, p)T the
Jacobian of the Dirichlet to Neumann map about the parameter p ∈ R. For our
particular problem we get the following.

Newton’s method
p(0) = given
for k = 0, 1, 2, . . .

Find step δp(k) s.t. DΛp(k)δp(k) = vec(Λp(k) − Λp)
Choose step length tk > 0
Update p(k+1) = p(k) + tkδp

(k)

The first operation in the Newton iteration is to solve a linear problem for the step
δp(k). This operation can fail either because vec(Λp(k)−Λp) /∈ R(DΛp(k)) or because
N (DΛp(k)) 6= {0}. A remedy to either of these situations is to solve the linear least
squares system

min
δp
‖DΛp(k)δp− vec(Λp(k) − Λp)‖22, (42)

and pick δp(k) as the minimal norm solution to (42). If uniqueness a.e. holds for
the problem at hand then clearly DΛp(k) is injective except on a zero measure set.
Therefore we can expect the step in Newton’s method to be defined uniquely. Now
assume we found a step. If we assume a particular form of analyticity for the entries
of Sp (in Assumption 3), then we can guarantee that there are only finitely many
choices of the step length tk for which DΛp(k+1) is not injective. In the unlikely
event one encounters one of such points, the step length tk can be reduced by a
small amount to make DΛp(k+1) injective. This is a consequence of the following
lemma, which is a generalization of the result for the scalar discrete conductivity
inverse problem in [6, Corollary 5.7].

Lemma 4.2. Consider a discrete inverse problem satisfying assumptions 1–3 and
further assume that all entries of Sp are rational functions of p (of the form P (p)/Q(p),
where P and Q are polynomials). Let p ∈ R and δp ∈ Cm and assume the Jaco-
bian of Λp at p is injective. Then there are at most finitely many t ∈ R for which
p+ tδp ∈ R and either

(i) The Jacobian of Λp at p+ tδp is not injective.
(ii) Λp+tδp = Λp.

Proof. Since the Jacobian of Λp is injective at p ∈ R, there is a multi-index α ∈
{1, . . . , n2}m such that the function f defined in (41) satisfies f(p) 6= 0. Since the
admissible set is open and convex, there is an interval [a, b] containing 0 such that
t ∈ [a, b] =⇒ p+ tδp ∈ R. Since the entries of Sp are rational functions of p and f
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is defined through a determinant we can see that the function g(t) = f(p + tδp) is
a rational function of t, i.e. it can be written in the form g(t) = F (t)/G(t) where
F (t) and G(t) are polynomials. Since F (t) can only have finitely many zeroes, we
conclude that there are only finitely many t for which g(t) = 0, or in other words,
for which the Jacobian at p+ tδp is not injective. This proves (i). To prove (ii) we
consider the function h(t) = det[W (p, p+tδp)]:,α, with α being the same multi-index
as in (i). The function h is also a rational function in t with finitely many zeroes.
Notice that h(t) 6= 0 implies the matrix W (p, p+ tδp) has full row rank. Using the
boundary/interior identity (36) we see that

Λp+tδp − Λp = tW (p, p+ tδp)T δp 6= 0

when δp 6= 0. Thus there are at most finitely many t for which Λp+tδp = Λp,
p, p+ δp ∈ R2 and δp 6= 0.

Remark 2. The assumption on the entries of Sp being rational functions of p is
satisfied by all the examples of discrete inverse problems on graphs that we consider
in sections 5 and 6. This is a simple consequence of the cofactor formula for the
inverse of a matrix.

4.5.3. Probabilistic interpretation of uniqueness almost everywhere. The discussion
in section 4.4 has a probabilistic flavor as was remarked for the scalar conductivity
problem in [6]. To see this, consider a probability space (Ω,F ,P) (i.e. a sample space
Ω, a set of events F and a probability measure P) and consider a random variable
P : Ω→ R×R with distribution µP that we assume is absolutely continuous with
respect to the Lebesgue measure on Cm×Cm. Note that this assumption precludes
the distribution µP from being supported on a set of Lebesgue measure zero in
R × R. We write P ≡ (P1, P2) when we want to distinguish the components of P .
If uniqueness a.e. holds for the discrete inverse problem at hand and M ⊂ R×R is
a measurable set for which P{P ∈M} > 0, then we must have

P{W (P1, P2) is injective | P ∈M} = 1.

