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ABSTRACT. We consider damped elastodynamic networks where the damping
matrix is assumed to be a non-negative linear combination of the stiffness
and mass matrices (also known as Rayleigh or proportional damping). We
give here a characterization of the frequency response of such networks. We
also answer the synthesis question for such networks, i.e., how to construct
a Rayleigh damped elastodynamic network with a given frequency response.
Our analysis shows that not all damped elastodynamic networks can be realized
when the proportionality constants between the damping matrix and the mass
and stiffness matrices are fixed.

1. Introduction. The second Newton’s law applied to a network of springs, masses,
and dampers gives

Ku+Cu+Mi=f, (1)
where u is the vector of displacements of the network nodes and f is the vector
of external forces. The stiffness, damping, and mass matrices are K, C, and M,
respectively. These matrices are defined in section 2. We are mainly concerned
with networks where the damping is proportional or of Rayleigh type, which means
that there are some known proportionality constants «, 8 > 0 linking the damping
matrix to the stiffness and mass matrices:

C = oK + M. (2)
The Rayleigh damping assumption means that:

(a) The springs have a dashpot in parallel with damping constant proportional to
the spring constant. One way of achieving this is to construct springs from
Kelvin-Voigt solids (see e.g., [5, §7.3]), where the damping constant is propor-
tional to the stiffness constant.

(b) Each mass lies in a fixed cavity filled with a viscous liquid, where the viscosity
constant is proportional to the mass, or the cavity size is adjusted to obtain the
same effect (i.e., inversely proportional to the mass).

The proportionality constants « (linking the damping to the stiffness) and 3 (linking

the damping to the mass) are assumed to be the same for all the springs and nodes

in the network. An example of such a network is given in figure 1.

2010 Mathematics Subject Classification. Primary: 74B05, 35R02.

Key words and phrases. Elastodynamic networks, response function, damping, network syn-
thesis, proportional damping.

299


http://dx.doi.org/10.3934/nhm.2014.9.299

300 ALESSANDRO GONDOLO AND FERNANDO GUEVARA VASQUEZ

FIGURE 1. An example of a Rayleigh damped network. For the
terminal nodes the masses are colored in white and for the in-
ternal nodes in black. Each mass is surrounded by a cavity con-
taining a viscous liquid. The damping coefficient of each of the
linear dampers is a times the stiffness constant of the correspond-
ing spring, and the viscous damping coefficient of each mass is 3
times the corresponding mass.

We answer two questions about the (frequency) response of networks with this
class of damping. The response is the frequency-dependent linear relationship be-
tween the displacements and forces at a few terminal, or accessible, nodes. The
first question we answer is the characterization question, i.e., we give the form of
all possible responses for this particular class of networks. The second question is
the synthesis: can we build a network from this class that mimics any admissible
response’

For static networks (zero frequency), the characterization and synthesis questions
were established by Camar-Eddine and Seppecher [3], as part of a characterization
of the possible macroscopic behaviors of a static elastic material under a single
displacement field. Then, Milton and Seppecher [11] characterized the response of
damped elastic networks at a single, non-resonant frequency, and found it is possible
to build a damped elastic network that mimics a prescribed response at one single
frequency. The complete characterization and synthesis for the undamped case is
done in [10]: it is shown that the response is a matrix with rational function (of
frequency) entries, and that given the response for an undamped elastic network,
it is possible to build a network that mimics this response for all non-resonant
frequencies. The new characterization and synthesis results that we present here
are a generalization of the results in [10] to damping of Rayleigh type. In particular,
our results show that the Rayleigh damping model is incomplete, in the sense that
it cannot describe, by itself, the responses of all possible elastodynamic networks
with damping.

The characterization and synthesis for elastic networks have been used by Camar-
Eddine and Seppecher [3] to show how to design a (linear) elastic material that
has a prescribed response under a single displacement field. A similar technique
exploiting the characterization of networks of resistors was used by Camar-Eddine
and Seppecher [2] to show how to design a conductor that has a prescribed response
under a single voltage field. Synthesis results are also known for electrical networks
with resistors (Kirchhoff’s ¥ — A theorem, Curtis, Ingerman, and Morrow [6] for
planar resistor networks); networks of resistors, capacitors and inductors (Foster
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[7, 8], Bott and Duffin [1], Milton and Seppecher [11]); acoustic networks (Milton
and Seppecher [11]); and an electromagnetic version of elastodynamic networks
(Milton and Seppecher [12, 13]).