To see this, remark that uniqueness a.e. guarantees that the set

Z = {(p1, p2) ∈M | W (p1, p2) is not injective}

is of measure zero. Since the distribution is absolutely continuous with respect to
the Lebesgue measure, this also means µP (Z) = 0. Roughly speaking, if we choose
two admissible parameters p1, p2 at random, we have W (p1, p2) injective almost
surely. Thus we can tell p1 and p2 apart from the data Λp1 , Λp2 almost surely.

A similar observation can be made regarding the injectivity of the Jacobian of
the problem. Let Q : Ω → R be a random variable with distribution µQ that
is assumed to be absolutely continuous with respect to the Lebesgue measure. If
uniqueness a.e. holds and N ⊂ R is some measurable set with P{Q ∈ N} > 0, then
we must have

P{Jacobian at Q is injective | Q ∈ N} = 1.

5. Examples of matrix valued inverse problems on graphs. Here we use the
graph theoretical results from section 2 to give examples of matrix inverse problems
on graphs that fit the mold of section 4.
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5.1. Matrix valued conductivity inverse problem. Given a graph G = (V,E)
with boundary, the problem here is to find the matrix valued conductivity σ ∈
(Cd×d)E from the Dirichlet to Neumann map Λσ,0. We explain below why this
problem satisfies the assumptions of section 4.

• Here we take as admissible set:

R = {σ ∈ (Cd×d)E | σ = σT and Reσ � 0}.
This is an open convex set in (Cd×d)E which can be identified to an open con-

vex subset of Cd2|E|. The forward map is the map that to σ ∈ R associates
the Dirichlet to Neumann map Λσ,0 ∈ Cd|B|×d|B|. This map is well defined
for σ ∈ R because of theorem 2.1.

• By lemma 2.4 with qi = 0, i = 1, 2, we have the boundary/interior identity

gT2 (Λσ1,0 − Λσ2,0)g1 = b(Sσ2
g2, Sσ1

g1)T vec(σ1 − σ2).

Here we define Sσ ∈ Cd|E|×d|B| by its action on some f ∈ Cd|B|

Sσf = ∇u,
where u solves the Dirichlet problem (15), with q = 0 and uB = f . The

bilinear map b : Cd|E| × Cd|E| → C|E|d2 is defined by b(u, v) = u � v, where
the outer product � is defined in section 2.1 and we are implicitly identifying

(Cd)E with Cd|E| and similarly for (Cd×d)E and C|E|d2 .
• Analyticity assumption. From theorem 2.1 (see also lemmas 3.3 and 3.4),

the solution u to the Dirichlet problem (15) with uB = f , σ ∈ R and q =
0 is determined by uI = −(LII)

−1LIBf , where for clarity we omitted the
subscript σ from the graph Laplacian Lσ. Therefore the entries of Sσ depend
analytically on σ, for σ ∈ R.

5.1.1. Relation between scalar and matrix valued conductivity problems. Here we
show that if the Jacobian for the scalar conductivity problem on a graph is injective
at a conductivity σ ∈ (0,∞)E then the Jacobian for the matrix conductivity prob-
lem on the same graph but with conductivity of edge e ∈ E given by σ(e)I ∈ Rd×d
must also also be injective. Because of the discussion in section 4.4, this result
shows that if uniqueness a.e. holds for a scalar conductivity problem, then it must
also hold for the matrix valued problem. In particular uniqueness a.e. holds on the
critical circular planar graphs that are defined in [13, 14].

Lemma 5.1. Let G = (V,E) be a graph with boundary and let s ∈ (0,∞)E be a
scalar conductivity. Define the conductivity σ ∈ (Rd×d)E by σ(e) = s(e)I with I
being the d×d identity. Then if the Jacobian of the forward problem is injective for
the scalar conductivity s, it must also be injective for the matrix valued conductivity
σ.

Proof. We need to show that

R(W (s, s)) = R|E| =⇒ R(W (σ, σ)) = Rd
2|E|.

To this end, we first link the Laplacian Lσ for the matrix valued conductivity σ is
a d|V | × d|V | matrix to the Laplacian for a graph Gd = (Vd, Ed) that corresponds
to having d copies of the graph G without any edges between the copies, and each
copy of G having the same scalar conductivity s. To be more precise the vertex set
of Gd is Vd = V × {1, . . . , d}, the edge set is

Ed = {{(v1, `1), (v2, `2)} ∈ Vd × Vd | `1 = `2 and {v1, v2} ∈ E}.
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Then with an appropriate ordering of Vd, we have Lσ = Lsd , where the conductivity
sd ∈ (0,∞)Ed is defined by

sd({(v1, `1), (v2, `2)}) = δ`1,`2s({v1, v2})
for all {v1, v2} ∈ E, `1, `2 ∈ {1, . . . , d}, and with δ`1,`2 being the Kronecker delta.
Now take a solution v ∈ RV to the Dirichlet problem on G with scalar conductivity
s and let ei be the i−th canonical basis vector of Rd. Then up to a reordering of
Vd, v⊗ ei solves the Dirichlet problem on G with matrix valued conductivity σ and
boundary data v|B ⊗ ei, i = 1, . . . , d. Here we used the Kronecker product ⊗ which
we recall for convenience in (2). Let vj be the solution to the Dirichlet problem on
G with conductivity s such that vj |B = ej , j = 1, . . . , |B|. Then we have

R(W (s, s)) = span{vec((∇vi)� (∇vi′)), i, i′ = 1, . . . , |B|},
where we used the outer product � defined in (1). Since ∇(v ⊗ ei) = (∇v)⊗ ei for
any v ∈ RV we should have that

(∇(vi ⊗ ej)�∇(vi′ ⊗ ej′)) = [(∇vi) ~ (∇vi′)]⊗ (eje
T
j′), (43)

for any i, i′ = 1, . . . , |B| and j, j′ = 1, . . . , d. Now let us consider the subspace

M ⊂ Rd2|E| spanned by all possible products (43) in vector form, i.e.

M ≡ span {vec [(∇(vi ⊗ ej))�∇(vi′ ⊗ ej′))] , i, i′ = 1, . . . , |B|, j, j′ = 1, . . . , d} .
Since R(W (s, s)) = R|E| we deduce that M = Rd2|E|. Indeed, the d2 subspaces
associated with the pairs (j, j′) ∈ {1, . . . , d}2 are mutually orthogonal and each
has dimension |E|. The desired result follows because we have the inclusion M ⊂
R(W (σ, σ)).

5.2. Matrix valued Schrödinger inverse problem. Given a graph G = (V,E)
with boundary, the inverse problem we consider here is to find the symmetric matrix
valued Schrödinger potential q ∈ (Cd×d)V from the Dirichlet to Neumann map Λσ,q,
where the conductivity σ ∈ (Cd×d)E is symmetric with Reσ � 0 and is assumed
to be known. This problem has the structure of the abstract inverse problem of
section 4, as we see next.

• The admissible set is

R =
{
q ∈ (Cd×d)V | q = qT and Re qI � −λmin((LReσ)II)

}
.

This is an open convex set in (Cd×d)V which can be identified to an open con-

vex subset of Cd2|V |. The forward map is the map that to q ∈ R associates
the Dirichlet to Neumann map Λσ,q ∈ Cd|B|×d|B|. This map is given by (17)
and is well defined for q ∈ R because of theorem 2.1.

• The boundary/interior identity is given by applying lemma 2.4 with σi =
σ, i = 1, 2:

gT2 (Λσ,q1 − Λσ,q2)g1 = b(Sq2g2, Sq1g1)T vec(q1 − q2).

Here we define Sq ∈ Cd|V |×d|B| by its action on some f ∈ Cd|B|

Sqf = uI ,

where u solves the Dirichlet problem (15) with uB = f . The bilinear map

b : Cd|V |×d|V | → C|V |d2 is defined by b(u, v) = u � v, where the block-wise
outer product � is defined in (1) and we implicitly identify (Cd)V with Cd|V |

and (Cd×d)V with C|V |d2 .
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• Analyticity assumption. From the proof of theorem 2.1, the solution u
to the Dirichlet problem (15) with uB = f and q ∈ R is determined by
uI = −(LII + diag(qI))

−1LIBf , where we omitted the subscript σ from the
graph Laplacian Lσ. Hence the entries of Sq are analytic for q ∈ R.