We start in section 2 by defining the stiffness, mass, and damping matrices for
a damped elastodynamic network and, given only access to a few terminal nodes,
its frequency response. Then in section 3, we show how the characterization and
synthesis results for static elastic networks in [3, 10] can be generalized to massless
elastic networks with Rayleigh damping. For general Rayleigh damped networks,
the characterization result appears in section 4 and the synthesis result in section 5.
We finish by giving in section 6 the loci of the resonances of Rayleigh damped
network.

2. The frequency response of an elastodynamic network with damping.
The linearized Hooke’s Law for a single spring located between nodes x; and xo
relates the forces a; (supported at node x;) to the displacements u; (assuming these
are small) through the relation

(x2 — x1)(x2 —x1)"

Ix2 — x|

as = — (LIQ — 111) = —aj.

Let K be the stiffness matrix, C be the damping matrix, and M be a diagonal
matrix with the masses of the nodes in the diagonal. In the case of a single spring,
the stiffness and mass matrices are

T T
n;on —I17 21 .
K= k1,2 4T L2 ' TL2 ) M= dlag (mleym2e)7
—Njp2oNjo NNy o
X2 — X1
n;o = )
|2 — x4

where e = (1,...,1)T € R%, d = 2,3. For a network with N nodes, the mass
matrix is an Nd x Nd diagonal matrix that is defined similarly with the nodal

masses myq, ..., my. The stiffness and damping matrices of a network are Nd x Nd
matrices obtained by adding the contributions from individual springs or dashpots:
K= Z k‘ijNij and C = Z CijNij (3)

spring ij spring ij

where k;; (resp. ¢;;) is the spring (resp. damping) constant for the spring (resp.
damper) between nodes ¢ and j and
1 —1] [eF T
No = (le o) | 7] o] o um @
J
Here we used the Kronecker product ® and the i—th canonical basis vector e; € RY.
As in the case of a single spring, the vector n;; € R? is a unit length vector with
direction x; — x;.
For a network of springs, masses, and dashpots, the balance of forces (Newton’s

second law) gives a system of ODEs, which is given in (1). Now, recall the Laplace
transform:

u(\) = Lu@®)](N) = / e Mu(t)dt.
0
Applying the Laplace transform to (1), the ODE becomes
(K+AC+X*M)u = f. (5)
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In the following, we only work in the Laplace domain; the tilde notation is dropped
for simplicity. Our results can also be formulated in the frequency domain by using
the Fourier transform instead of the Laplace transform on (1), or simply by setting
A =w.

For the purpose of introducing the problem, we first consider the case where all
nodes have a non-zero mass. Let us partition the nodes of the network into terminal
nodes (B) and interior nodes (I). At the interior nodes, the external forces are zero;
the displacement of the interior nodes is determined by the displacement of the
boundary nodes, except at the few frequencies corresponding to the resonances of
the system. If subscripts B and I denote the quantities referring to their respective
nodes, then the displacements at the boundary nodes are related to the forces at
the boundary nodes by

fB = W()\)uB,
where the displacement to forces map or frequency response is
W(\) =Kpp + ACpp + \*Mpzp
— (Kpr + ACg1)(Kir + ACqr + A>My;) (K;p + ACip),

which is the Schur complement of the IT block in the matrix K + AC + A2M (see
Appendix A for the definition of the Schur complement and properties).

(6)

Remark 1. We assume throughout this paper that each spring-damper pair oc-
cupies an arbitrarily small volume surrounding the segment connecting the corre-
sponding nodes. We also assume that the cavities with viscous fluid (and hence the
masses) can be made arbitrarily small. We need these assumptions to constrain the
internal nodes in our synthesis result to be within an e—neighborhood of the convex
hull of the terminal nodes, where € > 0 is arbitrary.

3. Massless Rayleigh damped networks. First, we characterize the networks
with Rayleigh damping and no mass. Later, in section 4, we use such networks to
simplify the work for general networks. The theorems in this section are a natural
extension of the characterization and synthesis in [3, 10] for static networks, i.e.,
networks with springs only. In the static case the response matrix is given by (6)
with A = 0. The forces f = (ff,...,f)T at the nodes x,...,x, form a balanced
system of forces when
n n
Z f; = 0 (equilibrium of forces) and in x f; = 0 (equilibrium of torques), (7)
i=1 =1
where ux v = (ugvs —usva, usgv; —ugvs, U2 —ugvy) if d = 3 and uxv = ujvg —ugvy
if d = 2, is the usual cross product. The characterization and synthesis theorems in
[3, 11, 10] are summarized in the next theorem.