5.3. Rank deficient matrix valued conductivity inverse problem. Here we
consider the inverse problem of recovering a conductivity σ ∈ (Cd×d)E that is rank
deficient from its Dirichlet to Neumann map Λσ,0. To simplify the discussion, we
assume that the conductivities of all edges have the same rank r ≥ 1, i.e. rankσ(e) =
r for all e ∈ E. The conductivities we consider here satisfy the inclusion assumption
of theorem 2.3, namely that N (Reσ(e)) ⊂ N (Imσ(e)), for all e ∈ E. Moreover we
assume that Reσ(e) and Imσ(e) commute so that they can be decomposed on the
same basis of real eigenvectors. Therefore the eigenvectors of σ(e) are real and we
may define x ∈ (Rd×r)E and λ ∈ (Cr)E to write the eigendecomposition of each of
the conductivities i.e.

σ(e) = [x(e)][diag(λ(e))][x(e)]T , e ∈ E, (44)

with x(e)Tx(e) = I being the r× r identity. By the hypothesis σ � 0 we must have
Reλ > 0. We note that the assumptions we make here are more restrictive than
those of theorem 2.3, but they suffice for networks of springs, masses and dampers
where r = 1, as we see later in section 6.1.

• We take as admissible set

R =
{
λ ∈ (Cr)E | Reλ > 0

}
.

Clearly R is an open convex set in (Cr)E , which can be identified to an open
convex subset of Cr|E|. The forward map associates to λ ∈ R the Dirichlet to
Neumann map Λσ(λ),0 where σ(λ) has eigenvectors x and eigenvalues λ, i.e.
σ(λ) satisfies (44). Theorem 2.3 guarantees that this map is well defined for
λ ∈ R.

• Let λ1, λ2 ∈ R. By lemma 2.4 with σi ≡ σ(λi) and qi = 0, i = 1, 2, we get the
boundary/interior identity

gT2 (Λσ1,0 − Λσ2,0)g1 = b(Sλ2g2, Sλ1g1)T (λ1 − λ2).

We define the matrix Sλ ∈ Cr|E|×d|B| by its action on some f ∈ Cd|B|,

Sλf = diag(x)T∇u,
where u solves the Dirichlet problem (15) with boundary data uB = f ,
conductivity σ(λ) satisfying (44) and q = 0. Recall that the Dirichlet problem
solution is determined up to floppy modes. However from the floppy mode
characterization in lemma 3.5, we see that the definition of Sλ is independent
of the choice of floppy mode. The bilinear map b : Cr|E| × Cr|E| → Cr|E| is
simply the Hadamard product, i.e. b(u, v) = u~ v, and as before we identify
(Cr)E with Cr|E|.

• Analyticity assumption. From the proof of theorem 2.3 (see section 3.3.1),
a solution u to the Dirichlet problem (15) with boundary data uB = f ,
conductivity σ(λ) satisfying (44) and q = 0, is determined by

uI = −Q(QT (Lσ)IIQ)−1QT (Lσ)IBf,

where Q is a real matrix such that QTQ = I and R(Q) = R((Lσ)II). Since
Q depends only on the graph and the (known a priori) eigenvectors x, the
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entries of uI are analytic for λ ∈ R. Hence the entries of Sλ must also be
analytic for λ ∈ R.

6. Application to networks of springs, masses and dampers.

6.1. Spring networks. Consider a graph G = (V,E) with boundary B and let
p ∈ (Rd)V be a function representing the equilibrium position of each node in
dimension d = 2 or 3. Each edge e ∈ E represents a spring with positive spring
constant given by the function k ∈ (0,∞)E . Let u ∈ (Rd)V denote the displacements
of the nodes with respect to the equilibrium position. The quantity ∇u ∈ (Rd)E
is the net spring displacement. By Hooke’s law, the force exerted by a spring is
proportional to the net spring displacement. Here the proportionality is given by a
function k ∈ (0,∞)E . For infinitesimally small displacements, the force exerted by
spring {i, j} ∈ E is proportional to the projection of the net displacement of spring
{i, j} on the direction p(i)− p(j). In other words, the forces are diag(σ)∇u, where
σ ∈ (Rd×d)E is the positive semidefinite conductivity

σ({i, j}) = k({i, j}) [p(i)− p(j)][p(i)− p(j)]T
[p(i)− p(j)]T [p(i)− p(j)] , for {i, j} ∈ E. (45)

Now assume we displace the boundary nodes by an amount g ∈ (Rd)B . If the interior
nodes are left to move freely, the net forces at the interior nodes should be zero, this
condition is equivalent to (Lσu)I = 0. Hence finding the displacements in a spring
network arising from (static) boundary displacements is the same as solving the
Dirichlet problem (15) with the particular matrix valued conductivity (45) and zero
Schrödinger potential. Using theorem 2.3, we see that the interior displacements
are uniquely determined by the boundary displacements (up to floppy modes) and
that the Dirichlet to Neumann map Λσ is given by (19). In this particular case this
map is called displacement to forces map.

6.2. Networks with springs, masses and dampers. We now consider the case
where the displacements depend on time, i.e. the function u : V × R → Rd is
defined such that u(i, t) is the displacement about the equilibrium position p(i) of
node i ∈ V at time t ∈ R. We use the notation u̇ = du/dt and ü = d2u/dt2 and
we assume that all nodes have a non-zero mass, which is given by the function
m ∈ (0,∞)V .

6.2.1. Viscous damping. We consider two kinds of viscous damping. The first is
spring damping, which is proportional to the net velocity of a spring and is as-
sumed to be in the same direction as the equilibrium position of the springs, with
proportionality constant given by a function cE ∈ [0,∞)E . This corresponds to
having a damper in parallel with each spring. The net forces associated with this
damping are given by Lµu̇, where µ ∈ (Rd×d)E is defined by

µ({i, j}) = cE({i, j}) [p(i)− p(j)][p(i)− p(j)]T
[p(i)− p(j)]T [p(i)− p(j)] , for {i, j} ∈ E. (46)

The second is node damping, meaning that each node is inside a small cavity contain-
ing a viscous fluid and is thus subject to a damping force proportional to the node
velocity, with the proportionality constant given by a function cV ∈ [0,∞)V . The
forces associated with this kind of damping are diag(qdamp)u̇ where qdamp ∈ (Rd×d)V
is defined by qdamp(i) = cV (i)I, for i ∈ V and I being the d× d identity matrix.
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6.2.2. Equations of motion in time domain. Putting everything together and ap-
plying Newton’s second law, we get the equations of motion for a network of springs,
masses and dampers:

diag(qmass)ü+ (diag(qdamp) + Lµ)u̇+ Lσu = f, (47)

where qmass ∈ (Rd×d)V is defined by qmass(i) = m(i)I for i ∈ V . The function
f : V × R → Rd is a function representing any external forces, i.e. f(i, t) is the
external force exerted on node i ∈ V at time t. This second order system of ordinary
differential equations can be written as

Mü+ Cu̇+Ku = f, (48)

where M = diag(qmass) is the mass matrix, C = diag(qdamp) + Lµ is the damping
matrix and Lσ is the stiffness matrix. We recall that σ is defined in (45) and µ in
(46).

6.2.3. Frequency domain formulation and the Dirichlet problem. For a time har-
monic displacement u(i, t) = exp[ωt]û(i, ω), the equations of motion (48) become

(−ω2M + ωC +K)û = f̂ . (49)

Now consider the problem of finding the (frequency domain) displacements ûI at the
interior nodes knowing the displacements ûB at the boundary nodes and that there

are no external forces at the interior nodes (i.e. f̂I = 0). We immediately see that
we have another instance of the Dirichlet problem (15) with complex conductivity
σ+ ωµ and complex Schrödinger potential −ω2qmass + ωqdamp. Unfortunately we
cannot apply theorem 2.1 directly because we do not have σ � 0 or −ω2qmass � 0.
To remedy this, we assume there is always a small amount of damping at the nodes
i.e. cV ∈ (0,∞)V , in a way reminiscent of the limiting absorption principle for the
Helmholtz equation. We rewrite the equations of motion (49) as follows

(ωM + C + (ω)−1K)(ωû) = f̂ . (50)

Again if f̂I = 0, this is an instance of the Dirichlet problem (15) with complex con-
ductivity µ+(ω)−1σ and complex Schrödinger potential qdamp+ωqmass. A positive
damping at the nodes guarantees qdamp � 0. Thus the Dirichlet problem admits
a unique solution by theorem 2.1. Indeed the condition (Lµ)II � −λmin(qdamp)
always holds in this case because (Lµ)II � 0. Hence the Dirichlet to Neumann
map Λµ+(ω)−1σ,qdamp+ωqmass

is well defined by (17) and so is the Dirichlet to Neu-
mann map for the original problem: Λσ+ωµ,−ω2qmass+ωqdamp

, as can be seen from
a homogeneity argument. Since the latter map associates the frequency domain
displacements to frequency domain forces, we also call it displacement to forces
map.