Theorem 3.1. The response matrix W of any network of springs is symmetric
positive semidefinite where each column is a balanced system of forces at the terminal
nodes. (Characterization)

Conversely, any matrix W that is symmetric positive semidefinite where each
column is a balanced system of forces at the terminals can be realized by a network
of only springs. Moreover the internal nodes of such network can be chosen so as
to avoid a finite number of points and to be within an e—neighborhood of the convex
hull of the terminal nodes. (Synthesis)
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Proof. See e.g. [10, Lemma 2] for the characterization and [10, Theorem 1] for the
synthesis. O

Theorem 3.1 can be readily extended to massless Rayleigh damped networks.

Theorem 3.2. The response of a massless network with Rayleigh damping is of
the form

(14+a\)W, (8)

where a > 0, X is the Laplace parameter, and W is the response of a static network,
i.e., W is symmetric positive semidefinite with each column being a balanced system
of forces at the terminals x1,...,X, (as in theorem 3.1).

Conversely, given any matriz-valued function of A of the form (8) where W is
the response of a static network at the nodes X1, . .., Xy, there is a massless Rayleigh
damped network with terminals at the nodes X1, ...,X, realizing it. Moreover the
internal nodes of such network can be chosen so as to avoid a finite number of points
and to be within an e—neighborhood of the convex hull of the terminal nodes.

Proof. The forward direction is due to the homogeneity of degree 1 of the Schur
complement (see Appendix A). Let K be the stiffness matrix for a static network
and W the response matrix of the network at some terminal nodes B. Then the
frequency response of the massless network with Rayleigh damping when all the
nodes are terminals is (1 + aA\)K. Then by taking the Schur complement, the
response at the nodes B is (1 + a\)W.

To prove the converse, assume we are given a frequency response of the form
(1 + X)W, where W is the response of a static network. By the second part of
theorem 3.1, there is a network of springs with stiffness matrix K with response
W at the nodes B. The internal nodes of this network can be chosen so as to
avoid a finite number of points and to be in an arbitrarily small neighborhood
of the convex hull of the terminals. Then a network that has (1 + aA\)W as its
response is the network with response at all the nodes (1 + a\)K, i.e., the network
obtained from the second part of theorem 3.1 with dashpots in parallel with each
spring, and each dashpot having a damping constant being « times the stiffness
of the associated spring. Here we have used the assumption that each spring and
damper pair occupies an arbitrarily thin segment between the corresponding nodes,
so the network transformations that do not change the response in [10, §2.3] are
still valid. O

Remark 2. Theorem 3.2 is valid for planar networks, i.e., networks for which all
the springs lie in a plane. This is because theorem 3.1 is valid for planar networks:
one can always realize the response of a planar network with a planar network.

4. Characterization of general Rayleigh damped networks. In this section,
we give conditions that the response of Rayleigh damped networks needs to satisfy.
In general, we may have massless nodes in the network; these are dealt with in
lemma 4.1, where we use the characterization for the massless case from section 3
to eliminate any massless interior nodes. Theorem 4.2 is the characterization result
for general Rayleigh networks. Then Proposition 1 shows that the conditions of
theorem 4.2 are consistent with the characterization at a single frequency found
by Milton and Seppecher [11] (a condition which means, in physical terms, that
damping can only consume energy).
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Let us partition the interior nodes I into the set of interior nodes J with positive
mass and the set of massless nodes L. Clearly, M, is positive definite while
My = 0. The following lemma is similar to [10, Lemma 3] and reduces the
characterization problem for Rayleigh networks with massless nodes to Rayleigh
networks where each node has mass.

Lemma 4.1. Let K be a Nd x Nd stiffness matriz and let M be a Nd x Nd
(diagonal) mass matriz, where N = |B U I|. With the Rayleigh damping matric
C = aK + M, the response at the terminals B is

W(\) = KBB + )\(NjBB + )\QMBB
- (RBJ + )\éBJ)(RJJ +ACyy+ )\2MJJ)71(I~<JB + )\6,}3)7

for all frequencies \ for which det(f(JJ +ACyy + A2M ;) # 0. Here the tilde
matrices are submatrices of the matrices

~ Kpp Kpy Kgs Kpgs KBL| 4t
K== - = — K K K d
[KJB KJJ] [KJB KJJ] {KJJ LL [ LB LJ] an
C=0oK+ Bdiag (Mpg, M),

where the symbol T denotes the Moore-Penrose pseudoinverse. Also, I~{JJ and CJJ
are positive semidefinite.