6.3. Spring constant inverse problem: static case. Let us consider the inverse
problem of finding the spring constants k ∈ RE from the static displacement to
forces map Λσ(k),0 of a network of springs. We assume the equilibrium positions

p ∈ (Rd)V of the nodes are known. Uniqueness a.e. for this inverse problem
can be established using the result in section 5.3 for rank deficient matrix valued
conductivities, which we adapt here to this particular problem. Since we are not
aware of a physically relevant interpretation of complex valued spring constants in
the static case, we take spring constants in the admissible set

R = (0,∞)E .
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The forward map associates to k ∈ R, the displacement to forces map Λσ(k),0.
The conductivity σ(k) is defined in (45). For an edge {i, j}, the spring constant
k({i, j}) is the only non-zero eigenvalue of the conductivity σ({i, j}). To write the
boundary/interior identity for this problem we introduce the function x ∈ (Rd)E
that to an edge {i, j} ∈ E associates the corresponding normalized eigenvector, i.e.

x({i, j}) =
p(i)− p(j)
‖p(i)− p(j)‖ .

The boundary/interior identity is then

gT2 (Λσ1,0 − Λσ2,0)g1 = ([Sk1g1] ~ [Sk2g2])T (k1 − k2),

where σi ≡ σ(ki), i = 1, 2 and g1, g2 are vectors in Rd|B|. The matrix Ski ∈ R|E|×d|B|
is defined such that the vector Skigi contains the components of∇ui along the spring
directions, i.e.

(Skigi)(e) = x(e)T (∇ui)(e), e ∈ E, (51)

where ui is the displacement arising from displacing the boundary nodes by gi,
i = 1, 2. Concretely, this problem fits the mold of section 4. Thus from section 4.4,
if the linearization of the inverse problem for the spring constants in a spring network
is injective for particular spring constants, then it must also be injective for almost
all other spring constants.

6.4. Spring constant inverse problem assuming masses are known. Here
we consider the problem where the operating frequency ω, the equilibrium position
of the nodes p ∈ (Rd)V , the masses m ∈ (0,∞)V and node dampers cV ∈ (0,∞)V

are all known, but we want to recover the spring constants k ∈ (0,∞)E and spring
dampers cE ∈ (0,∞)E from the displacement to forces map at the frequency ω.

• The admissible set is

R = {ρ ∈ CE | Re ρ > 0, sign(ω)Im ρ > 0},
where we grouped for convenience the spring constants and spring dampers
into a single complex valued edge function ρ. To be more precise, if ρ ∈ R
we have Re ρ = k and Im ρ = ωcE . The forward map associates to ρ ∈ R
the displacement to forces map Λσ(ρ),q, where σ(ρ) is defined as in (45) with

k ≡ ρ and q ≡ −ω2qmass + ωqdamp. The forward map is well defined and
given by (16) for all ρ ∈ R because we assumed damping at the nodes, see
section 6.2.3.

• The boundary/interior identity is

gT2 (Λσ1,q − Λσ2,q)g1 = ([Sρ1g1] ~ [Sρ2g2])T (ρ1 − ρ2),

where σi ≡ σ(ρi), gi ∈ Cd|B| and the matrix Ski is defined as in (51) for
i = 1, 2.

• Analyticity assumption. We can use theorem 2.1 to guarantee that the
solution to the Dirichlet problem with boundary displacements uB = f is
given by uI = −(LII +diag(qI))

−1LIBf , where we omitted the subscript σ(ρ)
from the Laplacian Lσ(ρ). This implies the entries of Sρ are analytic for ρ ∈ R.

Thus the problem of finding the spring constants when the masses are known fits
the mold of section 4. The above argument can be adapted to the case where
there are no spring dampers, i.e. cE = 0. In this case the admissible set would be
R = (0,∞)E . However the problem no longer satisfies the assumptions of section 4
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if we do not know if spring dampers are present, because with cE ∈ [0,∞)E the
admissible set would not be open.

6.5. Mass inverse problem assuming spring constants are known. Here
we assume that the operating frequency ω, the equilibrium position of the nodes
p ∈ (Rd)E , the spring constants k ∈ (0,∞)E and the spring dampers cE ∈ [0,∞)E

are known. The inverse problem is to find the masses m ∈ (0,∞)V and node
dampers cV ∈ (0,∞)V from the displacement to forces map at the frequency ω. As
we see next, this problem also satisfies the assumptions of section 4.

• The admissible set is

R = {ρ ∈ CV | Re ρ < 0, sign(ω)Im ρ > 0},
where we grouped for convenience the masses and node dampers into a single
complex valued function ρ defined on the vertices. If ρ ∈ R, then Re ρ = −ω2m
and Im ρ = ωcV . The forward map associates to ρ ∈ R the displacement
to forces map Λσ,q(ρ), where σ is defined as in (45) with k ≡ k + ωcE , and

q(ρ) ∈ (Cd×d)V is defined by q(ρ)(i) = ρ(i)I for all vertices i ∈ V . The
displacement to forces map is well defined and given by (16) for all ρ ∈ R
because we assumed damping at the nodes, see section 6.2.3.

• The boundary/interior identity is

gT2 (Λσ,q(ρ1) − Λσ,q(ρ2))g1 = (u1 ~ u2)T vec(q(ρ1 − ρ2)),

where ui solves the Dirichlet problem (15) with conductivity σ + ωµ and
Schrödinger potential q(ρi), i = 1, 2.

• Analyticity follows from the solution u to the Dirichlet problem being well
defined from all Schrödinger potentials of the form q(ρ) (see the discussion in
section 6.2.3).

7. Summary and Perspectives. We have presented several inverse problems on
graphs that share the common structure of section 4. In these inverse problems,
the unknowns are matrices (or their eigenvalues) defined on the edges or nodes
of a graph (section 2). By giving sufficient conditions under which the Dirichlet
problem on a graph with matrix valued weights admits a unique solution we can
deduce a set of parameters on which the forward map is analytic. In cases where the
weights are rank deficient, the solution is not unique but can be determined up to
“floppy modes” that depend only on the nullspaces of the weights (sections 2 and 3).
Thus the forward map can still be shown to be analytic in this case. Analyticity
of the forward map and its Jacobian have practical consequences that are given in
sections 4.4 and 4.5. Particular examples of inverse problems on graphs are given in
section 5, with a focus on inverse problems arising on networks of springs, masses
and dampers (section 6) at a single frequency. Multi-frequency or time domain
problems are left for future studies.

There remains many open questions. For example, it is not clear how to find a
graph on which uniqueness a.e. holds for a given problem. This was done in [6]
by trying many random graphs drawn from the Erdős-Rényi model [16]. A similar
approach could be taken here. It is also not clear whether direct solution methods
such as the layer peeling algorithm in [13] exist for these matrix inverse problems
on networks. Finally, the theoretical results we present here rely on analytic con-
tinuation, which is a notoriously unstable procedure.
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Appendix A. Facts about analytic functions of several complex variables.
A function f : Cn → C is analytic on some open set R ⊂ Cn if for any z0 ∈ R,
the function f(z) can be expressed as a convergent power series, i.e. we can find
complex coefficients cα for which the series

f(z) =
∑
α∈Nn

cα(z − z0)α,

converges for all z ∈ R. Here we used the notation zα = zα1
1 zα2

2 · · · zαn
n , for a

multi-index α ∈ Nn. Rational functions of the form P (z)/Q(z), for P (z) and Q(z)
polynomials, are analytic on any connected open set where Q(z) 6= 0. Moreover,
the product and the sum of two analytic functions is also analytic. The uniqueness
lemma below is a consequence of analytic continuation, i.e. if f(z) is analytic for
z ∈ R and we can find z0 such that f(z0) 6= 0, then the zero set of f

Z ≡ {z ∈ R | f(z) = 0},
must be a set of measure zero with respect to the Lebesgue measure on R (see e.g.
[19]).
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II, Comment. Math. Helv., 71 (1996), 144–167.

[13] E. Curtis, E. Mooers and J. Morrow, Finding the conductors in circular
networks from boundary measurements, RAIRO Modél. Math. Anal. Numér.,
28 (1994), 781–814.

[14] E. B. Curtis, D. Ingerman and J. A. Morrow, Circular planar graphs and
resistor networks, Linear Algebra Appl., 283 (1998), 115–150.

[15] V. Druskin, personal communication, 2015.
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