Proof. For external forces at the nodes B U J, the second Newton’s law is:

Kss Kpss KaL Mszg ug f
(1+a)) | Ky Ky Kio| +(BA+A?) M, uy| = [fs|.
K Kr;s Kiro 0 ur, 0

When A\ # —1/«, the equations corresponding to the nodes L determine the dis-
placement uy, in terms of the displacement at the nodes B U J:

uy = —KTLL [KLB KLJ} {TlB} + z, for some z such that K; .z = 0.
J
By [10, Lemma 1] with terminals B U J and internal nodes L, we have that

Kpr,
K =0= =0.
Lo [KJJ .

Replacing the expression for uy into the equation for nodes B U J we get

£ 2y |[MgBB up fp
1+ aN)K+ (BA+X7) [ MJJ” {“J = [fJ] .
The response of the network with terminals B U J and internal nodes L is then
K + AC + A2diag (Mpp, M), when A # —1/a. The case A = —1/a gives the
same expression. Note that IN(J_] and (NZJ 7 are positive semidefinite because they are
principal submatrices of positive semidefinite matrices K and C. The matrices K
and C are the Schur complement of positive semidefinite matrices and are therefore
also positive semidefinite (see e.g., (14)). To get the response at the nodes B it
is enough to take the Schur complement of the J.J block of the matrix K + AC +
>\2diag(MBB,MJJ). ]



RAYLEIGH DAMPED NETWORKS 305

Remark 3. Lemma 4.1 means that eliminating massless nodes in a Rayleigh net-
work with damping C = aK + SM preserves the Rayleigh damping structure.
Indeed the response at the nodes B U J (the nodes with positive mass) is that of a
network with stiffness matrix K and damping matrix C of Rayleigh type (the tilde
matrices are as in lemma 4.1). The fact that this corresponds to a Rayleigh damped
network is proven in §5.

We can now formulate a characterization of the response at the terminal nodes
of a Rayleigh damped network.

Theorem 4.2. Consider a damped mass-spring network with terminals x1, ..., Xy,
with Rayleigh damping, i.e., the damping matriz is of the form C = aK + M,
where a, B > 0 are given. The displacement-to-forces map of any such network is
of the form:

(14 aX)’R0)
aj 4+ A a03+ﬁ)+)\2’

W) = (1+al)A + (BA+A)M — Ep: (10)

where

i. RY) is real symmetric positive semidefinite and o; > 0.
1. M is real diagonal positive semidefinite.
1. A is real symmetric positive semidefinite.
w. There are at most 2p distinct poles: namely the roots of the polynomials

qj()\)zaj+/\(aaj—|—6)—|—)\2, forj=1,...,p

Moreover, for all roots \* of ¢;()\), we have Re(A*) < 0. This is the second law
of thermodynamics: damping consumes energy.
v. The response for A =0, i.e.,

P RO
-2
j=1

is the response of a static network. The characterization for static elastic
networks [3] states that W(0) must be real symmetric positive semidefinite
with every column being a balanced system of forces (see (7)) at the terminals
X1, Xn.

Proof. We begin by using lemma 4.1 to remove the massless interior nodes. Let
I = JU L where J are the positive mass nodes and L are the massless nodes. Let

K and C be as in (9). Then lemma 4.1 gives
W()A) = Kpp + A\Cps + \Mpp an)
— (Kps + ACps)(Kys + ACyy + A M) (Kyp + ACyp).

Since M, is real diagonal positive definite, it has a square root M1 JQ. Now

KJJ is real symmetric positive semidefinite and so is MJJ/ KJJMJJ/ Then by
the spectral theorem, there exists U unitary and 3 real diagonal with nonnegative
entries so that

M /?K ;M1 = usuT,

Consider the matrix X = M / U, which clearly is invertible and is so that
XTKJJXZ Y and XM, ;X =1,
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where I is the identity matrix (in this case |J| x |J|). The resolvent part of (11)
becomes

Q(\) =Ky; + ACyy + A2M s
=X T(XTK ;X + AXTCyryX + A2X"M,;, X)X !
=X+ AaZ + BI) + NT)X !
=X"TD\)X
Here we used the result from remark 3, i.e., that éJJ = aRJJJrﬁMJJ. The matrix

D()) is diagonal and therefore easily inverted. Then the resolvent [Q(A)] ™" can be
written as

[Q)] ™ =XD(V) X"

1
= X di xT
a8 (oi + Mao; + B) + A2> ’
where o; are the diagonal elements of X. Let Kg;X = [vy--- VlJl]. By remark 3

we have 633 = aKBB + BMpgp and éBJ = aRBJ. Therefore the response (11)
can be written in the form

B |J]

W) = (1+aNKpp + (BA+ A)Mpp — »

i=1

vivl (14 al)?
o; + )\(O[Ui + ﬂ) + A2 '

Notice that the o; may be zero. This is the case when the network has a so
called “floppy mode” (non-zero displacements with zero force required). The same
argument in [10, Lemma 12] can be used to deal with floppy modes. Indeed Lemma
1 in [10] can be used to show that o; = 0 implies v; = 0. By adding up the non-
zero residues v;vI that share the same denominator, we get the symmetric positive
semidefinite residues R of the statement of the theorem. The result follows by
noticing that A = K BB is symmetric positive semidefinite, M gp is diagonal with
nonnegative entries and at A = 0, the response

W(O):A—ZP:R

(4)
gj ’

is the response of a static elastic network.
Finally the roots of o; + (ao; + B)\ + A\? are

AP = (~(a0; + B) £/ (ag; + B)2 — 40;)/2
When (ao; + 8)? < 4o, the roots are clearly in the left half plane since
2Re )\(f) =2Re\Y) = —(ao; +8) <0.

When (ao;+3)? > 40, the roots ')\g) are real and negative since (ao;+3)? —4o; <
(aoj 4 B)? implies that A9 < )\(j) <0. O

Remark 4. Setting A = 0 in Theorem 4.2 gives the static or zero frequency result
in [3]. Setting o = 8 = 0 (i.e., no damping) gives the result in [10] for elastodynamic
networks with no damping.

For the Laplace parameter A in the imaginary axis (i.e., real frequencies), the
eigenvalues of the imaginary part of the response should have a sign consistent
with the energy losses due to damping (again a manifestation of the second law of



RAYLEIGH DAMPED NETWORKS 307

thermodynamics). These inequalities are essential to the single-frequency charac-
terization and synthesis of Milton and Seppecher [11], and hence these inequalities
should also hold in our case. The next proposition shows that these inequalities hold
automatically for matrix functions of A satisfying the hypothesis of theorem 4.2.

Proposition 1. Any matriz function of A of the form (10) and with the properties
of theorem /.2 is such that

wImW(w) >0 for any w € R,

where the inequality A > 0 for a symmetric matriz A, means A is positive semi-
definite.

Proof. Let us rewrite the matrix-valued function W(X) in (10) as
W(A) = Wi(A) + Wa(A) + W3(A),
where

R

Wi(A\) = (1+a)) A—i = (1+ aA)W(0),

= 7
Wy(\) = (BA 4+ MM, and
v ,
(14 a))?o; RV)
Wi3(A) = 14+ al) — .
o ;[( ) oj+ Mao; +8) + 2] o

To prove the final result, it is enough to show that w Im W (w) > 0, k = 1,2,3. The
first two cases are clear since: wIm Wi (w) = aw?*W(0) > 0 because W(0) > 0;
and wIm Wy (1w) = fw?M > 0 because M is diagonal with nonnegative entries.

Since R) /oj > 0, we have proved the inequality for the third case if for all
o > 0 the function

(1+a))?o

f(/\):(1+a/\)_a+)\(aa+ﬁ)+)\2

is such that
wlm f(w) > 0, for w € R.

To show this inequality, consider the 2 x 2 complex symmetric matrix

14+ al 14+ al
= 1+ al U+)\(afr+ﬁ)+)\2

[ea

B()\)

We start with w > 0. Clearly ImB(w) > 0 since det(ImB(w)) = waf/o > 0
and all the entries of Im B(ww) are non-negative. Then noticing that f(X\) is the
Schur complement of the 2,2 entry in B()) and using the property of the Schur
complement (14), we have that ImB(w) > 0 = Im f(w) > 0. So we get the result
wf(w) > 0 when w > 0.

For w < 0, the same reasoning holds. We only need to check that Im B(ww) < 0.
This is true because all the entries of Im B(:w) are non-positive and det(Im B(w)) =
waf/o < 0. Therefore wf(wuw) > 0 when w < 0, which completes the proof. O
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5. Synthesis of general Rayleigh damped networks. The basic building block
for the synthesis is a Rayleigh damped network with: a rank one response; a complex
conjugate pair or a real pair of prescribed resonances; and zero static response. The
existence of such a network is stated in lemma 5.1 and proved at the end of this
section (it is a similar construction to that in [10, Lemma 12]). The synthesis of a
general Rayleigh damped network is done in theorem 5.2.

Lemma 5.1. Let x1,...,X, be some terminal nodes and let f1,...,f, be an ar-
bitrary system of forces at the corresponding terminals (the forces do mot need to
be balanced). Then for any a, B > 0 and o > 0, it is possible to build a Rayleigh
damped network with zero static response and with

(14 aX)?o
o+ (ao + B)A+ A2

W) = [(1+a)) - 7, (12)
where £ = [fF,... £F)T. The internal nodes of such a network can be chosen to
avoid a finite number of points and to be within an e—neighborhood of the convex
hull of the terminal nodes.

Theorem 5.2. Given any matriz-valued function W(X) of the form (10) and sat-
isfying the conditions of theorem 4.2 with « and B fized, there exists a Rayleigh
damped network with proportionality constants o and S and response W (X). The
internal nodes of such a network can be chosen to avoid a finite number of points
and to be within an e—neighborhood of the convex hull of the terminal nodes.

Proof. The proof relies on the superposition of networks, i.e., using the fact that
the response of two networks that share terminal nodes and only terminal nodes,
is the sum of the responses of each network (see e.g., [10, §2.4]). To specify the
building blocks needed to realize the matrix-valued function W(A) in (10), we first
rewrite it as:

W(A) = Wi(A) + Wo(A) + W3()),

where
P R
Wi\ =(1+a)) [A=) = (1+ a\)W(0),
i=1 7
Wy (A) = (BA+ A%)M, and
P 2. ®)
(14 aN)o; R
Wi(\) = 1+a)) — .
" ;[( TN N + ) 10 o

We now show how to realize each term W1, W5 and W3 separately by a network.
The superposition principle can then be used to find a network realizing W.

We first use theorem 3.2 to see that a network realizing W1 () is the network
of springs realizing the static response W(0) (existence guaranteed by theorem 3.1
or [3]), with a damper with damping constant « times the spring constant added
in parallel to each spring. To realize Wy it suffices to endow each terminal node
by the mass dictated by M and surrounding it by a cavity such that the resulting
damping is # times the mass.

We now show that each term in the sum in the expression of Wy is realizable.
Then the realizability of W3 follows from the superposition principle. Let us drop
the index j for the sake of simplicity and show that there is a Rayleigh damped
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network with response:

)

[(HM) (1+a)\)o } R

c+Mao+B)+ 2| o

when R is real symmetric positive semidefinite. By the spectral theorem it is
possible to find real vectors vi such that

T
E = Zv;w?
7 =
where r > 0 is the rank of R. (The case r = 0 is the trivial R = 0 case). Hence
we have reduced the problem to that of finding a network with zero static response,
a rank one response and as resonances the roots of p(\) = o + A ao + () + A2
Lemma 5.1 shows how to build such a network. This completes the construction. [

We now prove Lemma 5.1.

Proof. The main idea here is to find a massless Rayleigh damped network and add
appropriate masses to the internal nodes to get the desired resonances. According
to [10, Lemma 12], it is possible to choose two distinct nodes x, 41 and x,42 and
two forces f, 1 and f,, o such that the system of forces fi,..., f,12 is balanced
when supported at the nodes x,...,x,42, regardless of the choice of f. Then
by theorem 3.2, there exists a massless Rayleigh damped network with rank one
response (1 + a)[f7, g?]7[f7, g”], where g = [f7, |, £ ,]7. We now endow the
two internal nodes x,11 and x,42 with the same mass m, that is determined later
to match the desired resonances. We also surround the nodes x,,+1 and x,42 by
a cavity with a viscous fluid, designed so that the damping term is Sm. Then
Newton’s second law becomes
f T T 0 2 up| W()\)uB
e B L) | 9 o

where up and u; are the displacements of the boundary nodes xi,...,x, and
interior nodes X, 11 and x,12, respectively, and W () is the frequency response of
this network.

Next, we take the Schur complement of the 17 block to find the response W (\):

— le% 2
W) =1+ aNf" + (1 +a)) ((1 n aA)(|1g|J2F+A()ﬂ§+ A2)m> r
T (1 +aX)?(gl*/m) T
= (1 +a)ff </\2+(a(|g|2/m)+6)/\+(|g|2/m)> T

Let m = |g|?/o. Then the response is
1+ aN)?o
W) = (1+aN)fF" — ( "
) =(1+ad) <A2+(aa+6)>\+a> ’
which is the desired result since W(0) = 0. O

6. Resonances of Rayleigh damped networks. A natural question to ask is
whether it is possible to find a Rayleigh network with a and § fixed with a resonance
that is located anywhere in the left half complex plane. Since the conditions of
theorem 4.2 are necessary and sufficient for a matrix valued function of frequency
to be the response of a Rayleigh damped network, this question is equivalent to
finding the set of all possible resonances for a Rayleigh damped network with o and
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B fixed. Our analysis shows that this is set is not the left hand plane. This means
that the Rayleigh damping model is incomplete, since a general damped network
can have resonances anywhere in the left half complex plane.

We state here the loci of the resonances that can be realized with Rayleigh
damped networks. The derivation of these loci is included in Appendix B. According
to theorem 4.2, the resonances that can be realized with Rayleigh damped networks
are the roots of the quadratic A2 + (ao + B)\ + o, i.e.,

—(ao+ B) £ /(o + 8)? — 4o
Ay = 5 .

Because we only can choose o, the resonances lie in curves in the complex plane.
The specific curves depend on « and § and are as follows.

Damping at the nodes only (o« = 0): Union of the segment ImA = 0,
—8 < Re) <0 and the line Re A = —3/2.

Im A

Re A

Damping with dashpots between the nodes only (8 = 0): Union of the
negative real axis ImA = 0,Re X < 0 and the circle |\ + a~!| = a~! without the
segment [—a~1,0].

Case a, 5 # 0 and af < 1. Union of the negative real axis ImA = 0,Re A < 0 and
the circle |\ + o™t = a~'y/1T — af, without the segment [-a~', —f].

ImA

Re A

Case o, # 0 and af > 1. the negative real axis Im A = 0, Re A < 0 without the
segment [—3, —a~!].
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7. Discussion and future work. We have established the characterization and
synthesis of the response for mass-spring networks with Rayleigh damping. In
particular, our result shows that, for each pair of o and [, there is a class of
resonances that can be realized when the damping matrix is C = aK+ M. Clearly,
from section 6, when choosing different values of « and 3, it is possible to have any
resonance with negative real part. Hence, if we superimpose Rayleigh damped
networks with different values of « and 3, it is possible to construct a network
with any finite number of resonances in the left half complex plane (provided they
are real or come in complex conjugate pairs). However, it is not clear whether
the response of a general damped network can be realized by superposing several
Rayleigh networks with different o and 3. This is a question that we plan to explore.

Another extension of this work would be to consider general damping by using
the quadratic eigenvalue problem [14, 9]. Specifically, we believe it is possible to use
the spectral decomposition for real symmetric quadratic pencils by Chu and Xu [4]
to characterize the response of general damped networks. Then for the synthesis,
we would need to construct networks that realize the form of the response, but this
is left for future work.

Appendix A. Schur complement properties. Consider the partition of a ma-
trix A € C"*™ induced by the partition of {1,...,n} into two sets I and B:

Agp Apr
A= .
{AIB AH}

The Schur complement of the 1T block in A is defined as
S=App - AprA;/ A,

provided A is invertible. The Schur complement is homogeneous of degree 1, since
for nonzero A € C,

AS = (/\ABB) — (/\AB])(AAH)il()\AIB).

A quadratic form of the Schur complement is equivalent to a quadratic form of
the original matrix A, indeed by simple manipulations we have

vESvp = [Y/ﬂ A {‘;}j] , where vy = —A;}AIBVB. (13)

A consequence of (13) is that if A € R"*™ A > 0 implies S > 0 (and similarly
for the reverse inequality). Here the inequality A > 0 is understood as A positive
semi-definite.

The quadratic form v*Av for A € C"*" with AT = A (i.e., complex symmetric),
can be written as

Re(v*Av) = (Rev)T(Re A)(Rev) + (Imv)T (Re A)(Im v),
Im(v*Av) = (Rev)"(Im A)(Rev) + (Imv)" (Im A)(Im v).

By combining this fact with (13) we have that for complex symmetric A and its
Schur complement S:

ReA>0=ReS>0and ImA >0=1ImS >0, (14)

and similarly for the reverse inequalities.
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Appendix B. Loci of resonances for fixed a and 5. The resonances written
as functions of o are:

A(0) = 2(~(a0 + 8) £ VA())

where the discriminant is A(c) = (a0 + 8)? — 40. Recall that o > 0. The loci that
we describe here are the curves lying in the left side of the complex plane

{A(0) | o >0} U{A_(0) | 0 > 0}.
B.1. Case o =0 and g # 0. The resonances simplify to

1
As(o) = 5(—51 V% —4o).
Here there are two cases:
e When o € (0,32/4], the Ai(0) are real and Ay (o) € [-3/2,0) and \_(0) €

(_Ba _5/2}
e When o € (8%/4,00), we have Re(A+(0)) = —3/2 and Im(\ (o)) is arbitrary.

(
B.2. Case aff > 1. The discriminant A(o) is a quadratic function of o with roots:
)

—(2a8—4)+4/1—ap
N 202 '
Hence when af > 1, we are guaranteed that A(c) > 0, and thus the resonances
A+ (o) are both real. Moreover for ¢ > 0, Ay (o) € (—a~1,0) and A\_(0) €
(—oc0,—f). Note that a3 > 1 implies —3 < —a~! so it is not possible to real-
ize resonances in the interval [—3, —a~1].

0+

B.3. Case 0 < aff < 1. Here the roots o4 of the discriminant A(c) are real and
A(o) may take negative values. To simplify the expression for oy, it helps to set
a3 = sin? @ for some unique angle 6 € (0,7/2). Then we have
or = %(f(sin2 0 —2)+2cosb) = %(cosé) +1)%
Therefore oy > o_ > 0.
For o € [o_,04] the discriminant A(c) < 0 and so Ay () = A_(0). In this case
the roots can be written as

Aio) = %(—(aa + )+ in/—A@)).

These roots must lie on a circle C' centered at z = —a~! and of radius o~ /1 — aB.

Indeed a? times the squared distance from a resonance to —a ™! is

OZQO' « 2 o
fidato e = (1 2 22) ey

By looking at the expression for Ay(c) and remembering that such roots come in
complex conjugate pairs we get for o € [o_, 0] that:

_aoy +f
2

=1-ap.

<Re(Ms(o) < —L;B

= o '(-1=y/1-aB) <Re(Ar(0)) <a '(-1+1-ap),

where we used the identity cos@® = /1 — af. This inequality means that for o €
[0_,04], the real part of the resonances coincides exactly with the real part of points
on the circle C, so the set of resonances for o € [o_, 0] is the circle C.

The o corresponding to real resonances can be subdivided into:
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e For 0 € (0,0_), we have
A(0) € (=807 (=14 v/T—aB)) and
Ai(0) € (a7 (=14 /1 - ap),0).
Note that —3 < a~}(—=1+4++/1 — af) since /T — af — (1 —afB) = cos —cos? 0

is positive for 6 € (0,7/2) which corresponds to 0 < a8 < 1.
e For o € (04,0), we have

A_(0) € (—o0,a” (=1 —+/1—apB)) and ,
A(0) € (a7} (=1 = T=af),—a™).

1

The inequality 0 < af < 1 means that —a™ < —f, so it is not possible to

realize resonances in the interval [—a~t, —4].

B.4. Case a # 0 and B = 0. This is a degenerate case of the previous case. The
discriminant A(c) has roots oy = 4a~2 and o_ = 0. Then we have the following
branches.

e For 0 € (0,04], A(o) < 0 and we can use the same argument as in the
previous case to show that the realizable resonances must lie on the circle C
of radius o' centered at —a~!. The only difference is the strict inequality

—2a~! <Re(Ax(0) <0,

which means we need to exclude the point 0 from the circle C.
e For o € [04,00), A(c) > 0 and the roots are such that:

A_(0) € (—00,—2a Y and A\ (0) € [-2a7 1, —a™1).

This means that it is not possible to realize resonances in the segment [—a, 0].
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